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Abstract 

The new acylpalladium(ll) complex [PdKCOMeXbpy)] (2b, bpy = 2,2’-bipyridyl) has been obtained 

by two routes; (i) by insertion of carbon monoxide into the Pd-C bond of [PdIMe(bpy)] (lb), and (ii) by 

ligand exchange from [PdI(COMeMtmeda)] (2a, tmeda = N,N,N’,N’-tetramethylethanediamine). The 

cationic species obtained by reaction of 2a and 2b with AgOSO,CF, both undergo alkene insertions 

into the Pd-C acyl bond that lead to remarkably stable products. The X-ray structure of the 

dicyclopentadiene insertion product [Pd(C,,,H,,COMeXbpy)]SO,CF, (4b) s!ows the oxygen atom of 
the carbonyl group to be coordinated to the metal center (Pd-0 = 2.026(3) A). 

Recent developments in organometallic palladium chemistry have provided 
some novel complexes with N-donor ligands that have properties in metal-media- 
ted organic synthesis and catalysis complementary to those of the widely used 
phosphine complexes. For instance [Pd(H(CN)C=CHCN>(bpy)] is used as a catalyst 
for the cross-coupling of p-hydrogen-containing alkyl halides with Me,Sn, a 
process that has not been observed with phosphine complexes [l]. Our interest in 
nitrogen-coordinated palladium(I1) complexes is concerned not only with their 
properties in cross-coupling reactions but also their reactivity in respect of inser- 
tion of alkenes into the palladium-carbon bond. Some recent examples of inser- 
tion of alkenes into the Pd-C bond of arylpalladium complexes were reported by 
Chiusoli et al. and Cheng et al. [2]. Acylpalladium complexes appear to be more 
susceptible towards alkene insertion [3], but up to now the studies have been 
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Scheme 1. 

restricted to phosphine complexes, such as PdX(COMeXPPh,), (X = Cl, Br or I) 
and [Pd(COR)(MeCNXPPh,),]BF, (R = Me or Ph) [3a], which contain an acyl 
group stable towards de-insertion of carbon monoxide. 

Recently, both neutral [4-61 and cationic [7,8] mono-organopalladium(I1) com- 
plexes bearing nitrogen-donor ligands have been reported to react with CO to 
afford stable acylpalladium01) compounds. For example, PdXMe(tmeda1 (X = Cl, 
Br, I> reacts cleanly and in high yield with CO to afford the acyl complexes 
PdX(COMe)(tmeda) [5]. We now report the initial results of a study of the 
reactivity of nitrogen-coordinated acylpalladium(I1) complexes towards alkene 
insertion using PdI(COMe)(tmeda) (2a) and the new complex PdKCOMeXbpy) 
(2b). 

Compound 2b can be prepared in high yield via two routes (Scheme 11, uiz. (i) 
by ligand exchange from PdRCOMeXtmeda) (2a) [5,9*1 or (ii) by insertion of CO 
into the Pd-C bond of PdIMe(bpy) (lb) [10*,12*1. The complexes 2a and 2b do 
not react with alkenes, indicating either that insertion through a five-coordinate 
intermediate (i.e. by an associative process) is not possible or that reaction via a 
dissociative route (e.g. prior iodine or ligand dissociation) is blocked. The latter 
possibility is supported by the observation that treatment of 2a and 2b with silver 
trifluoromethanesulphonate (AgOSO,CF,) followed by reaction with an alkene 
(Scheme 2) does lead to alkene insertion products [13*-15*,17*]. Surprisingly, 
Sen et al. found that the analogous bis-phosphine complex PdI(COMe)(PPh,), 
does react smoothly with alkenes to the insertion products within a few hours [3a]. 
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* Reference number with asterisk indicates a note in the list of references. 



Fig. 1. Thermal motion ellipsoid plot (50% probability level) for 

[Pd(C,,,H,&OMeXbpy)l [18*1. 

one of the cation 

The alkene insertion products 3a,b and 4b are remarkably stable and can be 
handled in air at room temperature for at least several hours. Crystals of the 
dicyclopentadiene insertion product [Pd(C,,,H,,COMe>(bpy>ISO,CF, (4b) suitable 
for an X-ray structural study [19*] were obtained from CH,Cl,/Et,O. The 
molecular structure of 4b (see Fig. 1) shows the carbonyl group to be coordinated 
to the metal (Pd-0 = 2.026(3) A) to form a five-membered PdCCCO chelate ring. 
The palladium center in 4b has a square planar environment comprising the 
2,2’-bipyridyl ligand, which occupies two adjacent positions (the Pd-Nl and 
Pd-N2 bond lengths are 2.013(3) and 2.121(4) A, respectively; Nl-Pd-N2 = 
79.50(W), and t,he C,O chelate bonded ligand. The Pd-Cl1 distance for the latter 
ligand (2.023(4) A) is comparable with those found for other sp3 carbons tram to a 
sp2 nitrogen atom (2.036(6) A> [6,20]. The C21-01 bond length (1.249(6) A> is 
typical for a carbonyl group [21*1 and is comparable with the C-O bond length in 
the bis-phosphine compound (1.240(10) A> [3al. The X-ray structure clearly shows 
that the dicyclopentadiene [16* I moiety has reacted selectively, in an exe mode, 
with the $6 rather than the 2,3 double bond [18*1. This structural feature could 
not be identified from the NMR spectra. The exo mode of insertion is consistent 
with the results of Sen et al., who were able to show that insertion of norbornylene 
in [Pd(COMeXMeCN)(PPh,),]BF, also takes place on the exu face of the nor- 
bornylene moiety [3a]. 

The single carbonyl stretching vibration frequency (v(C-0)) found for 3a,b and 
4b has in all cases a rather low value, uiz. 1595 cm-’ (3a), 1598 cm-’ (3b) and 1601 
cm- ’ (4b). These values are a consequence of the coordination of the carbonyl 
group to the palladium center (cf. the bis-phosphine complex [Pd(C,H,,COMe)- 
(PPh,),]BF, which has a v(C-0) of 1620 cm-’ [3a]l. The analogous platinum(B) 
compound [Pt(C,H,,COMe)(PPh,),lBF, has a v(C-0) value of 1595 cm-’ (very 
similar to those for 3a,b and 4b) that was attributed to a lowered C-O bond order 
for the carbonyl group [22]. However, this is not reflected in the C-O bond length 
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of this bis-phosphine compound (1.240(10) A [3a]) or of 4b (1.249(6) A> reported 
here. We thus believe that the carbonyl stretching frequency in these complexes is 
merely lowered by coordination to the metal and that the low v(C-0) value need 
not necessarily be associated with a lowered bond order. The higher v(C-0) value 
for the bis-phosphine complex indicates that the carbonyl group is more weakly 
bound to the palladium in this compound than in the bis-amine complexes. This 
can also be seen from the Pd-0 botd distance, which is significattly longer for the 
bis-phosphine compound (2.114(6) A [3a]) than for 4b (2.026(3) A). 

The availability of nitrogen-coordinated acyl-palladium complexes has made 
possible comparative studies of the influence of phosphine and nitrogen donor 
ligands on the reactivity of acyl-palladium complexes. From the above results the 
reactivities of the cationic species towards alkenes are found to be closely compa- 
rable. The neutral compounds, however, show a major difference in reactivity, 
since the nitrogen coordinated compounds do not undergo insertion of alkenes 
whereas the phosphine compounds do. At present it is unclear whether this 
difference should be attributed to the difference in donor strength between 
nitrogen and phosphorus or whether the chelate effect of the bidentate nitrogen 
donor ligands is the main factor. 
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