Journal of Organometallic Chemistry, 440 (1992) 289–296 Elsevier Sequoia S.A., Lausanne JOM 22849

Heterozyklen als Liganden

XVI *. (2,5-C₄^tBu₂RHN)MCl₃ (M = Ti, Zr, Hf; R = H, SiMe₃)—Azacyclopentadienyl-Komplexe der Gruppe 4-Metalle

Norbert Kuhn, Stefan Stubenrauch

Fachbereich 6 (Chemie) der Universität (GH) Duisburg, Lotharstr. 1, W-4100 Duisburg 1 (Deutschland)

Roland Boese und Dieter Bläser

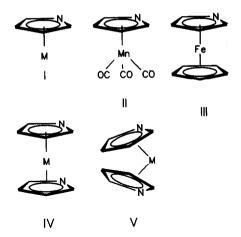
Institut für Anorganische Chemie der Universität (GH) Essen, Universitätsstr. 3-5, W-4300 Essen 1 (Deutschland)

(Eingegangen den 2. April 1992)

Abstract

The azacyclopentadienyl compounds $(2,5-C_4^{\rm t} Bu_2 RHN)MCl_3$ (M = Ti, Zr, Hf; R = H, SiMe₃) have been prepared as stable solids from the lithiated pyrroles and MCl₄. The π -coordination of the azacyclopentadienyl ligands, as suggested from ^{13}C NMR data, has been confirmed for $(2,5-C_4^{\rm t} Bu_2 H_2 N)TiCl_3$ by an X-ray diffraction study.

Zusammenfassung


Die Azacyclopentadienyl-Verbindungen $(2,5-C_4{}^tBu_2RHN)MCl_3$ (M = Ti, Zr, Hf; R = H, SiMe₃) wurden durch Umsetzung der lithiierten Pyrrole mit MCl₄ als stabile Feststoffe erhalten. Die anhand von ${}^{13}C$ -NMR-Daten vermutete π -Koordination der Azacyclopentadienyl-Liganden wurde für $(2,5-C_4{}^tBu_2H_2N)$ TiCl₃ durch eine Kristallstrukturanalyse bestätigt.

Einleitung

Azacyclopentadienylmetall-Komplexe [1], in denen ein Pyrrolid-Ligand unter Betätigung seines π -Elektronensextetts koordinativ an ein Metallzentrum gebunden ist (I), gehören zu den frühesten π -Komplexen der Heteroarene [2,3], haben

Correspondence to: Prof. Dr. N. Kuhn.

^{*} XIV. und XV. Mitteilung siehe Lit. 9.

jedoch bis in die jüngere Vergangenheit nur in Derivaten des Azacymantrens (II) und Azaferrocens (III) weitere Verbreitung gefunden. In Pyrrolyl-Verbindungen des Titans und seiner schweren Gruppennachbarn konnte die aus Schwingungsspektren [4] hergeleitete Azacyclopentadienyl-Struktur bislang strukturanalytisch nicht bestätigt werden [5].

Wir konnten kürzlich zeigen, daß sich durch sterische Abschirmung der Stickstoff-Atome vermittels α -ständiger t-Butylsubstituenten sowohl linear (IV, M = Fe [6], Co [7], Ni [8]) wie gewinkelt (V, M = Sn [9b], Pb [9a]) gebaute Diazametallocene stabilisieren lassen; dieser Verbindungstyp gilt infolge des gegenüber Cp reduzierten Donorcharakters des Azacyclopentadienyl-Liganden [10] in seiner Stabilität als besonders kritisch [11]. Die geringe Bereitschaft des 2,5-Di-t-butylpyrrolid-Substituenten zur planparallelen Anbindung an Metallzentren über das Stickstoff-Atom weist diesem Liganden eine potentielle Schlüsselfunktion beim Aufbau von π -Komplexen der Gruppe 4-Metalle zu.

Synthese und Eigenschaften von Azacyclopentadienyl-Komplexen des Titans

Beginnend mit der erstmals durch Wilkinson et al. [12] erfolgten Synthese von $(C_5H_5)_2\text{TiCl}_2$ hat die metallorganische Chemie des Titans und seiner schweren Gruppennachbarn einen kaum für möglich gehaltenen Aufschwung genommen [13]. Überträgt man den zum Aufbau der $C_5H_5\text{Ti-Fragments}$ üblichen Weg der Umsetzung von TiCl₄ mit Cyclopentadien bzw. seinen Metall-Derivaten auf die hier aufgegriffene Problemstellung, so läßt sich bei Verwendung von Pyrrol selbst die säurekatalysierte Polymerisation nicht verhindern. Versuche zur Umsetzung des sehr labilen $(C_4\text{Me}_4\text{N})\text{TiCl}_3$ mit weiterem Tetramethylpyrrolid [14] führen, wie erwartet, zur Reduktion des Metallzentrums. Anders als bei der analogen Synthese von $(C_5\text{Me}_5)_2\text{TiCl}_2$ [15] bewirkt die Zugabe von Salzsäure im Falle der Titanpyrrolide die hydrolytische Spaltung der Ti-N-Bindung.

Durch Reaktion der lithiierten Pyrrole VI (R = H [16], SiMe₃ [17]) mit TiCl₄ sind nun die stabilen Komplexe (2,5-C₄^tBu₂RHN)TiCl₃ (VII) in guten Ausbeuten zugänglich. Im Gegensatz zu Azacyclopentadienyl-Verbindungen des Eisens [6,18] und Kobalts [7,19] wird in den ¹³C-NMR-Spektren von VII (Tabelle 1) gegenüber

der Signallage des unkoordinierten Liganden eine Tieffeldverschiebung für die ringständigen Kohlenstoff-Atome beobachtet. Dies entspricht dem bei π -Komplexen des vierwertigen Titans beobachteten Befund [20] und ist in Einklang mit dem Verschiebungstrend der kürzlich beschriebenen Gruppe 14-Metallocene [9], in denen die Azacyclopentadienyl-Metall-Bindung gleichfalls nicht durch d-Elektronen des Metallzentrums beeinflußt wird.

Versuche zum Aufbau von Diazatitanocendichloriden aus VII oder direkt durch Umsetzung von TiCl₄ mit zwei Äquivalenten an Pyrrolid führen zu intensiver Zersetzung, vermutlich unter Reduktion des Metallzentrums; Azacyclopentadienyl-Verbindungen des dreiwertigen Titans konnten wir hierbei nicht nachweisen. Die in Anlehnung an die zur Synthese von Diphosphatitanocendichloriden [21] durchgeführte Umsetzung von TiCl₄ auch mit überschüssigem 2,5-Di-t-butyl-1-trimethylsilylpyrrol [17] führt nur bis zum Trichlorkomplex VIIa; bei weiterer thermischer Belastung wird lediglich die bereits bekannte Verschiebung der Silyl-

Tabelle 1

NMR-Daten der Verbindungen VI, VII, X und XI (ppm) ^a

Verb.	δ (¹ H)	δ (¹³ C)
VIa b	7.55 NH; 5.73 (d) ^c C3,4-H;	138.9 C2,5; 101.3 C3,4; 30.6 qC; 30.0 CMe
	1.26 Bu	
VIb	7.60 NH; 6.13 (d) ^c C4-H;	^b 144.47 C2; 138.12 C5; 110.19; 109.01 C3, C4;
	1.32, 1.21 Bu; 0.46 SiMe	32.91, 31.08 qC; 31.52, 30.68 CMe; 2.26 SiMe
VIIa	6.52 Bu; 1.32 C3,4-H	172.41 C2,5; 123.90 C3,4; 36.38 qC; 29.82 CMe
VIIb	7.30 C4-H; 1.43, 1.35 Bu;	176.16 C2; 174.94 C5; 141.87 C3; 132.51 C4;
	0.27 SiMe	38.68, 36.64 qC; 30.76, 30.20 CMe; 1.29 SiMe
Xa	6.39 Bu; 1.29 C3,4-H	165.57 C2,5; 121.30 C3,4; 35.37 qC; 29.76 CMe
Xb	7.16 C4-H; 1.52, 1.42 Bu;	170.31 C2; 167.76 C5; 136.11 C3; 127.52 C4;
	0.37 SiMe	37.69, 35.53 qC; 31.12, 30.23 CMe; 1.57 SiMe
XIa	6.53 Bu; 1.34 C3, 4-H	163.90 C2,5; 119.50 C3,4; 35.37 qC; 29.91 CMe
XIb	7.00 C4-H; 1.56, 1.46 Bu;	168.87 C2; 165.01 C5; 133.52 C3; 125.86 C4;
	0.29 SiMe	38.02, 35.84 qC; 31.17, 30,37 CMe; 1.33 SiMe

^a C₆D₆. ^b CDCl₃. ^c J(H, H) 3Hz.

Tabelle 2	
Atomkoordinaten (×10 ⁴) und äquivalente isotrope Versetzungsfaktoren von VIIa	

Atom	x	у	z	U _{iso} a
Ti	851(1)	1133(3)	6566(2)	57(1)
Cl(1)	685(1)	-978(4)	7093(3)	84(2)
Cl(2)	67(1)	2060(4)	6079(3)	81(2)
Cl(3)	1233(2)	2194(4)	8121(3)	87(2)
N	1516(3)	1787(10)	5997(8)	50(4)
C(1)	1058(4)	2278(12)	5213(10)	51(5)
C(2)	772(4)	1103(14)	4720(10)	53(5)
C(3)	1046(4)	- 57(14)	5170(9)	43(5)
C(4)	1510(4)	373(12)	5937(10)	49(5)
C(5)	1000(5)	3727(15)	4904(13)	77(6)
C(6)	1046(6)	4665(14)	5952(13)	92(8)
C(7)	1423(5)	4119(17)	4429(15)	96(8)
C(8)	470(6)	3979(16)	4076(14)	98(8)
C(9)	1982(5)	-447(14)	6543(13)	69(6)
C(10)	2150(6)	- 144(18)	7756(14)	95(8)
C(11)	1864(7)	-1979(15)	6387(14)	102(8)
C(12)	2410(5)	-33(20)	6099(16)	112(9)

^a Äquivalente isotrope U definiert als ein Drittel der Spur des orthogonalisierten U_i. Tensors.

gruppe in 3-Position [17] im überschüssigen Pyrrol beobachtet. Die sterische Überfrachtung als naheliegende Begründung für den Fehlschlag der Synthese von $(2,5-C_4^{t}Bu_2H_2N)_2TiCl_2$ erscheint angesichts der strukturanalytisch gesicherten Existenz von $(1,3-C_5^{t}Bu_2H_3)_2TiCl_2$ [22] fraglich.

Kristallstruktur von (2,5-C₄^tBu₂H₂N)TiCl₃(VIIa)

Trotz der deutlichen Analogie zu Cyclopentadienyl-Komplexen des Titans erlauben die NMR-Daten der Azacyclopentadienyl-Verbindungen VII keine gesicherte Aussage über die Art der Koordination des heterocyclischen Liganden. Wir haben deshalb von VIIa eine Kristallstrukturanalyse durchgeführt (Tab. 2-4). (2,5-C₄^tBu₂H₂N)TiCl₃ liegt im Kristall als monomeres Molekül vor (Abb. 1). Die Struktur belegt zweifelsfrei die π -Koordination des Azacyclopentadienyl-Liganden, so daß die Molekülgeometrie der von (C₅H₅)TiCl₃ (VIII) [23] und (3,4-C₄Me₂H₂P)TiCl₃ (IX) [21] vergleichbar ist. Ein Vergleich der Geometrie der

Tabelle 3 Bindungslängen (Å) von VIIa

Ti-Cl(1)	2.219 (5)	Ti-Cl(2)	2.202 (4)	
Ti-Cl(3)	2.204 (5)	Ti-N	2.249 (11)	
Ti-C(1)	2.292 (14)	Ti-C(2)	2.344 (13)	
Ti-C(3)	2.344 (14)	Ti-C(4)	2.311 (13)	
N-C(1)	1.412 (13)	N-C(4)	1.350 (15)	
C(1)-C(2)	1.397 (17)	C(1)C(5)	1.432 (19)	
C(2)-C(3)	1.357 (17)	C(3)-C(4)	1.393 (14)	
C(4)-C(9)	1.494 (16)			

Tabelle 4
Bindungswinkel (°) von VIIa

Cl(1)-Ti-Cl(2)	100.3(2)	Cl(1)-Ti-Cl(3)	102.3(2)
Cl(2)-Ti-Cl(3)	101.9(2)	C(1)-N-C(4)	107.3(8)
N-C(1)-C(2)	107.3(10)	N-C(1)-C(5)	121.0(10)
C(2)-C(1)-C(5)	130.5(10)	C(1)-C(2)-C(3)	107.9(9)
C(2)-C(3)-C(4)	108.3(11)	N-C(4)-C(3)	109.1(9)
N-C(4)-C(9)	119.9(9)	Cl(1)-Ti-Pyr _{zent.}	113.9
Cl(2)-Ti-Pyr _{zent.}	114.7	Cl(3)-Ti-Pyr _{zent}	120.8
Ti-Pyr _{zent.} -N	31.7		

TiCl₃-Fragmente zeigt für VIIa (d Ti-Cl 2.21 Å) gegenüber VIII und IX vergleichbare Werte. Hingegen ist die mittlere Bindungslänge Ti-C in VIIa (2.32 Å), wie auch in VIII (d Ti-C 2.31 Å), gegenüber dem phosphacyclischen Analogen IX (d Ti-C 2.41 Å) deutlich verkürzt; da $C_5H_5^-$ bezüglich seiner Donoreigenschaften dem phosphacyclischen Liganden eher vergleichbar ist, vermuten wir als Ursache für diesen Befund eine Auswirkung des gegenüber C und N vergrößerten Atomradius von P auch auf die Bindungslängen zwischen den benachbarten Kohlenstoff-Atomen und dem Koordinationszentrum. Die ringständigen Bindungslängen sind in VIIa (vgl. Tab. 3) gegenüber denen der weiteren π -Komplexe dieses Liganden [6-9] deutlich verkürzt; dieser Hinweis auf eine in VIIa geschwächte Wechselwirkung zwischen Ringligand und Metallzentrum sollte jedoch angesichts der schlechten Kristallqualität nicht überbewertet werden.

Synthese und Eigenschaften von Azacyclopentadienyl-Komplexen des Zirkons und Hafniums

Wie die Titanverbindungen VII lassen sich auch die hierzu analogen Komplexe (2,5-C₄^tBu₂RHN)ZrCl₃ (X) und (2,5-C₄^tBu₂RHN)HfCl₃ (XI) aus den metal-

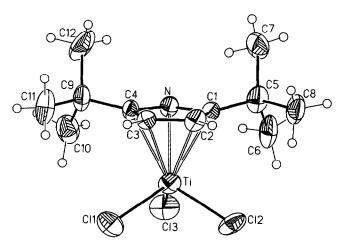


Abb. 1. Darstellung der Molekülstruktur von (2,5-C₄^tBu₂H₂/TiCl₃ (VIIa) im Kristall. Die Schwingungsellipsoide umschreiben 30% der Aufenthaltswahrscheinlichkeit der Elektronen.

lierten Pyrrolen VI und MCl_4 (M = Zr, Hf) erhalten. Die gegenüber VII wesentlich stabileren Verbindungen stehen bezüglich ihrer ¹³C-NMR-Daten (Tabl. 1) zu den analogen Cyclopentadienyl-Verbindungen in einer ähnlichen Relation wie die Komplexe VII, weshalb wir auch hier von π -koordinierten Azacyclopentadienyl-Liganden ausgehen. Die Verbindungen X und XI sind gegenüber der Einführung eines weiteren Azacyclopentadienyl-Liganden selbst in siedendem Tetrahydrofuran erstaunlich resistent, so daß auch hier der Aufbau von Diazametallocendichloriden zunächst als Fehlschlag verbucht werden muß.

Experimenteller Teil

Sämtliche Arbeiten wurden in gereinigten Lösungsmitteln unter Argon durchgeführt. 2,5-Di-t-butylpyrrol (VIa) [16] und 2,5-Di-t-butyl-3-trimethylsilylpyrrol (VIb) [17] wurden nach Literaturvorschriften erhalten.

Röntgenstrukturanalyse von VIIa [24*]. Nicolet-R 3m/V-Vierkreisdiffraktometer, $Mo-K_{\alpha}$ -Strahlung, Graphitmonochromator, Kristalldimensionen (mm) $0.13\times0.11\times0.07$, Meßtemperatur 230 K, Zelldimensionen a 27.164(14), b 9.533(8), c 13.026(7) Å, β 108.74(4)°, V 3195(3) ų, Z=8, $D_{\rm ber}$, 1.383 g/cm³, μ 1.00 mm⁻¹, monoklin, Raumgruppe C2/c, ω -Scan-Datensammlung von 2041 unabhängigen Intensitäten ($2\theta_{\rm max}=40^{\circ}$), davon 1452 [$F_{\rm o} \ge 4\sigma(F)$] beobachtet. Strukturlösung mit Direkten Methoden und Verfeinerung mit shelxtl-plus 4.2/v (1990), alle Nichtwasserstoff-Atome anisotrop, alle Methylwasserstoff-Atome isotrop als starre Gruppen (C-H 0.96 Å, C-C-H bzw. H-C-H 109.5°), Ringwasserstoff-Atome als reitende Gruppen mit jeweils gleichen Temperaturfaktoren verfeinert; R=0.098, $R_{\rm w}=0.098$, $w^{-1}=[\sigma^2(F_{\rm o})+0.0004\ F_{\rm o}^2]$; die Differenz-Fourier-Synthese auf der Basis des endgültigen Strukturmodells zeigt ein Maximum von 0.582 e/ų (0.92 Å von C13) und ein Minimum von -0.61 e/ų.

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

$(2,5-C_4'Bu_2H_2N)TiCl_3$ (VIIa)

3.77 g (20.4 mmol) Lithium-2,5-di-t-butylpyrrolid (hergestellt aus 2,5-Di-t-butylpyrrol und n-Butyllithium in Ether) werden in 80 ml Toluol suspendiert und bei -78° C mit 2.23 ml (20.4 mmol) TiCl₄ versetzt. Nach 1 h bei Raumtemp. werden die flüchtigen Bestandteile i. Vak. entfernt. Der verbliebene Rückstand wird mit 10 ml n-Pentan extrahiert. Ausbeute nach Abkühlen der erhaltenen Lösung auf -78° C: 2.87 g (42% d.Th.) VIIa, rotorangefarbene Kristalle. Gef.: C, 42.81; H, 5.78; N, 4.25. C₁₂H₂₀Cl₃NTi ber.: C, 43.34; H, 6.07; N, 4.21%. MS (70 eV); m/z = 332 (3%, M^+), 317 (9, [M^+ – Me]), 164 (100, [pyr $^+$ – Me]) und weitere Bruchstücke.

$(2,5-C_4{}^tBu_2RHN)TiCl_3$ (VIIb, $R = SiMe_3$)

2.60 g (10.3 mmol) 2,5-di-t-butyl-3-trimethylsilylpyrrol werden in 50 ml n-Pentan mit 6.46 ml (10.3 mmol) n-Butyllithium (1.6 M in n-Hexan) versetzt und 20 min zum Sieden erhitzt. Die resultierende Lösung wird bei -78° C mit 1.14 ml (10.3 mmol) TiCl₄ versetzt. Nach 1 h bei Raumtemp. werden die flüchtigen Bestandteile i. Vak. entfernt. Der verbliebene Rückstand wird mit 40 ml n-Pentan extrahiert. Ausbeute nach Abkühlen der erhaltenen Lösung auf -78° C: 3.40 g (50% d.Th.) VIIb, rotorangefarbene Kristalle. Gef.: C, 44.14; H, 6.36; N, 3.25. $C_{15}H_{28}Cl_3NSiTi$ ber.: C, 44.51; H, 6.99; N, 3.46%. MS (70 eV): m/z = 405 (20%, M^+), 390 (34, $[M^+ - Me]$), 250 (28, pyr⁺), 73 (100, SiMe₃⁺) und weitere Bruchstücke.

$(2,5-C_4^{t}Bu_2H_2N)ZrCl_3$ (Xa)

2.09 g (11.3 mmol) Lithium-2,5-di-t-butylpyrrolid werden in 90 ml Toluol suspendiert und mit 2.63 g (11.3 mmol) $ZrCl_4$ versetzt. Nach 3 h Erhitzen zum Sieden werden die flüchtigen Bestandteile i. Vak. entfernt. Der verbliebene Rückstand wird mit 8 ml n-Pentan extrahiert. Ausbeute nach Abkühlen der erhaltenen Lösung auf $-78^{\circ}C$: 2.06 g (49% d.Th.) Xa, beigefarbene Kristalle. Gef.: C, 37.90; H, 5.25; N, 3.61. $C_{12}H_{20}Cl_3NZr$ ber.: C, 38.34; H, 5.37; N, 3.73% MS (70 eV): m/z = 375 (8%, M^+), 360 (44, $[M^+ - Me]$), 164 (100, $[pyr^+ - Me]$) und weitere Bruchstücke.

$(2.5-C_4^{\ t}Bu_2RHN)ZrCl_3$ (Xb, $R = SiMe_3$)

2.64 g (10.5 mmol) 2,5-di-t-butyl-3-trimethylsilylpyrrol werden in 40 ml n-Pentan mit 6.56 ml (10.5 mmol) n-Butyllithium (1.6 M in n-Hexan) versetzt und 20 min zum Sieden erhitzt. Die resultierende Lösung wird bei Raumtemp. mit 2.45 g (10.5 mmol) ZrCl₄ versetzt und weitere 3 h zum Sieden erhitzt. Die filtrierte Lösung wird i. Vak. von den flüchtigen Bestandteilen befreit. Ausbeute nach Umkristallisation aus n-Pentan: 1.92 g (41% d.Th.) Xb, beigefarbene Kristalle. Gef.: C, 39.98; H, 6.07; N, 3.10. $C_{15}H_{28}Cl_3NSiZr$ ber.: C, 40.20; H, 6.31; N, 3.13%. MS (70 eV): m/z = 448 (14, M^+), 433 (33, $[M^+ - Me]$), 251 (33, pyr⁺), 236 (100, $[pyr^+ - Me]$), 73 (75, $SiMe_3^+$) und weitere Bruchstücke.

$(2,5-C_4^tBu_2H_2N)HfCl_3$ (XIa)

3.61 g (11.3 mmol) $HfCl_4$, sonst wie bei Xa. Ausbeute: 2.51 g (48% d.Th.) XIa, beigefarbene Kristalle. Gef.: C, 30.78; H, 4.25; N, 3.10. $C_{12}H_{20}Cl_3HfN$ ber.: C, 31.12; H, 4.36; N, 3.02%.

6. $(2,5-C_4^{\dagger}Bu_2RHN)HfCl_3$ (XIb, $R = SiMe_3$)

3.36 g (10.5 mmol) HfCl₄, sonst wie bei Xb. Ausbeute: 2.61 g (46% d.Th.) XIb, beigefarbene Kristalle. Gef.: C, 33.55; H, 5.15; N, 2.70. $C_{15}H_{28}Cl_3HfNSi$ ber.: C, 33.65; H, 5.28; N, 2.62%.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Literatur und Bemerkungen

- 1 Übersicht: N. Kuhn, Bull. Soc. Chim. Belg., 99 (1990) 707.
- 2 K.K. Joshi, P.L. Pauson, A.R. Qazi und W.H. Stubbs, J. Organomet. Chem., 1 (1964) 471.
- 3 R.B. King und M.B. Bisnette, Inorg. Chem., 3 (1964) 796.
- 4 G.S. Sodhi, A.K. Sharma und N.K. Kaushik, J. Organomet. Chem., 238 (1982) 177; A.K. Sharma und N.K. Kaushik, Acta Chim. Hung., 116 (1984) 361.
- 5 R. Vann Bynum, W.E. Hunter, R.D. Rogers und J.L. Atwood, Inorg. Chem., 19 (1980) 2368; J.L. Atwood, R.D. Rogers und R. Vann Bynum, Acta Crystallogr., Sect. C40 (1984) 1812; R.D. Rogers, R. Vann Bynum und J.L. Atwood, J. Crystallogr. Spectrosc. Res., 14 (1984) 21; R. Vann Bynum, H.-M. Zhang, W.E. Hunter und J.L. Atwood, Can. J. Chem., 64 (1986) 1304.
- 6 N. Kuhn, K. Jendral, R. Boese und D. Bläser, Chem. Ber., 124 (1991) 89.
- 7 N. Kuhn, M. Köckerling, S. Stubenrauch, D. Bläser und R. Boese, J. Chem. Soc., Chem. Commun., (1991) 1368.
- 8 S. Stubenrauch, Dissertation Duisburg, 1992.
- 9 (a) N. Kuhn, G. Henkel und S. Stubenrauch, Angew. Chem., 104 (1992) 766; (b) N. Kuhn, G. Henkel und S. Stubenrauch, J. Chem. Soc., Chem. Commun., (1992) 760.
- 10 T.A. Albright, P. Hofmann und R. Hoffmann, J. Am. Chem. Soc., 99 (1977) 7546; T.A. Albright und R. Hoffmann, Chem. Ber., 111 (1978) 1578.
- 11 N. Kuhn, J. Kreutzberg und C., Janiak, Veröffentlichung in Vorbereitung.
- 12 G. Wilkinson, P.L. Pauson, J.M. Birmingham und F.A. Cotton, J. Am. Chem. Soc., 75 (1953) 1011; G. Wilkinson und J.M. Birmingham, J. Chem. Soc., (1954) 4281.
- 13 Übersicht: M. Bottrill, P.D. Gavins, J.W. Kelland und J. McMeeking in G. Wilkinson (Hrsg.), Comprehensive Organometallic Chemistry, Vol. 3, Pergamon Press, Oxford, 1982.
- 14 N. Kuhn und S. Stubenrauch, unveröffentlichte Ergebnisse.
- 15 J.E. Bercaw, R.H. Marvich, L.G. Bell und H.H. Brintzinger, J. Am. Chem. Soc., 94 (1972) 1219.
- 16 R. Ramaseul und A. Rassat, Chem. Commun., (1965) 453.
- 17 N. Kuhn und S. Stubenrauch, Liebigs Ann. Chem., zur Veröffentlichung eingereicht.
- N. Kuhn, H. Schumann, M. Winter und E. Zauder, Chem. Ber., 121 (1988) 111; N. Kuhn, E.-M. Horn, R. Boese und D. Bläser, ibid., 122 (1989) 2275; N. Kuhn, A. Kuhn und E.-M. Lampe, ibid., 124 (1991) 997; N. Kuhn, E.-M. Horn, R. Boese und N. Augart, Angew. Chem., 100 (1988) 1433.
- 19 N. Kuhn, H. Brüggemann, M. Winter und V.M. de Bellis, J. Organomet. Chem., 320 (1987) 391; K.J. Chase und R.M. Grimes, Organometallics, 8 (1989) 2492.
- 20 Vgl. hierzu B.E. Mann und B.F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, London, 1981.
- 21 F. Nief, L. Ricard und F. Mathey, Organometallics, 8 (1989) 1473.
- 22 L.F. Urazowski, V.I. Ponomaryov, O.G. Ellert, I.E. Nifantev und D.A. Lemenovskii, J. Organomet. Chem., 356 (1988) 181.
- 23 L.M. Engelhardt, R.I. Papasergio, C.L. Raston und A.H. White, Organometallics, 3 (1984) 18.
- 24 Weitere Informationen zur Kristallstrukturuntersuchung k\u00fcnnen beim Fachinformationszentrum Karlsruhe, Gesellschaft f\u00fcr wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-320547, der Autorennamen und des Zeitschriftenzitats angefordert werden.