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Abstract

The unsaturated dihydrides (Mn,(u-H),(CO)((n-L-L)) (L-L = Ph,PCH,PPh,, dppm, 1;
(EtO),POP(OEt),, tedip, 2) react with carbon dioxide (at 50 atm) or with formic acid to yield not only
the expected hydridoformate complexes [Mn,(u-HXu-O,CHXCO)((u-L-L)] (L-L = dppm, 3a; tedip,
3b) but also the hydridohydroxo-derivatives {Mn ,(x-HXu-OHXCO)4(x-L-L)) (L-L = dppm, 4a; tedip,
4b). The complexes 4 do not seem to arise from decomposition of 3 or to be products of the reaction of
1 and 2 with water. The hydrides 1 and 2 also react under mild conditions with several heterocumulenes
(cyclohexylisocyanate, dicyclohexylcarbodiimide and trimethylsilylazide) to afford [Mn,(x-HXu-
OCH)=NCyKCO)(u-tedip)] (5), [Mn,(p-HXu-CyNC(HINCyKCO)((u-L-L)] (L-L = dppm, 6a; tedip,
6b) and [Mn ,(p-HXp-N3XCO)g(p-L-L)] (L-L = dppm, 7a: tedip, 7b), respectively.

There is current interest in the interaction of small molecules and metal
clusters. For instance, the reactivity of [Os,(u-H),(CO),,] towards small unsatu-
rated organic molecules have been thoroughly investigated [1]. We have found that
the unsaturated dihydrides [Mn,(u-H),(CO)¢(u-dppm)] (1) and [Mn,(u-
H),(CO)¢(u-tedip)] (2) also react with a range of small molecules [2]. We report
now the preliminary results of the reactions of 1 and 2 with carbon dioxide, formic
acid, and several heterocumulenes.

At atmospheric pressure the complexes 1 and 2 are inert towards carbon
dioxide, but at 50 atm they react at room temperature with CO, to give a mixture
of two complexes [Mn,(u-HXu-O,CHXCO) (u-L-L)] (L-L = dppm, 3a; tedip,
3b) and [Mn(u-HXu-OHXCO)(u-L-L)] (L-L = dppm, 4a; tedip, 4b) (i in
Scheme 1) roughly in a 2:1 ratio. The same products, in the same proportion, are
obtained treating 1 and 2 with an aqueous solution of formic acid, as shown by the
3P{'H} NMR spectra of the final reaction mixtures. All attempts made to separate
3 and 4 by fractional crystallization failed. However when the mixture was
chromatographed on an alumina column (activity IV) only the hydridohydroxo-
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Scheme 1. (i) CO,, 50 atm., toluene, r.t., 4 days or HCOOH, toluene, r.t. 90 m. (ii) CyNCO, toluene,
r.t., 24 h. (iii) CYNCNCy, t.h.f, r.t,, 2 h. (iv) Me,SiN,, toluene, r.t. 10 h.

complex 4 could be eluted. Complexes 3, which could not be isolated, apparently
decompose into 4 on the column, as 4 were obtained by yields higher than 50%.

Complexes 3 and 4 have been characterized spectroscopically [3], the presence
of the formate ligand in 3 being identified mainly by the '>*C NMR resonances at
178 ppm, J(HC)=210 Hz, and the IR, »(CO,) absorptions of the bridging
0,0'-bonded carboxylate at ca. 1568 and 1430 cm™! [3]. The structure of com-
plexes 3 is further supported by the X-ray determination of the structure of the
related [Mn,(u-HX1-O,CMeXCO)¢(u-dppm)] [4], which also possesses an O,0'-
bonded carboxylate bridge, and of which the 3'P{'H} NMR spectrum exhibits a
single peak at 56.5 ppm, very close to the *'P{'H} NMR resonance at 55.3 ppm of
complex 3a.

Although 3a,b decompose into 4a,b in the chromatography column, (probably a
consequence of the alumina), 3 do not transform into 4 in solution. Monitoring the
reaction of 1 with CO, by *'P NMR spectroscopy indicates that the 3 /4 ratio is
roughly the same throughout the reaction. Moreover, proportion of 3 to 4 in the
mixture was not altered for 3 days by the addition of water or by bubbling N,.
Incidéentally, the compounds 4a,b do not react with formic acid to generate 3a.b.
On the other hand, the complexes 4 do not seem to arise from a direct reaction of
1 and 2 with water, as the unsaturated manganese dihydrocomplexes do not react
with H,O at room temperature. The formation of 4 as a direct product of the
reaction of 1 and 2 with CO, (or with formic acid) and not as a result of the
decomposition of 3 is particularly significant as hydridohydroxo-complexes have
been proposed to be intermediates in the decomposition of mononuclear metallo-
formates into metal carbonyl derivatives [S].

The reaction of 1 and 2 with carbon dioxide is also interesting, because no
reaction of an unsaturated dihydrocomplex with CO, has yet been reported.
Furthermore, the reaction of [Os,(u-H),(CO),,] with CF,COOH does not give any
bridging carboxylate derivative, but complexes containing monodentate trifluoroac-



C14

etate and three hydrido-ligands [6]. This retention of hydride seems to suggest that
the hydrido ligands in 1 or 2 are more prone to be loss than they are in
[Os4(u-H),(CO),q], which may depend on the weakness of the Mn—H bond.

At room temperature, 2 reacts in the dark with cyclohexylisocyanate (ii in
Scheme 1), and 1 and 2 react with dicyclohexylcarbodiimide (iii in Scheme 1), to
give the insertion products [Mn,(u-H){u-OC(H)=NCy}CO)(u-tedip)] (5) and
[Mn,(p-HXp-CyNC(H)NCy}(CO)((u-L-L)] (L-L = dppm, 6a; tedip, 6b), respec-
tively. Treatment of 1 with OCNCy in the dark gives a complex mixture, in which
[Mn ,(CO)¢(-dppm)], [Mn (CO)¢(-dppm),], and [Mn,(CO),(u-COX u-dppm), ]
have been identified. The structures of 5 and 6 are supported by their spectro-
scopic data [3], primarily by the '*C{!H} NMR resonances at 174.9 (5), 168.6 (6a)
and 170.8 ppm (6b), assigned to carbon nuclei joined to a single H atom. For
compound 5 the pattern of the IR »(CO) absorptions precludes an N,O-bonded
N-cyclohexylformamido-bridge.

At room temperature 1 and 2 react with trimethylsilylazide to yield the
hydrido-azido-complexes [Mn,(u-H){u-N;H(CO)((u-L-L)] (L-L = dppm, 7a; te-
dip, 7b) (iv in Scheme 1), which have been characterized spectroscopically [3].
Since we were not able to obtain suitable single crystals for an X-ray diffraction
study, the dispositions of the azide ligand in complexes 7 remain unclear. However,
the IR absorption at 2080 cm ™! suggests that N should be linear and bridging as
shown in Scheme 1.

The formation of complexes 5-7 is somewhat surprising, as the reactions of
[Os;(u-H),(CO),,] with isocyanates, carbodiimides, or azides lead to other type of
products [1]. This seems to confirm that the unsaturated dihydrides 1 and 2 possess
their own particular reactivity pattern, different from that observed in [Os,(u-
H),(CO),,1 [2].
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