Journal of Organometallic Chemistry, 204 (1991) 349-354 Elsevier Sequoia S.A., Lausanne JOM 21294

Kationische Stickstoff- und Arsen-koordinierte Titanocenbishexafluoroarsenat-Komplexe

P. Gowik und Th. Klapötke *

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Sekretariat C 2, Straße des 17. Juni 135, W-1000 Berlin 12 (Deutschland)

(Eingegangen den 24. Juli 1990)

Abstract

The reaction of $Cp_2Ti(AsF_6)_2$ (1) in liquid sulfur dioxide with HCN, ICN, AsMe₃, and As₂Me₄ afforded the new cationic titanocene complexes $[Cp_2Ti(HCN)_2][AsF_6]_2$ (2), $[Cp_2Ti(ICN)_2][AsF_6]_2$ (3), $[Cp_2Ti(AsMe_3)_2][AsF_6]_2$ (4), and $[Cp_2Ti(As_2Me_4)]_2[AsF_6]_4$ (5) $(Cp = \eta^5 - C_5H_5$, Me = CH₃). All compounds have been characterized by ¹H NMR and IR spectroscopy. The dynamic ¹H NMR spectrum of 5 shows a reversible temperature dependence due to the ring inversion of the six-membered TiAsAsTiAsAs heterocycle.

Zusammenfassung

Die Reaktion von $Cp_2Ti(AsF_6)_2$ (1) in flüssigem Schwefeldioxid mit HCN, ICN, AsMe₃ und As₂Me₄ führte zur Darstellung der neuen kationischen Titanocen-Komplexe $[Cp_2Ti(HCN)_2][AsF_6]_2$ (2), $[Cp_2Ti(ICN)_2][AsF_6]_2$ (3), $[Cp_2Ti(AsMe_3)_2][AsF_6]_2$ (4) und $[Cp_2Ti(As_2Me_4)]_2$ $[AsF_6]_4$ (5) $(Cp = \eta^5 - C_5H_5, Me = CH_3)$. Alle Verbindungen wurden durch H-NMR- und IR-Spektroskopie charakterisiert. Das dynamische H-NMR-Spektrum von 5 zeigt eine reversible Temperaturabhängigkeit, die durch die Ringinversion des sechsgliedrigen TiAsAsTiAsAs-Heterocyclus hervorgerufen wird.

Einleitung

Titanocendichlorid reagiert mit Lewis-Basen wie z.B. Nitrilen bei Anwesenheit entsprechender Lewis-Säuren zu ionischen Komplexen, bei denen die (Nitril-) Liganden direkt an das Ti-Zentrum koordiniert sind [1-4]. Darüberhinaus setzt sich Titanocenbishexafluoroarsenat, $Cp_2Ti(AsF_6)_2$ (1), der erste, auch strukturell charakterisierte Lewis-Base-freie Metallocen-hexafluoropnikogenat-Komplex, ebenfalls mit dem neutralen Nitril-Liganden CH_3CN zu kationischen Titanocen-Derivaten um [5,6]. Mit dem potentiell mehrzähnigen S_4N_4 reagiert 1 gemäß Gl. 1 zum nur in Lösung stabilen 6, in dem erstmals eine intakte S_4N_4 -Käfigeinheit an ein Metallocenfragment koordiniert ist [7].

$$2 \operatorname{Cp_2Ti}(\operatorname{AsF_6})_2 + 2 \operatorname{S_4N_4} \to \left[\operatorname{Cp_2Ti}(\operatorname{S_4N_4})\right]_2 [\operatorname{AsF_6}]_4 \tag{1}$$

In der vorliegenden Arbeit berichten wir nun über die Darstellung weiterer kationischer Cp₂Ti-Nitril-Komplexe mit HCN und ICN als Komplex-Liganden sowie über die Koordination der Arsen-Organyle Trimethylarsan und Tetramethyldiarsan (Kakodyl).

Ergebnisse und Diskussion

Chemische Aspekte

Die Darstellung der neuen kationischen Titanocenbishexafluoroarsenat-Komplexe und die der S₄N₄-Spezies 6 [7] erfolgte bei Raumtemperatur in flüssigem SO₂ gemäß Gl. 2.

$$n1 + 2/nL \rightarrow [Cp_2TiL]_n [AsF_6]_{2n}$$
 (2)
 $n = 1$; $L = HCN$ (2), ICN (3), $AsMe_3$ (4)
 $n = 2$; $L = As_2Me_4$ (5), S_4N_4 (6)

Hierzu wurde 1 jeweils frisch gemäß Gl. 3 in SO₂ dargestellt und ohne vorherige Isolierung direkt entsprechend Gl. 2 zur Reaktion gebracht.

$$Cp_2TiCl_2 + 2 AgAsF_6 \rightarrow 1 + 2 AgCl$$
 (3)

Die Isolierung von 2-5 erfolgte direkt aus der Reaktionslösung (SO₂; bei 2 SO₂/HCN-Mischung: 1/1) durch langsames Abdampfen des Solvens, wobei 2 in Form sehr unregelmäßig gewachsener Kristalle und 3-5 als Kristallpulver bzw. bruch anfielen und beim Wiederauflösen in SO₂ eine deutlich geringere Löslichkeit als die ursprüngliche zeigten, während 2 gut in reinem HCN löslich ist.

¹H-NMR-Spektroskopie

Die Protonenkernresonanzspektren von 2-6 zeigen im Cp-Bereich jeweils eine singuläre Resonanz entsprechend der Äquivalenz aller zehn Cyclopentadienyl-Protonen, wobei die Verschiebung des Signals zu deutlich höherem Feld im Vergleich zu der von 1 durch die Donor-Eigenschaften der koordinierten Lewis-Basen erklärt werden kann (Tab. 1). Hiermit in Einklang ist auch die Tieffeldverschiebung der den Liganden HCN, AsMe₃ und As₂Me₄ zuzuordnenden Resonanzen in den Komplexen 2, 4 und 5 verglichen mit den freien Basen (Tab. 1). Besonders stark

Tabelle 1

1 H-NMR-Daten der Komplexe 1-6 sowie der Liganden

	δ [ppm] ^a			
$Cp_2Ti(AsF_6)_2$ (1)	7.33 s			
$[Cp_2Ti(HCN)_2][AsF_6]_2$ (2)	6.93 s (10), 8.97 s (2)			
$[Cp_2Ti(ICN)_2][AsF_6]_2$ (3)	7.02 s			
$[Cp_2Ti(AsMe_3)_2][AsF_6]_2$ (4)	6.87 s (10), 2.50 s (18)			
$[Cp_2Ti(As_2Me_4)]_2[AsF_6]_4$ (5)	6.70 s (10), 1.63 s (12)			
$[Cp_2Ti(S_4N_4)]_2[AsF_6]_4$ (6)	6.83 s			
HCN	3.88 s			
AsMe ₃	1.02 s			
As ₂ Me ₄	1.20 s			

^a Solvens: SO₂; Standard: TMS in SO₂, extern; 23°C; 60 MHz.

Fig. 1. Temperaturabhängig gemessenes ¹H-D-NMR-Spektrum von 5 in SO₂.

macht sich erwartungsgemäß die Verschiebung des HCN-Signals von 2 gegenüber reinem HCN in SO₂ bemerkbar, die auf die gesteigerte Acidität des HCN-Protons im Komplex gemäß Gl. 4 zurückgeführt werden kann.

$$[Cp_2Ti-(-N\equiv C-H)_2]^{2+} \Rightarrow Cp_2Ti-(-N\equiv C:)_2 + 2 H^+$$
 (4)

Im temperaturabhängig gemessenen ¹H-NMR-Spektrum (Fig. 1) zeigt 5 einen reversiblen dynamischen Effekt, wobei die Aufspaltung der Methyl-Resonanz

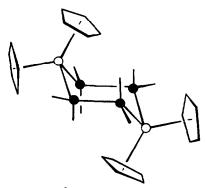


Fig. 2. Aus ¹H-D-NMR-Daten abgeleitete Struktur des [Cp₂Ti(As₂Me₄)]₂⁴⁺-Kations aus 5 in Lösung (weiß: Ti, schwarz: As).

Tabelle 2 IR-Daten der Komplexe 2 und 3 sowie der Liganden

Zuordnung	$\nu \text{ (cm}^{-1})^a$					
	HCN b	2	ICN	3		
ν(CH), HCN	3311	3332 m				
ν(CH), Cp		3119 m		3120 m		
ν(CN), ICN			2185 m	2200 m		
ν(CN), HCN	2097	2144 s				
ω(CC), Cp		1445 s		1445 s		
δ (CH), Cp		1025 m		1020 s		
γ(CH), Cp		860 s		825 vs		
δ(HCN), HCN	712	735 sh				
$\nu(AsF)$, $AsF_6(\nu_3)$		700 vs		698 vvs		
$\delta(AsF)$, $AsF_6(\nu_4)$		400 vs		398 vvs		
ν(CI), ÎCN			455 m			

^a Nujol-bzw. Fluorolube-Film zwischen KBr-Platten. ^b Ref. 10.

(Singulett bei Raumtemperatur) bei tiefer Temperatur in zwei nahezu intensitätsgleiche Singuletts den im starren sechsgliedrigen TiAsAsTiAsAs-Metallacyclus in Sessel-Konformation nicht äquivalenten axialen und äquatorialen Methylgruppen zugeordnet werden kann (Fig. 2). Die scheinbare Äquivalenz der Cp-Protonen (keine Signalaufspaltung) wurde bereits bei dem sechsgliedrigen $[Cp_2TiSe_2]_2$ beobachtet [8] und kann wohl am besten durch eine sehr ähnliche chemische Verschiebung der am verzerrten Sessel-Sechsring axial und äquatorial angeordneten Cp-Ringe erklärt werden. Mit einer abgeschätzten Koaleszenztemperatur von $T_c = -15$ °C (258 K) und einer Signalaufspaltung von $\Delta \nu = 20$ Hz läßt sich die freie

Tabelle 3

IR-Daten der Komplexe 4 und 5 sowie der Liganden

Zuordnung	$\nu (\text{cm}^{-1})^a$				
	AsMe ₃ b	4	As ₂ Me ₄ ^c	5	
ν(CH), Cp		3100 m		3118 m	
ν _a (CH), Me	2980 m	3010 m	2972 s	2980 w	
ν _s (CH), Me	2906 vs	2930 m	2903 s	2918 w	
ω(CC), Cp		1440 s		1440 s	
$\delta_{\rm d}$ (CH), Me	1417 w	1418 s	1413 s	1430 s	
$\delta_{\rm s}({\rm CH})$, Me	1263 m	1280 m	1252 m	1272 m	
	1242 m				
δ(CH), Cp		1020 s		1020 s	
ρ(CH), Me	884 w	925 vs	882 s	938, 910, 890:m	
ү(СН), Ср		865 s		830 vs	
		825 vs			
$\nu(AsF)$, $AsF_6(\nu_3)$		700 vvs		700 vs	
ν_a (AsC), AsMe	584 s	570 s	583 vs	568 s	
$\nu_{\rm s}({\rm AsC})$, AsMe	572 vs	545 m	569 vs	550 sh	
$\delta(AsF)$, $AsF_6(\nu_4)$		400 vs		399 vs	
v(AsAs), As ₂ Me ₄			271 ^d	270 m	

^a Substanzpulver zwischen KBr-Platten. ^b Ref. 11 und 12. ^c Ref. 13. ^d Raman, Ref. 13.

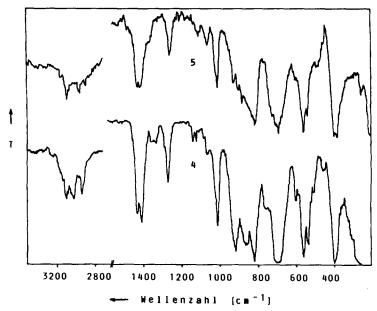


Fig. 3. IR-Spektren von 4 und 5 (Substanzpulver zwischen KBr-Platten).

Aktivierungsenthalpie der Ringinversion von 5 grob zu $\Delta G_c^{\#} = 13$ kcal/mol angeben [9].

IR-Spektroskopie

Die IR-Spektren von 2-5 zeigen die erwarteten Absorptionen (Tab. 2 und 3), wobei in 2 und 3 die der ν (CN)-Streckschwingung zuzuordnende Bande gegenüber den freien Nitrilen erwartungsgemäß zu etwas höherer Wellenzahl hin verschoben ist [5] (Tab. 2). Neben den der Metallocen-Einheit und den der AsF₆⁻-Anionen entsprechenden Absorptionen zeigen die Komplexe 4 und 5 auch zusätzlich sämtliche für die Lewis-basischen Arsan-Liganden erwarteten Banden (Tab. 3; Fig. 3).

Experimenteller Teil

Die Durchführung der Versuche erfolgte nach einer bereits früher beschriebenen Arbeitsmethode [14], die Darstellung von 1 gemäß Literatur-Vorschrift [15]. AgAs F_6 wurde in SO_2 aus AgF und As F_5 synthetisiert [5], As F_5 aus den Elementen. Die Darstellung der Komplexliganden ICN [16], As $_2$ Me $_4$ [17] und S_4 N $_4$ [18] erfolgte nach Literatur-Vorschriften. AsMe $_3$ wurde durch die Umsetzung von AsCl $_3$ (Merck) und MeMgCl in THF erhalten und durch vierfache fraktionierte Destillation (Kp = 50 °C) gereinigt. Zur Synthese von HCN wurden ca. 400 g KCN mit ca. 750 ml H_2SO_4 (8 mol/l) umgesetzt und der Cyanwasserstoff in eine Vorlage auf P_4O_{10} abdestilliert. Die Lagerung des HCN erfoglte nach anschließender fraktionierter Destillation in einer Stahlflasche, wobei Spuren von As F_5 als Stabilisator zugesetzt wurden.

Allgemeine Arbeitsvorschrift

Eine Lösung von 0.50 g (2.00 mmol) Cp₂TiCl₂ in 10 ml SO₂ wird zu einer Suspension von 1.19 g (4.00 mmol) AgAsF₆ in 5 ml SO₂ gegeben. Nach 30 min

Tabelle 4
Präparative und analytische Daten der Komplexe 2-6

	Ansatz (g (mmol)) ^a	M _{ber.} (g/mol)	Ausbeute (g (%))	Analyse (gef. (ber.) (%))			Farbe
				C	Н	N	
2	HCN: 1.080 (4.00)	609.94	1.13 (93)	23.00 (23.63)	2.03 (1.98)	4.57 (4.59)	tiefrot
3	ICN: 0.612 (4.00)	861.73	1.41 (82)	16.75 (16.73)	1.28 (1.17)	2.78 (3.05)	tiefviolett
4	AsMe ₃ : 0.480 (4.00)	795.94	1.38 (87)	24.46 (24.15)	3.61 (3.55)		orangerot
5	As ₂ Me ₄ : 0.420 (2.00)	765.87	1.44 (94)	ь			orangerot
6	S ₄ N ₄ : 0.369 (2.00)	740.18	c				rot

^a Bezogen auf 0.50 g (2.00 mmol) Cp₂TiCl₂ und 1.19 g (4.00 mmol) AgAsF₆. ^b Keine reproduzierbaren Werte durch Zersetzung bei der Probenpräparation. ^c Nur in Lösung stabil.

Rühren bei Raumtemperatur wird die nun tiefrotbraune Lösung von 1 direkt von ausgefallenem AgCl auf eine Lösung, die die stöchiometrische Menge der in 5 ml SO_2 gelösten Ligand-Base enthält, filtriert (Tab. 4). Nur im Fall der Synthese von 2 wird die Ligand-Base im Überschuß eingesetzt. Nach weiteren 30 min. Rühren bei Raumtemperatur wird das Lösungsmittel innerhalb von 12 h abgedampft und das verbleibende Produkt bei Raumtemperatur 5-10 min im Vakuum getrocknet.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Kl 636/1-1) und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit. Dem BMBW danken wir für ein Promotionsstipendium im Rahmen des Graduiertenkollegs "Synthese und Strukturaufklärung niedermolekularer Verbindungen" (P.G.).

Literatur

- 1 M.G. Meirim und E.W. Neuse, Transition Met. Chem., 9 (1984) 337.
- 2 U. Thewalt, K. Berhalter und E.W. Neuse, Transition Met. Chem., 10 (1985) 393.
- 3 K. Berhalter und U. Thewalt, J. Organomet. Chem., 332 (1987) 123.
- 4 P.N. Billinger, P.P.K. Claire, H. Collins und G.R. Willey, Inorg. Chim. Acta., 149 (1988) 63.
- 5 T. Klapötke, Polyhedron, 8 (1989) 311.
- 6 P. Gowik und T. Klapötke, J. Organomet. Chem., 372 (1989) 33.
- 7 P. Gowik und T. Klapötke, J. Organomet. Chem., 398 (1990) 1.
- 8 D.M. Giolando, M. Papavassiliou, J. Pickardt, T.B. Rauchfuss und R. Steudel, Inorg. Chem., 27 (1988) 2596.
- 9 T. Klapötke und H. Köpf, J. Organomet. Chem., Libr., 20 (1988) 343; und die dort zitierte Literatur.
- 10 K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination Compounds, J. Wiley & Sons, New York, 1986, S. 116.
- 11 H. Siebert, Z. Anorg. Allg. Chem., 273 (1953) 161.
- 12 E.J. Rosenbaum, D.J. Rubin und C.R. Sandburg, J. Chem. Phys., 8 (1940) 366.
- 13 J.R. Durig und J.M. Casper, J. Chem. Phys., 55 (1971) 198.
- 14 P. Gowik und T. Klapötke, J. Organomet. Chem., 368 (1989) 35.
- 15 T. Klapötke und U. Thewalt, J. Organomet. Chem., 356 (1988) 173.
- 16 B. Bak und A. Hillebert, Organic Syntheses, Coll. Vol. IV., New York, London, 1952, S. 207.
- 17 J.R. Phillips und J.H. Vis, Can. J. Chem., 45 (1967) 675.
- 18 R.J. Gillespie, J.P. Kent und J.F. Sawyer, Inorg. Chem., 20 (1981) 3785.