Journal of Organometallic Chemistry, 419 (1991) 85-100 Elsevier Sequoia S.A., Lausanne
JOM 22102

Zweikernige Pentamethykyckopentadienyl-Vanadium-Komplexe mit Tellurbrücken. Anwendung der ⁵¹V NMR-Spektroskopie zur Identifizierung neuer Vanadium-Verbindungen mit unterschiedlichen Chalkogenen im Brückensystem

Max Herberhold * und Matthias Schrepfermann

Laborationium für Anorganische Chemie ther Universität Bayreath, Posssath 18 12 51, W 4598 Bayreath (Deutschland)

(Eingegangen den 10. Juni 1991)

Abstract

Solutions of the kinetically labile tricarbonyl vanadium halfsandwich complexes Cp*V(CO)₃L (L = SMe2, MeCN) react with elemental tellurium in the presence of sodium polytelluride (of the approximate composition Na₂Te₅) to give the binuclear μ -oxo complex $Cp^*_2V_2Te_3O$ (4e). The reactions of 4e, in tetrahydrofuran solution, with chalcogen sources such as elemental chalcogens (S₈, Se_n), chalcogen hydrides (H₂S, H₂Se), chalcogenides (Na₂Se) and polychalcogenides (Na₂S₂₂, Na₂Se₅) have been used to prepare mixed retractial cogemiae complexes of the types $Cp^*_2V_2E_4$ (2) and $Cp^*_2V_2E_3O$ (4) (E = S, Se and Te) which contain various S/Se/Te combinations in the bridge system between the two vanadium centers, u-Oxo ditelluride complexes such as $Cp^* N_1 Te_1 EO$ (E = S (4)), Se (4)) are formed when 4e is treated with sodium chalcogenides (Na₂S₂₂, Na₂Se) for short periods of time. Oxygen-free ditelluride complexes such as $Cp^*_2V_2Te_2E_2$ (E = S (2f), Se (2g)) have been obtained by the reactions of $Cp^*_2V_2E_3$ (E = S (3a), Se (3b)) with Na₂Te₅. Monotelluride complexes such as $Cp^{*}_{2}V_{2}TeE_{2}O$ (E = S (4f), Se (4h)) and Cp*2V2TeSeSO (4g) can be identified as components of mixtures and characterised by 51 V NMR spectroscopy and FD mass spectroscopy. Total displacement of the substitution-labile tellurium bridges in Cp^{*},V₂Te₂S₂ (2f) and Cp^{*},V₂Te₂SO (4i) using polysulfide or polyselenide leads to the corresponding sulfide- and selenide-bridged complexes in high yields. The spectroscopic data of the telluride compounds are discussed and compared with the corresponding data of the sulfide and selenide analogues.

Zusammenfassung

Lösungen der kinetisch labilen Tricarbonylvanadium-Halbsandwich-Komplexe $Cp^*V(CO)_3L$ ($L=SMe_2$, MeCN) reagieren mit elementarem Tellur in Gegenwart von Natrium-polytellurid (der ungefähren Zusammensetzung Na_2Te_5) unter Bildung des zweikernigen μ -Oxo-Komplexes $Cp^*_2V_2Te_3O$ (4e). Die Reaktionen von 4e, in THF-Lösung, mit Chalkogen-Quellen wie den elementaren Chalkogenen (S_8, Se_n) , Chalkogenwasserstoffen (H_2S , H_2Se), Chalkogeniden (Na_2Se) und Polychalkogeniden (Na_2S_{22} , Na_2Se_5) wurden dazu verwendet, gemischte Tetrachalkogenid-Komplexe der Typen $Cp^*_2V_2E_4$ (2) und $Cp^*_2V_2E_3O$ (4) (E=S, Se und Te) darzustellen, die unterschiedliche S/Se/Te-Kombinationen im Brückensystem zwischen den beiden Vanadium-Zentren enthalten. μ -Oxo-ditellurid-Komplexe wie $Cp^*_2V_2Te_2EO$ (E=S) (4i), Se (4j)) werden gebildet, wenn 4e kurzzeitig mit Natriumchalkogeniden (Na_2S_{22} , Na_2Se) behandelt

wird. Sauerstoff-freie Ditellurid-Komplexe wie $Cp^*_2V_2Te_2E_2$ (E = S (2f), Se (2g)) wurden bei der Umsetzung von $Cp^*_2V_2E_3$ (E = S (3a), Se (3b)) mit Na_2Te_5 erhalten. Monotellurid-Komplexe wie $Cp^*_2V_2TeE_2O$ (E = S (4f), Se (4h)) und $Cp^*_2V_2TeSeSO$ (4g) lassen sich als Bestandteile von Gemischen identifizieren und mit Hilfe von St NMR-Spektroskopie sowie FD-Massenspektroskopie charakterisieren. Eine vollständige Verdrängung der substitutions-labilen Tellurbrücken in $Cp^*_2V_2Te_2S_2$ (2f) und $Cp^*_2V_2Te_2SO$ (4i) mit Polysulfid und Polyselenid führt in hohen Ausbeuten zu den entsprechenden Sulfid- und Selenid-verbrückten Komplexen. Die spektroskopischen Daten der neuen Telluridverbindungen werden diskutiert und mit denen der entsprechenden Sulfid- und Selenid-Analogen verglichen.

Einleitung

Wie wir in einer vorausgehenden Mitteilung [1] erläutert hatten, führt die thermische oder photochemische Chalkogenierung des Halbsandwich-Komplexes Pentamethylcyclopentadienyl-tetracarbonylvanadium, $Cp^*V(CO)_4$, mit elementarem Schwefel oder Selen bevorzugt zu zweikernigen, chalkogenoverbrückten Produkten. Die primär entstehenden Pentachalkogenide $Cp^*_2V_2E_5$ (1) und Tetrachalkogenide $Cp^*_2V_2E_4$ (2) können mit Tri("butyl)phosphan zu den entsprechenden Trichalkogeniden $Cp^*_2V_2E_3$ (3) dechalkogeniert werden (E = S oder Se).

$$\begin{array}{c|c}
E - E \\
E \\
E \\
E
\end{array}$$
(1)
$$\begin{array}{c|c}
E - E \\
E \\
E
\end{array}$$
(2)

E = S oder Se

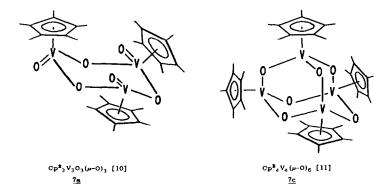
Regelmäßig treten auch Nebenprodukte $Cp^*_2V_2E_3O$ (4) (E = S, Se) und $Cp^*_2V_2E_4O$ (5) (E = S) auf, die eine μ_2 -Oxobrücke enthalten.

Zusätzlich zu den homoleptisch verbrückten Zweikernkomplexen $Cp^*_2V_2E_5$ (E = S (1a), Se (1b)), $Cp^*_2V_2E_4$ (E = S (2a), Se (2b)) und $Cp^*_2V_2E_3$ (E = S (3a), Se (3b)) [1] lassen sich auch heteroleptisch verbrückte Verbindungen darstellen, die gleichzeitig Schwefel und Selen im zentralen Brückensystem enthalten [2]. So sind von den Strukturtypen 1 und 2 sämtliche Glieder der Reihen $Cp^*_2V_2S_{5-n}Se_n$ (1a-f, n=0-5) und $Cp^*_2V_2S_{4-n}Se_n$ (2a-e, n=0-4) bekannt [2]. Die Molekülstrukturen dieser Penta- und Tetrachalkogenid-Verbindungen sind geklärt, nachdem mehrere Röntgenstrukturanalysen (an $(\eta^5-C_5H_4Me)_2V_2E_5$ (E = S [3] bzw. Se [4]) sowie an

Tabesse ?
Bezeichnung der Komplexe

Konpiextyp	Cr*,V,E,	Cp*21/2E4	Cp*,¥,E₁	Cp*, V, E ₁ O	Cp^*, V, E_4O
(E = S, Se oder Te)	(1)	(2)	(3)	(4)	(5)
	la Cp* ₂ V ₂ S ₅	2a Cp* ₂ V ₂ S ₄	3a Cp* ₂ V ₂ S ₃	4a Cp* ₂ V ₂ S ₃	5a Cp* ₂ V ₂ S ₄ O
	1b $Cp^*_2V_2Se_3$	2b Cp* ₂ V ₂ Se ₄	3b Cp* ₂ V ₂ Se ₃	4b Cp* ₂ V ₂ Se ₃ O	
	1c Cp*,V2SeS4	2c Cp* ₂ V ₂ SeS ₃	3c Cp* ₂ V ₂ SeS ₂	4c Cp [*] ₂ V ₂ SeS ₂ O	
	1d Cp*,V,Se,S	2d $Cp^*_2V_2Se_2S_2$		4d $Cp^*_2V_2Se_2SO$	
	le Cp [*] ₂ V ₂ Se ₃ S ₂			$4e Cp^*_2V_2Te_3O$	
		2f $Cp^*_2V_2Te_2S_2$		4f Cp [*] ₂ V ₂ TeS ₂ O	
		$2g Cp^*_2V_2Te_2Se_2$		4g Cp* ₂ V ₂ TeSeSO	
				4h Cp* ₂ V ₂ TeSe ₂ O	
				4i Cp* ₂ V ₂ Te ₂ SO	
				4j Cp* ₂ V ₂ Te ₂ SeO	

 $(\eta^5-C_5H_4^iPr)_2V_2S_4$ [5], $Cp^*_2V_2Se_3O$ und $Cp^*_2V_2Se_2S_2$ [2]) durchgeführt wurden. Dagegen liegen bisher keine Röntgenstrukturanalysen von Trichalkogeniden des Typs 3 vor.


Es lag nahe, die bereits beschriebenen Untersuchungen [1,2] auf Komplexe des Tellurs auszudehnen, umsomehr als das Koordinationsverhalten der schwereren Chalkogene Selen und Tellur auch in neueren Übersichtsartikeln in den Vordergrund tritt [6-8]. Im folgenden wird über Versuche berichtet, Komplexe mit Tellurbrücken darzustehen. Ahe bisher erhaltenen Produkte sind Tetrachalkogenide (der Strukturtypen 2 und 4), und es werden immer heteroleptisch verbrückte Komplexe gebildet; die Anwesenheit einer einzelnen Sauerstoffbrücke (Typ 4) scheint besomders bevorzugt zu sein. Tabelie in enthält die Bezeichnungen entsprechen dem in der vorausgehenden Arbeit [2] verwendeten Numerierungssystem.

Ergebnisse und Diskussion

Die Schwierigkeiten bei der Darstellung von Übergangsmetalltellurid-Komplexen liegen zum einen in der Unlöslichkeit des Tellurs in organischen Lösungsmitteln, zum andern in der Labilität der tellurhaltigen Produkte. Es wurden daher anstelle von $Cp^*V(CO)_4$ die reaktiveren Derivate $Cp^*V(CO)_3L$ ($L=SMe_2$, MeCN) und $Cp^*_2V_2(CO)_4S_2$ (6a) [9] verwendet; als Tellurquelle wurde ein in organischen Solvenzien lösliches Oligotellurid (Na_2Te_5) eingesetzt.

Dearstellung und Charakterisierung der Stammverbindung Cp* 3/3Te,O 14e)

Bei der Bestrahlung einer THF-Lösung von Cp*V(CO)₄ in Gegenwart von elementarem Tehur trat keine Reaktion ein. Dagegen wurde dei der Umsetzung in siedendem Tokuck nach 28 in ein tiefgrünes Produkt Cp*₂V₂Te₃O (4e) isoliert, allerdings nur in geringer Menge (4-5%). Die Ausbeute an 4e stieg erheblich (auf 30-40%), wenn die kinetisch labilen Edukte Cp*V(CO)₃L (L = SMe₂, MeCN) bei Raumtemperatur in einer Dunkelreaktion mit Tellur in Anwesenheit von Na₂Te₅ umgesetzt wurden. Die Herkunft des verbrückenden Sauerstoffatoms in 4e ist ungeklärt; es kann vermutet werden, daß die CO-Liganden der Halbsandwich-Edukte Cp*V(CO)₂ 'dzw. Cp*V(CO)₂L die Sauerstoffquelle sind. Damit steht in

Einklang, daß bei den von Rauchfuss und Mitarbeitern [3-5] beschriebenen Umsetzungen von CO-freien Vanadocen-Edukten mit Chalkogenen (E = S, Se) offenbar nur homoleptisch verbrückte Sulfid- und Selenidkomplexe erhalten wurden. Auf jeden Fall entstehen die Sauerstoff-verbrückten Produkte des Typs 4 direkt bei der photochemisch oder thermisch induzierten Chalkogenierung; sie liegen bereits vor der chromatographischen Reinigung an Silicagel im Reaktionsgemisch vor.

Der μ -Oxo-tritellurid-Komplex $Cp^*_2V_2Te_3O$ (4e) verhielt sich chemisch wie die bereits bekannten Verbindungen des Typs $Cp^*_2V_2E_3O$ (4), die weder Chalkogen unter Bildung von $Cp^*_2V_2E_4O$ (5) aufnehmen noch mit P^nBu_3 zu den (unbekannten) Oxo-dichalkogeniden " $Cp^*_2V_2E_2O$ " dechalkogeniert werden können. Jedoch ist 4e licht- und luftempfindlich. In Gegenwart von Luftsauerstoff entstehen u.a. die mehrkernigen Oxokomplexe $Cp^*_3V_3O_3(\mu$ -O)₃ (7a) [10] und $Cp^*_4V_4(\mu$ -O)₆ (7c) [11], die von Bottomley und Mitarbeitern beschrieben worden sind.

In Fig. 1 ist das FD-Massenspektrum einer Probe von 4e dargestellt, die bei der Probenvorbereitung mit Luft in Kontakt gekommen war.

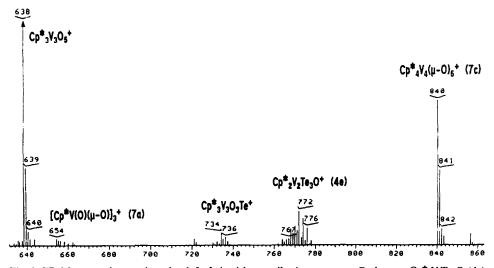


Fig. 1. FD-Massenspektrum einer durch Lufteinwirkung teilweise zersetzten Probe von Cp*2V2Te3O (4e).

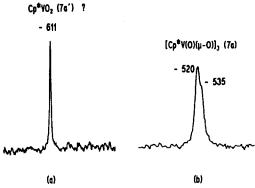


Fig. 2. 51 V NMR-Spektrum des Reaktionsprodukts, das bei der Umsetzung von $Cp^{*}_{2}V_{2}Te_{3}O$ (4e) mit 3-Chlorperbenzoesäure erhalten wurde: (a) nach 1 Stunde; (b) nach 6 Tagen bei -20° C.

Einleiten von Sauerstoff in eine THF-Lösung von 4e führte zur Bildung des schwarzen Produkts "Cp*₃V₄O₉" (7b), das auch bei der Reaktion von Cp*V(CO)₄ mit O₂ entsteht [12]. Die Natur von 7b ist ungeklärt (vgl. Lit. [11,12]), obwohl die ¹H, ¹³C und ⁵¹V NMR-Befunde mit einer Formulierung als [Cp*VO₂]₃VO₃ in Einklang stehen würden. Es kann aber nicht ausgeschlossen werden, daß ein Gemisch (mit paramagnetischen Komponenten wie 7c) vorliegt (vgl. Lit. [11]).

Die Reaktion von $\text{Cp}^*_2\text{V}_2\text{Te}_3\text{O}$ (4e) mit 3-Chlorperbenzoesäure (1:1) in THF-Lösung bei $-78\,^{\circ}\text{C}$ ergab ein braunes Produkt 7a', das ein ^{51}V NMR-Signal bei -611 ppm mit relativ geringer Halbwertsbreite ($\Delta\nu_{1/2}=140$ Hz) zeigte (Fig. 2). Da die erwarteten NMR-Signale des Cp*-Rings beobachtet wurden, konnte das Vorliegen eines rein anorganischen Vanadats ausgeschlossen werden.

Das 51 V NMR Signal von $^{7a'}$ verschwand—auch bei $-20\,^{\circ}$ C—allmählich zugunsten der für das Trimere $Cp^*_3V_3O_3(\mu\text{-}O)_3$ (7a) charakteristischen Signalgruppe bei -520/-535 ppm. Die verhältnismäßig schlanke Form des 51 V NMR-Signals von $^{7a'}$ läßt eine einkernige Verbindung vermuten, für die versuchsweise die monomere Zusammensetzung $[Cp^*VO_2]$ angenommen wird, obwohl eine genauere Charakterisierung wegen der Umwandlung in 7a nicht möglich war. Es erscheint plausibel, daß $[Cp^*VO_2]$ ($^{7a'}$) in Lösung zum dreikernigen Komplex $Cp^*_3V_3O_3(\mu\text{-}O)_3$ (7a) trimerisiert, der von Bottomley et al. [10] bei der Enthalogenierung von Cp^*VOCl_2 mit Ag_2CO_3 direkt erhalten worden war.

Reaktionen von $Cp^*_2V_2Te_3O$ (4e) mit Chalkogenen und Chalkogenwasserstoffen

Durch Umsetzung von 4e mit geeigneten Chalkogenquellen konnte eine schrittweise Substitution der Telluridbrücken erreicht werden. Die Reaktion von Cp^{*}₂V₂Te₃O (4e) mit Schwefel unter UV-Bestrahlung in Lösung ergab unter vollständiger Eliminierung des Tellurs die Sulfidokomplexe 4a und 5a; das Nebenprodukt 5a läßt sich mit PⁿBu₃ zu 4a desulfurieren [1]:

$$\begin{array}{ccc} Cp^{\bigstar}{}_2V_2Te_3O & \xrightarrow{S_8, \ h\nu} & Cp^{\bigstar}{}_2V_2S_3O & + Cp^{\bigstar}{}_2V_2S_4O \\ \textbf{(4e, grün)} & \textbf{(4a, orange)} & \textbf{(5a, grün)} \end{array}$$

Die entsprechende Photoreaktion mit Selen verlief nur mit geringem Umsatz zu $Cp^*_2V_2Se_3O$ (4b), da das aufgewirbelte, schwerlösliche graue Selen den Eintritt des Lichts in die Reaktionslösung erschwerte. Tellur wird von 4e nicht aufgenommen.

Beim Einleiten von H₂S in eine THF-Lösung von **4e** wurden die zwei heteroleptisch verbrückten Ditellurid-Komplexe **2f** und **4i** gebildet, die durch Chromatographie über Silicagel getrennt und rein isoliert werden konnten:

$$\begin{array}{ccc} Cp^{\star}{}_{2}V_{2}Te_{3}O & \xrightarrow{H_{2}S} & Cp^{\star}{}_{2}V_{2}Te_{2}S_{2} + & Cp^{\star}{}_{2}V_{2}Te_{2}SO \\ \textbf{(4e, grün)} & \textbf{(2f, d'grün)} & \textbf{(4i, moosgrün)} \end{array}$$

Die analoge Reaktion mit H_2 Se ergab $Cp^*_2V_2Te_2Se_2$ (2g) und $Cp^*_2V_2Se_3$ (3b), jedoch in geringer Ausbeute. Sowohl 2f als auch 2g konnten auch bei der Einwirkung von Na_2Te_5 auf die Trichalkogenide $Cp^*_2V_2E_3$ (E=S (3a), Se (3b)) erhalten werden; 2f entsteht weiterhin bei der Decarbonylierung von $Cp^*_2V_2(CO)_4S_2$ (6a) in Gegenwart von Na_2Te_5 :

$$\begin{array}{ccc} \left[\text{Cp}^{\bigstar}\text{V(CO)}_{2} \right]_{2}\text{S}_{2} & \xrightarrow{\text{Na}_{2}\text{Te}_{5}} & \text{Cp}^{\bigstar}_{2}\text{V}_{2}\text{Te}_{2}\text{S}_{2} \\ \textbf{(6a, orange)} & \textbf{(2f, d'grün)} \end{array}$$

Versuche, 2f und 2g mit PⁿBu₃ zu dechalkogenieren, waren nicht erfolgreich. Dagegen läßt sich Cp^{*}₂V₂Se₂S₂ (2d) gezielt zu Cp^{*}₂V₂SeS₂ deselenieren [2].

Es kann angenommen werden, daß die Eliminierung der Oxobrücke bei der Umsetzung von 4e mit H_2S und H_2S e über eine primäre Protonierung am Sauerstoff eingeleitet wird. In ähnlicher Weise könnte die Bildung homoleptisch verbrückter Sulfido-Komplexe bei der Reaktion von Cp^*VOCl_2 und $[Cp^*VOCl]_2$ - $(\mu$ -O) mit H_2S erklärt werden.

Es wurde auch versucht, $Cp^*_2V_2Te_3O$ (4e) mit H_2Te oder mit nBu_3PTe zu einem homoleptisch verbrückten Tetratellurid " $[Cp^*_2V_2Te_4]$ " umzusetzen. Das gesuchte Produkt wurde jedoch nicht erhalten. Allerdings läßt sich $[Cp^*_2V_2Te_4]^+$ im FD-Massenspektrum des Zweikernkomplexes $Cp^*_2V_2(CO)_4Te_2$ (6c) beobachten, der bei der Photolyse von $Cp^*V(CO)_4$ in Gegenwart von nBu_3PTe in Hexanlösung oder bei der Einwirkung von H_2Te auf eine Hexanlösung von $Cp^*V(CO)_3(SMe_2)$ entsteht und mit Na_3Te_5 zu 4e weiterreagiert.

Reaktionen von $Cp^*_2V_2Te_3O$ (4e) mit Chalkogenid und Polychalkogenid

Die Verwendung löslicher Polychalkogenide als Chalkogenquellen macht eine simultane Chalkogenaddition und Chalkogensubstitution im Brückensystem unter milden Bedingungen möglich [2], obwohl sich konkurrierende Umlagerungen und Austauschprozesse nicht völlig unterdrücken lassen. Ausgehend von 4e konnten durch Variation der Menge an Polychalkogenid und der Einwirkungsdauer unterschiedliche Produkte in guten Ausbeuten erhalten werden.

Bei geringem Überschuß an Polychalkogenid und kurzer Reaktionsdauer wird nur ein einziges Telluratom aus der Brücke von 4e ersetzt:

Bei größerem Überschuß an Polychalkogenid und/oder längeren Reaktionszeiten lassen sich weitere Telluratome des Brückensystems von 4e substituieren. Auf dem Weg zu den Komplexen $Cp^*_2V_2E_3O$ (E=S (4a), Se (4b)), die sich als stabile

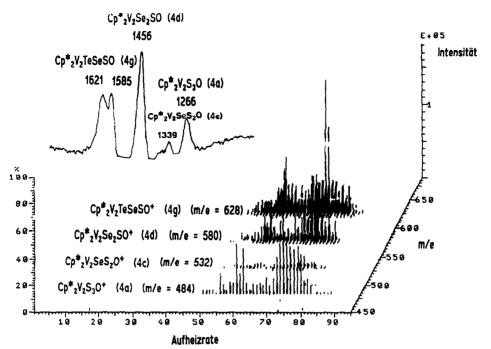


Fig. 3. ⁵¹V NMR-Spektrum und FD-Massenspektrum des Reaktionsgemisches, das bei der Umsetzung von Cp*₂V₂Te₂SO (4i) mit Na₂Se in THF-Lösung entstanden war.

Endprodukte in hohen Ausbeuten isolieren lassen, konnten die Zwischenstufen $Cp^*_2V_2TeE_2O$ (E = S (4f), Se (4h)) im Gemisch mit $Cp^*_2V_2E_3O$ (4a bzw. 4b) erhalten werden.

Ein oranges Gemisch aus vier Produkten entstand bei der Umsetzung von Cp^{*}₂V₂Te₂SO (4i) mit dem Monoselenid Na₂Se in THF-Lösung. Bei der Aufarbeitung durch Säulenchromatographie an Silicagel wurde eine Tetrachalkogenid-Fraktion aufgefangen, deren ⁵¹V NMR-Spektrum und FD-Massenspektrum in Fig. 3 dargestellt sind.

Neben den bekannten [2] Komplexen $Cp^*_2V_2S_3O$ (4a), $Cp^*_2V_2SeS_2O$ (4c) und $Cp^*_2VSe_2SO$ (4d) ist offenbar auch ein Komplex $Cp^*_2V_2TeSeSO$ (4g) im Reaktionsgemisch enthalten, der vier verschiedene Chalkogene im Brückensystem enthält. Die Molekülionen aller vier Produkte treten im FD-Massenspektrum gleichzeitig auf (Fig. 3)—es gibt nur einen Peak in der Aufheizkurve. Die Komplexe 4a und 4c entstehen offensichtlich durch Chalkogenübertragung. Bei der Umsetzung von $Cp^*_2V_2Te_2SO$ (4i) mit einem Überschuß an Pentaselenid Na_2Se_5 konnte $Cp^*_2V_2Se_2SO$ (4d) erstmals rein isoliert werden.

Tabelle 2 Spektroskopische Daten

Komplex	Farbe	Molekülion "	NMR-Spektren				IR-Spektren
	(im festen Zustand)	m/e	8(⁵¹ V) (ppm)	δ ^ν 1/2 (Hz)	8(¹ H) (ppm)	8(¹³ C) (ppm)	r(V-O-V) (cm ⁻¹)
24 Cp* 2V2S4	orange	200	1541	[635]	2.23	119,4; 12.6	
2b Cp*2V2Se4	orange	692	2139	[510]	2.28	117.1; 14.2	
2c Cp*, V, SeS,	orange	548*	1654	(006) إ	2.27	119.3; 12.4	
i 1			1585	[620]	2.22	119.0; 12.7	
24 Cp*2V2Se2S2	orange	₹965	1704	[069]	2.15	117.9; 12.6	
2e Cp*2V, Se,S	orange	* 449	1912	[570]	2.28	118.9; 13.2	
2 Cp* VZTe2S2	d'grün	692 *	1915	[730]	2.31	118.9; 13.5	
2g Cp*2V2Te,Se2	braun	788	2375	[099]	2.34	118.1; 13.5	
3a Cp*2V2S3	d'rot	468	1630	[1550]	2.14	117.9; 12.3	
36 Cp*, V, Se,	grün	612	2205	[1200]	2.19	117.9; 13.5	
3c Cp*2V2SeS2	grün	516	1823	[1500]	2.15	117.9; 12.6	
4a Cp*,V,S,O	orange	484*	1266	[570]	2.16	119.3; 11.5	753
4b Cp*2V2Se3O	orange	628	1647	[720]	2.19	118.8; 12.2	751
4c Cp*2V2SeS20		532*	1339				
4d Cp*2V2Se2SO	orange	* 085	1456	[280]	2.19	119.0; 11.8	755
4e Cp [*] 2V ₂ Te ₃ O	tiefgrün	772*	2240	[089]	2.23	118.2; 14.0	736

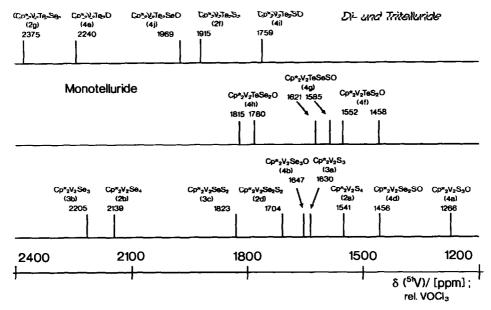
4f Cp*2V2TeS2O	rotbraun	582	1552	, [008]	2.19	119.0; 12.4	751
			1458	(610)	2.18	118.5; 12.3	
4g Cp [*] ,V,TeSeSO	rotbraun	628*	1621	_q [066]	2.26	118.5; 12.5	749
ı ı			1585	4 [088]	2.21	118.6; 12.4	
4h Cp [*] 2V2TeSe2O	rotbraun	919	1815	9 [026]	2.25	118.3; 12.8	740
			1780	_q [028]	2.19	118.8; 12.4	
4i Cp*2V2Te2SO	moosgrün	*919	1759	[860]	2.24	118.7; 12.5	744
4j Cp*2V2Te2SeO	grün	724	1969	[870]	2.25	118.4; 12.9	742
54 Cp*2V2S4O	grün	516	498	[410]	2.11	119.5; 12.4	732
6a [Cp*V(CO) ₂] ₂ S ₂	orange		–721 °	[1200]	1.60 °	103.7; 11.8 °	(1983vs, 1920s,b ^d) (1975vs 1974s,b ^d)
6c [Cp*V(CO) ₂] ₂ Te ₂	d'rot		-853 °	[1500]	1.73 °	102.3; 13.4 °	(1973vs, 1926s,b ⁴)
7a $Cp^*_3V_3O_3(\mu-O)_3$	braun	654*	- 520(2) - 535(1)		2.09(2)	124.8; 11.8	(935, 920 °)
7a'"Cp*VO,"	braun		-611	[140]	2.07	125.1; 11.6	
7b "Cp*,3¼0," [12]	schwarz		– 5 73 °	•	2.11 °		925, 957, 943 *;
			-427 (ca 3:1)		2.20		797, 660
7c Cp*4V4O, [11]	grün-schwarz	*40 *	(paramagnetisch)				635, 615, 375

^a Von allen Komplexen bzw. Komplexgemischen wurden EI-Massenspektren, von den mit * bezeichneten zusätzlich FD-Massenspektren aufgenommen. Die angegebenen Massen beziehen sich auf die Isotope ⁵¹V, ³²S, ⁸⁰Se und ¹²⁵Te. ^b Die Halbwertsbreiten konnten wegen der Signallage und -form nicht exakt ermittelt werden. ^c In C₆D₆-Lösung, ^d ν(CO) in Hexan-Lösung, ^e ν(V=O).

Die Umsetzungen von 4e mit Polychalkogenid lassen sich sowohl anhand des ⁵¹V NMR-Spektrums der Reaktionslösung als auch mittels Dünnschichtchromatographie kontrollieren. Im letzteren Fall werden Proben der Reaktionslösung auf TLC-Kärtchen mit Pentan/Dichlormethan-Gemischen entwickelt. Während sich das Tritellurid 4e bereits nach kurzer Zeit unter Schwarzfärbung (Luftoxidation) zersetzt, kann die Anwesenheit der tellur-ärmeren, aber beständigeren Komplexe Cp*₂V₂Te₂EO (4i,j; grün), Cp*₂V₂TeE₂O (4f,g,h); rotbraun) und Cp*₂V₂E₃O (4a,b,c; orange) (E = S, Se) anhand der Farbe der entwickelten Banden nachgewiesen werden. Eine vollständige chromatographische Auftrennung dieser Gemische, deren Komponenten alle demselben Komplextyp Cp*₂V₂E₃O (4) angehören, gelang nicht. Jedoch reichern sich die schwereren Komplexe bei der Säulenchromatographie in der Zonenfront an, so daß die in Fig. 3 beschriebene Fraktion durch wiederholte Chromatographie an Silicagel bis zu einem Zweikomponentengemisch aus Cp*₂V₂Se₂SO (4d) und Cp*₂V₂TeSeSO (4g) aufgetrennt werden konnte.

Die Reaktionen des Ditellurids $Cp^*_2V_2Te_2S_2$ (2f) mit überschüssigem Polychalkogenid, Na_2S_{22} bzw. Na_2Se_5 , ergaben unter Verlust des Tellurs nahezu quantitativ die Komplexe $Cp^*_2V_2E_2S_2$ (2a,d):

$$\begin{array}{ccc} Cp^{\star}_{2}V_{2}Te_{2}S_{2} & \xrightarrow{Na_{2}E_{\star}} & Cp^{\star}_{2}V_{2}E_{2}S_{2} \\ \textbf{(2f, d'grün)} & \textbf{(2a: E = S, orange)} \\ & \textbf{2d: E = Se, orange)} \end{array}$$


Bei der Umsetzung von 2f mit dem Monoselenid Na₂Se entstand unter Verlust des Tellurs das heteroleptisch verbrückte Trichalkogenid Cp^{*}₂V₂SeS₂ (3c) in 39% Ausbeute; eine weitere Fraktion enthielt—nach Aussage des ⁵¹V NMR-Spektrum—ein Gemisch aus 2a,c,d und wenig 2f.

Die komplementäre Reaktion von $Cp^*_2V_2SeS_2$ (3c) mit überschüssigem Polytellurid lieferte neben wenig $Cp^*_2V_2S_5$ (1a) und $Cp^*_2V_2Se_5$ (1b) in einer weiteren Fraktion ein Gemisch aller möglichen Tetrachalkogenide 2a-g in allerdings unterschiedlichen Konzentrationen. Eine gezielte Tellurierung von 3c zu 2f konnte nicht erreicht werden; auch eine Bildung des unbekannten Tetratellurids " $[Cp^*_2V_2Te_4]$ " scheint auf diesem Wege nicht möglich zu sein.

Spektroskopische Charakterisierung der Komplexe

Eine systematische Untersuchung der diamagnetischen Cp*₂V₂-Zweikernkomplexe mit substituentenfreien Chalkogenidbrücken war erst möglich, nachdem die ⁵¹V NMR-Spektroskopie als Methode zur Verfügung stand. In Tabelle 2 sind die Daten für die neuen Telluridkomplexe in das bereits vorliegende [2] System der entsprechenden Sulfid- und Selenidkomplexe eingefügt. Je stärker die schweren und weichen Chalkogene Se und Te im Brückensystem der Tetrachalkogenid-Komplexe Cp*₂V₂E₄ (2) und Cp*₂V₂E₃O (4) überwiegen, umso weiter verschiebt sich das ⁵¹V NMR-Signal zu tiefem Feld (Schema 1).

Der Komplex $Cp_2^*V_2Te_2Se_2$ (**2g**) hält mit $\delta(^{51}V) = 2375$ ppm (rel. VOCl₃) derzeit den Tieffeldrekord der ⁵¹V NMR-Spektroskopie in Lösung. Die Halbwertsbreiten $\Delta v_{1/2}$ der ⁵¹V-Signale liegen bei den Tetrachalkogenid-Komplexen **2** und **4** im Bereich von 500–1000 Hz.

Schema 2. Chemische Verschiebungen $\delta(^{51}V)$ von zweikernigen Bis(pentamethylcyclopentadienylvanadium)-Komplexen mit substituentenfreien Chalkogenbrücken.

Die Molekülstruktur-Analysen der heteroleptisch verbrückten Komplexe $Cp^*_2V_2Se_2S_2$ (2d) und $Cp^*_2V_2Se_3O$ (4b) hatten ergeben [2], daß die beiden Vanadiumzentren dreifach verbrückt sind und daß eine μ - η^1 -Diselenid-Brücke parallel zur V-V-Bindung vorliegt. Die schwereren Chalkogene bevorzugen demnach die μ - η^1 - E_2 -Position. Aufgrund der konsistenten ⁵¹V NMR-Daten können für die neuen Telluridkomplexe folgende analoge Strukturvorschläge gemacht werden:

Daß die Verbindungen 4f-h zwei unterschiedliche Vanadiumzentren enthalten, ergibt sich aus den ⁵¹V NMR-Spektren (Tabelle 2 und Schema 1).

Die EI-Massenspektren aller tellurhaltigen Komplexe zeigten das Molekülion mit einer relativen Intensität von ca 20% und korrekter Isotopenverteilung entsprechend der Zahl der Tellur- bzw. Selenatome. Aus den Molekülionen werden zunächst die beiden schwersten Chalkogene abgespalten; die entstehenden Fragmentionen $[Cp^*_2V_2E_2]^+$ bzw. $[Cp^*_2V_2EO]^+$ bilden in der Regel den Basispeak. Anschließend

werden ein Cp*-Ring und danach weitere Chalkogene eliminiert. Von einigen Telluridkomplexen (Tabelle 2) wurden auch FD-Massenspektren aufgenommen, die die angenommene Zusammensetzung bestätigten.

Beschreibung der Versuche

Allgemeine Hinweise zur Arbeitstechnik (unter Argon als Schutzgas) und zur Aufbereitung (Trocknung) der Lösungsmittel wurden in den vorausgehenden Mitteilungen [1,2] gegeben. Die Gase Schwefelwasserstoff und Sauerstoff (Linde) waren Handelsprodukte. Selen- und Tellurwasserstoff wurden extern durch Hydrolyse von Al₂Se₃ und Al₂Te₃ (Alfa) mit Ar-gesättigtem Wasser (Al₂Se₃) bzw. 4 N HCl (Al₂Te₃) erzeugt [14] und im Argonstrom zunächst zur Trockung über CaCl₂ und dann direkt in die Reaktionslösung geleitet. Die wasserfreien Polychalkogenide der ungefähren Zusammensetzung "Na₂Se₂", "Na₂Se₅" und "Na₂Te₅" wurden (ebenso wie Na₂Se) in flüssigem Ammoniak durch Auflösen der berechneten Mengen an Natrium und Chalkogen dargestellt, wie es für Na₂Se₂ und Na₂Se₂ beschrieben ist [14]. Telluro-tri(ⁿbutyl)phosphoran, ⁿBu₃PTe, wurde in Analogie zu ^tBu₃PTe [15] hergestellt.

Die Darstellung der Halbsandwich-Komplexe $Cp^*V(CO)_4$ [12] und $Cp^*V(CO)_3L$ ($L = SMe_2$, MeCN) [9] sowie des Zweikernkomplexes $Cp^*_2V_2(CO)_4S_2$ [9] entsprach den Literaturangaben. Vergleichsproben der schwefel- und selenverbrückten Zweikernkomplexe (1a-f, 2a-e, 3a-c, 4a-d und 5a) standen aus den vorausgehenden Arbeiten [1,2] zur Verfügung.

Für die Bestrahlungsreaktionen, die bei 0°C (Kühlung mit Eiswasser) durchgeführt wurden, wurde ein wassergekühlter Quecksilberdampf-Hochdruckstrahler TQ 718 (Heraeus, Orginal Hanau, Leistungsaufnahme 700W) eingesetzt.

Zur Chromatographie wurde Silicagel verwendet. Für die Säulenchromatographie wurde (in mehreren Zyklen entgastes und mit Argon beladenes) Kieselgel 60 (Merck) mit Pentan in eine wassergekühlte (15°C) Säule eingeschwemmt. Für die Dünnschichtchromatographie wurden TLC-Kärtchen (Macherey-Nagel Polygram[®] Sil G/UV₂₅₄) benutzt.

1. Darstellung von Cp*,V,Te,O (4e)

Eine Lösung von 314 mg (1.05 mmol) Cp*V(CO)₄ in 30 ml THF/Acetonitril-Mischung (2:1) wurde 1 h bei 0°C bestrahlt. Dann wurden 560 mg (4.38 mmol) Tellur (ca 3–5facher Überschuß) und 200 mg (0.29 mmol) Na₂Te₅ zugegeben, die Reaktionsmischung wurde 30 h bei Raumtemperatur gerührt, wobei freigesetztes CO gelegentlich am Wasserstrahlvakuum abgezogen wurde. Das zur Trockne gebrachte Reaktionsgemisch wurde mit wenig Dichlormethan ausgelaugt und der Extrakt über Kieselgel chromatographiert.

Zone	Farbe	Elution mit	Produkt
I	orange	Pentan/CH ₂ Cl ₂ (5:1)	Cp*V(CO) ₄
II	tiefgrün	Pentan/ CH_2Cl_2 (1:3)	$Cp^{*}_{2}V_{2}Te_{3}O$ (4e), 152 mg (38%)

 $\text{Cp*}_2\text{V}_2\text{Te}_3\text{O}$ (4e), gef.: C, 31.18; H, 3.92; Te, 49.80; O, 2.53. $\text{C}_{20}\text{H}_{30}\text{OTe}_3\text{V}_2$ (771.1) ber.: C, 31.15; H, 3.92; Te, 49.64; O, 2.08%. Bei der Verwendung von $\text{Cp*}_V(\text{CO})_3(\text{SMe}_2)$ als Edukt betrug die Ausbeute 27%.

- 2. Umsetzungen von Cp*, V2Te3O (4e) mit elementaren Chalkogenen
- (a) mit Sauerstoff: In die tiefgrüne Lösung von 80 mg (0.1 mmol) 4e in 20 ml THF wurde 5 min lang O_2 eingeleitet. Die Lösung wurde weitere 90 min unter O_2 -Atmosphäre gerührt, bis die grüne Farbe verschwunden war, und dann zur Trockne gebracht. Das schwarze Produkt der Zusammensetzung " $Cp^*_3V_4O_9$ " (7b) [12] wurde mit Dichlormethan aus dem tellurhaltigen Rückstand extrahiert. Ausbeute 30 mg [80%).
- (b) mit Schwefel: Es wurden 78 mg (0.1 mmol) 4e und 90 mg (2.8 mmol) Schwefel in 120 ml THF gelöst und die Lösung 75 min bei 0° C bestrablt. Anschließend wurde das Solvens THF abgezogen und der Rückstand mit $\mathrm{CH_2Cl_2}$ extrahiert. Die Säulenchromatographie an Kieselgel ergab:

Zone	Farbe	Elution mit	Produkt
I Dr	gelb orange	Pentan/Toluol (1:1) Pentan/CH ₂ Cl ₂ (1:5)	S ₈ Cp [*] ₂ V ₂ S ₂ O (4a), 39 mg (80%)
IKC	grűn	Pentan/Et ₂ O (1:1)	Cp [*] ₂ V ₂ S ₄ O (5a), 10 mg (19%)

3. Umsetzungen von Cp*2V2Te3O (4e) mit Schwefel- bzw. Selenwasserstoff

(a) mit H_2S : Ein schwacher H_2S -Strom wurde 5 min lang durch die grüne Lösung von 80 mg (0.1 mmol) 4e in 50 ml THF geleitet. Dann wurde das Lösungsmittel THF abgezogen, der Rückstand mit CH_2Cl_2 aufgenommen und als Konzentrat an Kieselgel chromatographisch aufgetrennt:

Zone	Farbe	Elution mit	Produkt
Ī	d'grün	Pentan/CH ₂ Cl ₂ (2:1)	$Cp^{*}_{2}V_{2}Te_{2}S_{2}$ (2f), 30 mg (42%)
II	moosgrün	Pentan/Et ₂ O $(1:1)$	$Cp_2^*V_2Te_2SO$ (4i), 17 mg (24%)

(b) mit H₂Se: In einem Schlenkrohr wurden 140 mg (0.18 mmol) 4e in 30 ml THF gelöst. In diese Lösung wurde über ein Gaseinleitungsrohr mittels eines Ar-Stroms Selenwasserstoff eingeleitet, der extern aus 1.2 g (4.12 mmol) Al₂Se₃ mit entgastem Wasser erzeugt worden war (maximal 12.36 mmol H₂Se, entspr. 277 ml). Nach kurzer Zeit färbte sich die Reaktionslösung dunkelbraun. Nach 45 min war die H₂Se-Entwicklung beendet. Das Reaktionsgemisch wurde noch 30 min unter H₂Se-Atmosphäre gerührt und dann zur Trockne gebracht. Die Chromatographie eines CH₂Cl₂-Extrakts ergab:

Zone	Farde	Elution mit	Płodukt
I	braun	Pentan/CH2Cl2 (3:1)	Cp*, V, Te, Se, (2g), 24 mg (17%)
11	grün	Pentan/ CH_2Cl_2 (2:1)	$Cp_2^*V_2Se_3$ (3b), 12 mg (11%)

- 4. Umsetzungen von $Cp^*_2V_2Te_3O$ (4e) mit Natriumpolysulfid (Na_2S_{22}) und Natriumselleniden (Na_2Se_5)
- (a) Sulfurierungen: Eine Lösung von 102 mg (0.132 mmol) 4e und 50 mg (0.067 mmol) Na ₂S₂₂ in 20 ml THF wurde nur 1 min gerührt, wobei die d'grüne Farbe sich rasch nach moosgrün ausneitte. Die sosortige Ausarbeitung und Chromatographie

eines Dichlormethan-Extrakts an Kieselgel ergab das Ditellurid 4i als Hauptprodukt:

Zone	Farbe	Elution mit	Produkt
I	moosgrün	Pentan/Et ₂ O (3:1)	$Cp^{*}_{2}V_{2}Te_{2}SO$ (4i), 74 mg (83%)
II	d'rot	Pentan/Et ₂ O $(1:1)$	$Cp^*VO(S_5)$, 8 mg (8%)

Wenn die Reaktionslösung so lange gerührt wurde, bis eine Verfärbung von grün nach braun eingetreten war (ca 30 min), oder wenn ein großer Überschuß an Na_2S_{22} verwendet wurde, wurde bei analoger Aufarbeitung mit Pentan/Et₂O (3:1) ein rotbraunes, tellurärmeres Produktgemisch aus $Cp^*_2V_2TeS_2O$ (4f) und $Cp^*_2V_2S_3O$ (4a) (ca 1:1) isoliert.

(b) Selenierungen: Eine Lösung von 67 mg (0.087 mmol) **4e** und 35 mg (0.34 mmol) Monoselenid Na₂Se in 20 ml THF wurde 30 min gerührt. Nachdem das Solvens THF entfernt war, wurde ein CH₂Cl₂-Extrakt hergestellt und chromatographiert:

Zone	Farbe	Elution mit	Produkt
I	grün	Pentan/CH ₂ Cl ₂ (1:1)	$Cp^{*}_{2}V_{2}Te_{2}SeO$ (4j), 48 mg (76%)
II	braun	Pentan/ CH_2Cl_2 (1:2)	wenig 4j und 4h

Wenn 160 mg (0.2 mmol) 4e und 500 mg (1.12 mmol) Pentaselenid Na $_2$ Se $_5$ in 30 ml THF 30 min gerührt wurden, verfärbte sich die anfangs dunkelgrüne Farbe nach braun. Bei der Chromatographie eines CH_2Cl_2 -Auszugs wurde bei Elution mit Pentan/ CH_2Cl_2 (1:1) ein rotbraunes Gemisch aus $Cp^*_2V_2TeSe_2O$ (4h) und $Cp^*_2V_2Se_3O$ (4b) erhalten.

5. Umsetzungen mit Natriumoligotellurid (Na₂Te₅)

(a) Reaktion von $Cp^*_2V_2(CO)_4S_2$ (6a): Eine Lösung von 360 mg (0.65 mmol) 6a und 1.35 g (1.97 mmol) Na_2Te_5 in 30 ml THF wurde 20 h gerührt. Die säulenchromatographische Trennung des Produktgemisches als CH_2Cl_2 -Extrakt ergab:

Zone	Farbe	Elution mit	Produkt
Ī	gelb	Pentan/CH ₂ Cl ₂ (5:1)	Cp*V(CO) ₄
II	d'grün	Pentan/ CH_2Cl_2 (2:1)	$Cp_2^*V_2Te_2S_2$ (2f), 167 mg (37%)
III	d'rot	Pentan/ CH_2Cl_2 (1:1)	$Cp^{*}_{2}V_{2}S_{3}$ (3a), 79 mg (26%)

(b) Reaktionen der Trichalkogenide $Cp^*_2V_2E_3$ (E = S (3a), Se (3b)): Es wurde eine Lösung von 200 mg (0.43 mmol) $Cp^*_2V_2S_3$ (3a) und 400 mg (0.58 mmol) Na_2Te_5 in 30 ml THF bei Raumtemperatur 3 h gerührt, wobei die Farbe von dunkelrot nach grün wechselte. Ein Dichlormethan-Auszug des beim Abziehen des Solvens THF zurückbleibenden Rückstandes wurde an Silicagel chromatographiert:

Zone	Farbe	Elution mit	Produkt
I	d'grün	Pentan/CH ₂ Cl ₂ (10:3)	$Cp^{*}_{2}V_{2}Te_{2}S_{2}$ (2f), 70 mg (24%)
II	d'rot	Pentan/ CH_2Cl_2 (1:1)	$\operatorname{Cp}_{2}^{\star}\operatorname{V}_{2}\operatorname{S}_{3}(3\mathbf{a})$

Die analoge Umsetzung von 223 mg (0.37 mmol) Cp^{*}₂V₂Se₃ (3b) und 350 mg (0.51 mmol) Na₂Te₅ in 30 ml THF ergab nach entsprechender Aufarbeitung:

Zone	Farbe	Elution mit	Produkt
Ī	braun	Pentan/CH ₂ Cl ₂ (3:1)	$Cp^*_2V_2Te_2Se_2$ (2g), 50 mg (17%)
II	grün	Pentan/ CH_2Cl_2 (1:1)	$Cp^{\star}_{2}V_{2}Se_{3}$ (3b)

6. Umsetzungen von Telluridkomplexen mit Polysulfid und Polyselenid

(a) Reaktionen von $\text{Cp}^*_2\text{V}_2\text{Te}_2\text{S}_2$ (2f): In 20 ml THF wurden 80 mg (0.116 mmol) 2f mit 100 mg (0.133 mmol) Na_2S_{22} (bzw. 110 mg (0.16 mmol) Na_2Se_5) gerührt, wobei die Farbe der d'grünen Lösung nach braun umschlug. Nach 3 h (bzw. 22 h) wurde das Solvens abgezogen, ein CH_2Cl_2 -Extrakt hergestellt und das Produkt an Silicagel chromatographiert:

Zone	Farbe	Elution mit	rkabarq
I	orange	Pentan/CH ₂ Cl ₂ (2:1)	$Cp^*_2V_2S_4$ (2a), 55 mg (95%) (bzw. $Cp^*_2V_2Se_2S_2$ (2d),
			66 mg (96%))

(b) Reaktionen von $Cp^*_2V_2Te_2SO$ (4i): Bei der Aufarbeitung einer Reaktionslösung von 95 mg (0.14 mmol) 4i und 80 mg (0.18 mmol) Na_2Se_5 in 20 ml THF, die 90 min gerührt worden war, ließen sich durch Chromatographie an Silicagel (Elution mit Pentan/ CH_2Cl_2 (1:2)) 70 mg des orangen Produkts $Cp^*_2V_2Se_2SO$ (4g) isolieren. Ausbeute 86%.

7. Schonende Selenierung von Telluridkomplexen mit Na, Se

(a) Selenierung von $Cp^*_2V_2Te_2S_2$ (2f): Eine Lösung von 73 mg (0.1 mmol) 2f und 50 mg (0.485 mmol) Na_2Se in 15 ml THF wurde 3 h gerührt; anschließend wurde in der üblichen Weise durch Säulenchromatographie eines CH_2Cl_2 -Extrakts an Silicagel uurgeandeitet.

Zone	Farbe	Elution mit	Produkt
Ī	braun	Pentan/CH ₂ Cl ₂ (2:1)	wenig 2f und 2d
II	grűn	Pentan/CH2Cl2 (1:1)	$Co_2^*V_2SeS_2$ (3c). 21 mg (39%)

(b) Selenierung von $Cp_2^*V_2Te_2SO$ (4i): Eine THF-Lösung (20 ml) von 75 mg (0.11 mmol) 4i und 20 mg (0.19 mmol) Na_2Se wurde 30 min gerührt, wobei die Farbe von grün nach braun wechselte. Die chromatographische Aufarbeitung (Elution mit Pentan/ CH_2Cl_2 (1:2)) ergab nur eine einzige braune Zone, die $Cp_2^*V_2TeSeSO$ (4g), $Cp_2^*V_2Se_2SO$ (4d) sowie wenig $Cp_2^*V_2Se_3O$ (4a) und $Cp_2^*V_2SeS_2O$ (4c) enthielt (Fig. 3).

8. Darstellung von $Cp^*_2V_2(CO)_*Te_2$ (6c)

Eine Lösung von 240 mg Cp*V(CO)₄ (0.8 mmol) und 265 mg ⁿBu₃PTe (0.8 mmol) in 60 ml Hexan wurde bei 0°C 25 min bestrahlt. Unter CO-Entwicklung färbte sich die anfangs orange Lösung dunkehrot. Das Lösungsmittel wurde abgezogen, der Rückstand in 6 ml Hexan aufgenommen und die Lösung über Nacht auf Trockeneis gestellt. Es entstanden dunkelrote Kristalle, die nach Abpipettieren

der Mutterlauge mit wenig kaltem Hexan gewaschen wurden. Ausbeute: 250 mg (84%).

Spektroskopische Messungen

Folgende Geräte standen zur Verfügung: ¹H und ¹³C NMR-Spektren: Jeol FX 90Q und Bruker AC 300, (jeweils CDCl₃-Lösungen bei Raumtemperatur); ⁵¹V NMR-Spektren: Jeol FX 90Q (CDCl₃-Lösungen bei +15°C, VOCl₃ als ext. Standard). IR-Spektren: Perkin-Elmer 983G (KBr-Preßlinge). EI-Massenspektren: Finnigan MAT 8500 (Direkteinlaß, Ionisierungsenergie 70 eV). FD-Massenspektren: MAT 311 A.

Dank

Die Deutsche Forschungsgemeinschaft und der Fonds der Chemischen Industrie fördern unsere Arbeiten, wofür wir sehr dankbar sind. Herrn Dr. K.K. Mayer, Universität Regensburg, danken wir für die Aufnahme der FD-Massenspektren.

Literatur

- 1 M. Herberhold und M. Kuhnlein, New J. Chem., 12 (1988) 357.
- 2 M. Herberhold, M. Kuhnlein, M. Schrepfermann, M.L. Ziegler und B. Nuber, J. Organomet. Chem., 398 (1990) 259.
- 3 C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, Organometallics, 1 (1982) 1551.
- 4 A.L. Rheingold, C.M. Bolinger und T.B. Rauschfuss, Acta Crystallogr., Sect. C, 42 (1986) 1878.
- 5 C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, J. Am. Chem. Soc., 105 (1983) 6321.
- 6 M.G. Kanatzidis, Comments Inorg. Chem., 10 (1990) 161.
- 7 M.A. Ansari und J.A. Ibers, Coord. Chem. Rev., 100 (1990) 223.
- 8 J.W. Kolis, Coord. Chem. Rev., 105 (1990) 195.
- 9 M. Herberhold, M. Kuhnlein, W. Kremnitz und A.L. Rheingold, J. Organomet. Chem., 383 (1990) 71.
- 10 F. Bottomley und L. Sutin, J. Chem. Soc., Chem. Commun., (1987) 1112.
- 11 F. Bottomley, C.P. Magill und B. Zhao, Organometallics, 9 (1990) 1700.
- 12 M. Herberhold, M. Kuhnlein, W. Kremnitz, M.L. Ziegler und K. Brunn, Z. Naturforsch., Teil B, 42 (1987) 1520.
- 13 M. Herberhold, M. Kuhnlein, M.L. Ziegler und B. Nuber, J. Organomet. Chem., 349 (1988) 131.
- 14 W.P. Fehlhammer, W.A. Herrmann und K. Öfele, in G. Brauer (Hrsg.), Handbuch der Präparativen Anorganischen Chemie, 4. Aufl., Bd. 1-3, Enke Verlag, Stuttgart, 1981.
- 15 W.-W. duMont, Z. Naturforsch., Teil B, 40 (1985) 1453.