Journal of Organometallic Chemistry, 414 (1991) 307-310 Elsevier Sequoia S.A., Lausanne
JOM 21843

Erste Fluorfunktionelle Silylhydrazin-Sechsringe

Christian Drost, Uwe Klingebiel * und Mathias Noltemeyer

Institut für Anorganische Chemie der Universität, Tammannstraße 4, W-3400 Göttingen (Deutschland)

(Eingegangen den 4. März 1991)

Abstract

Dilithiated bis(silyl)hydrazines react with tetrafluorosilane to yield tetrakis(silyl)hydrazines, which again react with the lithium derivatives forming the unknown fluorosilyl functional hydrazine six-membered rings 3 and 4. The single crystal analysis of 3 shows that the molecule has a twist form.

Zusammenfassung

Dilithiierte Bis(silyl)hydrazine reagieren mit Tetrafluorsilan zu Tetrakis(silyl)hydrazinen, die in erneuter Reaktion mit den Lithiumderivaten die unbekannten fluorsilylfunktionellen Hydrazin-Sechsringe 3 und 4 bilden. Einkristalluntersuchungen von 3 zeigen eine Twistform des Moleküls.

Einleitung

Silylhydrazin-Ringsysteme sind seit den fünfziger Jahren bekannt. Ein Darstellungsverfahren basiert auf der intermolekularen Chlorwasserstoff-Abspaltung aus Hydrazin und Dialkyl- oder -aryldichlorsilanen [1], ein zweites auf der Cyclisierung offenkettiger Fluorsilylhydrazine [2,3]. Halogensilylfunktionelle Hydrazinsechsringe waren bisher unbekannt.

Ergebnisse und Diskussion

Im vorliegenden Beitrag stellen wir die Synthese und Kristallstruktur des ersten 3,3,6,6-Tetrafluor-1,2,4,5-tetraaza-3,6-disilacyclohexans vor. Ausgehend von SiF₄ und dem Dilithiumderivat des 1,2-Bis(tert-butyldimethylsilyl)hydrazins gelang uns die Synthese des 1,2-Bis(trifluorsilyl)hydrazins (1) [4*], das sich als ein hervorragender Precursor für den fluorfunktionellen Sechsring 3 [5*] erwies. Wird unter vergleichbaren Bedingungen SiF₄ mit (Me₃SiNLi)₂ umgesetzt, entsteht der Sechsring

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Tabelle 1

Ausgewählte Bindungsabstände (pm) und -winkel (°) von 3

Si(1)-F(1)	157.1(4)	N(1)-N(1b)	149.1(8)	
Si(1)-N(1)	170.5(4)	N(1)-Si(2)	179.5(5)	
F(1)-Si(1)-F(1a)	101.5(3)	Si(1)-N(1)-Si(2)	125.8(2)	
N(1)-Si(1)-N(1a)	112.4(3)	Si(2)-N(1)-N(1b)	123.6(3)	
Si(1)-N(1)-N(1b)	108.2(3)			

4 [6*] (Tabelle 1). Das Bis(trifluorsilyltrimethylsilyl)hydrazin (2) wurde nicht isoliert.

$$(R = SiMe_2CMe_3 (1,3); SiMe_3 (2,4))$$

3 kristallisiert aus n-Hexan in farblosen Nadeln. Nach Ergebnissen der Röntgenstrukturanalyse [7*] (Fig. 1) liegt der $(SiNN)_2$ -Sechsring im Kristall in einer Twistform vor. Die Fluoratome stehen jeweils auf Lücke. Die exocyclischen Si-N-Bindungen sind mit 179.5 pm signifikant länger als die endocyclischen Si-N-Abstände mit 170.5 pm. Diese sind aufgrund der elektronenziehenden Wirkung der Fluoratome verkürzt. Die Winkelsummen an den Stickstoffatomen betragen 357.6°, d.h. die N-Atome sind sp^2 -hybridisiert. Die CMe₃SiMe₂-Gruppen stehen ideal gestaffelt zueinander.

Experimenteller Teil

Kristallographische Daten von 3

 $C_{12}H_{36}F_4N_4Si_6$, tetragonal, $P4_22_12$, a 1356.5(1), c 988.9(2) pm, V 1.8197(4) nm³, $\rho_{\rm ber}$ 1.18 gcm⁻³, Z=2, $\mu({\rm Mo-}K_{\alpha})$ 0.26 mm⁻¹, 1782 gesammelte Reflexe, davon 1203 unabhängige und 1128 mit $F>3\sigma(F)$, $2\theta_{\rm max}=45^{\circ}$, 87 Parameter, R=0.0635, $R_w=0.089$, $w^{-1}=\sigma^2(F)+0.0004F^2$, Restelektronendichte 1.2/-0.4 e nm⁻³. Datensammlung auf STOE-Siemens-AED2, Rev. 6.2; Verfeinerung mit SHELXTL. Alle Wasserstoffatome wurden geometrisch positioniert.

1,2-Bis(tert-butyldimethylsilyl)-1,2-bis(trifluorsilyl)hydrazin (1) und 3,3,6,6-Tetrafluor-1,2,4,5-tetraaza-1,2,4,5-tetra(trimethylsilyl)-3,6-disilacyclohexan (4)

0.01 mol (2.6 g) (^tBuSiMe₂NH)₂ bzw. 0.01 mol (1.76 g) (Me₃SiNH)₂ in 50 ml Hexan werden mit 0.02 mol BuLi (15%ig in Hexan) versetzt. Die gebildeten

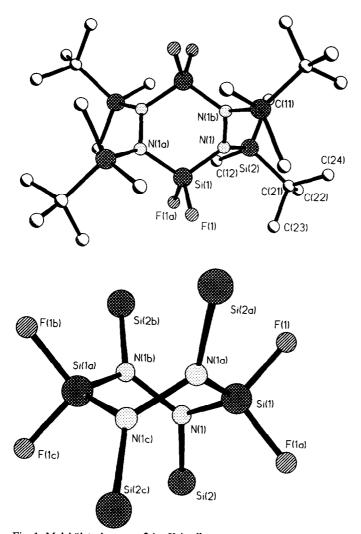


Fig. 1. Molekülstruktur von 3 im Kristall.

Lithiumderivate werden durch Zugabe von ca. 25 ml THF gelöst. Anschließend werden bei $-60\,^{\circ}$ C 0.02 mol SiF₄ eingeleitet. Nach dem Erwärmen auf Raumtemperatur wird kurz zum Sieden erhitzt, das entstandene LiF abgetrennt. 1 und 4 werden destillativ gereinigt. Neben 50% 1 entsteht in dieser Reaktion ca 20% 3. Ausbeute 4: 80%.

1 (alle Messungen in CDCl₃): ¹H-NMR: $\delta = 0.2$ (s, 6H, SiMe); 0.3 (s, 6H, SiMe); 0.97 (s, 18H, ¹Bu). ¹³C-NMR: $\delta = -3.5$ (q, ⁴J(C, F) = 1.0 Hz, 2C, SiC₂); -4.2 (q, ⁴J(C,F) = 1.6 Hz, 2C, SiC₂); 20.11 (s, 2C, CC₃); 27.24 (q, ⁵J(C,F) = 0.8 Hz, 6C, CC₃). ¹⁹F-NMR: $\delta = 16.71$ (s, 6F). ²⁹Si-NMR: $\delta = -87.73$ (q, J(Si,F) = 213.7 Hz, 2Si, SiF₃); 23.98 (s, 2Si, SiMe₂).

4: (CDCl₃): ¹H-NMR: $\delta = 0.23$ (s, 36 H, SiMe). ¹³C-NMR: $\delta = 0.92$ (s, 12C, SiC). ¹⁹F-NMR: $\delta = 22.43$ (s, 4F, SiF₂). ²⁹Si-NMR: $\delta = -57.79$ (t, J(Si,F) = 245.5 Hz, 2Si, SiF₂); 14.53 (s, 2Si, SiMe).

3,3,6,6-Tetrafluor-1,2,4,5-tetraaza-1,2,4,5-tetra(tert-butyldimethylsilyl)-3,6-disilacyclohexan (3)

0.005 mol (1.36 g) des Dilithiumderivates von (^tBuSiMe₂NH)₂ in 50 ml Hexan und 20 ml THF wird mit 0.005 mol (2.14 g) 1 in 50 ml Hexan versetzt und unter Rühren 1 h am Rückfluß erhitzt. Nach Abtrennen des entstandenen LiF wird 3 aus Hexan umkristallisiert. Ausbeute: 90%.

3: (CDCl₃): ¹H-NMR: $\delta = 0.25$ (t, ⁵J(H,F) = 2.5 Hz, 12H, SiMe); 0.3 (s, 12H, SiMe). ¹⁹F-NMR: $\delta = 29.8$ (s, 4F).

Dank

Diese Arbeit wurde vom Fonds der chemischen Industrie gefördert.

Literatur und Bemerkungen

- 1 U. Wannagat und H. Niederprüm, Angew. Chem., 70 (1958) 745.
- 2 J. Hluchy und U. Klingebiel, Angew, Chem., 94 (1982) 301.
- 3 W. Clegg, M. Haase, H. Hluchy, U. Klingebiel und G.M. Sheldrick, Chem. Ber., 116 (1983) 290.
- 4 1: Kp. = 64° C/0.01 mbar; MS (FI): m/z = 428 (M^+ , 95%).
- 5 3: Schmp. = 294° C; MS (FI): m/z = 648 (M^{+} , 100%).
- 6 4: Kp. = 82° C/0.01 mbar; MS (70 eV): m/z = 480 (M^{+} , 20%).
- 7 Weitere Einzelheiten zu den Strukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55367, der Autoren und des Zeitschriftenzitats angefordert werden.