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Abstract 

The electrochemical behaviour of the unsaturated cluster 0s&HXC0)s[Ph,PCH,P(Ph)C,H41 has 

been studied by electrochemical and spectroscopic methods. The transformations of the very reactive 

title compound into the saturated cluster 0s,(HXCO),[Ph,PCH2P(Ph)C,H,l and Os,(CO),,(Ph,- 

PCH,PPh,] by CO addition has been followed step-by-step by cyclic voltammetry. 

Introduction 

The ability to coordinate and then to activate small organic moieties is an 
essential requirement for the use of metal clusters in catalysis [l]. Addition of 
organic molecules to electronically and coordinatively unsaturated clusters is 
usually easy since ligand dissociation is not required. Few unsaturated clusters 
have been reported [l], the prototype being OS&-H),(CO),, [2]. We recently 
showed that the redox behaviour of the unsaturated (46e) Os&H),(CO),L 
clusters differs greatly from that of the saturated (48e) OS&-HXHXCO),,L 
adducts (L = CO, PPh,, AsPh,). The former series exhibits chemically reversible 
reduction processes, where the “OS-H,-OS” core represents the reduction centre, 
whereas the latter series shows chemically irreversible steps [3]. 

Previously we described 141 the high yield synthesis of another unsaturated (46e) 
trimetallic cluster, namely Os&-HXCO),[Ph,PCH,P(Ph)C,H,] (1) by the ther- 
molysis of Os,(CO),,(Ph,PCH ,PPh,) (3). The loss of two CO ligands results in 
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Scheme 1. Reaction sequence: 1 +CO + 2 + CO + 3 in acetonitrile solution containing [Bu,NIlBF,l 
(0.1 M): i, CO, 25”C, 2 h; ii, CO, 25 “C, 1 week. 

metallation of one of the phenyl rings of the dppm ligand. Interestingly, the 
reaction can be reversed via the stable (48e) intermediate Os,(H)(CO),[Ph,PCH,- 
P(Ph)C,H,] (2) by bubbling CO through a solution of 1 (Scheme 1). We though it 
of interest to investigate this reaction sequence by electrochemical methods. 

Results and discussion 

The cyclic voltammetric (CV) response of an acetonitrile solution of 1 at a Hg 
electrode is presented in Fig. 1. A reduction peak A, E,(A) = - 1.18 V, is 
observed, and a directly associated reoxidation peak B, E,(B) = - 1.11 V, is 
observed in the reverse scan. A small oxidation peak C is also present, at -0.96 V, 
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Fig. 1. Cyclic voltammograms of an acetonitrile solution of 1 (1 mM) and [Bu,NI[BF,l (0.1 M) at a 

working electrode at 400 mV s- ’ recorded without (bold line) and with (dotted line) a holding time 

of 5 s. 

Hg 
(*) 

in the reverse sweep owing to the oxidation of an electroactive by-product 
generated by reduction of 1 at the potential of peak A. 

As expected, peak C decreases and eventually disappears as the scan rate is 
increased or the temperature lowered. Furthermore, a CV scan employing a short 
time delay after peak A has been traversed (Fig. 1) shows that peak C significantly 
increases in height in the reverse sweep. 

Controlled potential coulometry at a mercury-pool working electrode (E, = 
- 1.25 V) indicates the consumption of 1 Faraday/m01 of 1. D.C. polarography of 
an acetonitrile solution of 1 confirms the quasi-reversibility of the reduction 

process, the plot of E vs log (id - i/i) is linear with a slope of 78 mV, (E,,2 = - 1.13 

V). 
Analysis of the CV responses of the peak system A/B with scan rates varying 

from 0.02 to 10 V SK’ reveals the following features: (i) the anodic to cathodic 
peak current ratio, ip(B)/ip(A), gradually increases from 0.6 to 0.9; (ii) the current 
function, ip(A)/L;‘/*, remains practically constant; (iii) the difference between the 
potential of the cathodic peak and that of the directly associated reoxidation peak, 
E,(B) - E,(A) = AE,, increases progressively from 70 to 320 mV. These features 
are diagnostic of a quasi-reversible one-electron transfer followed by a slow 
chemical change [5] (EC mechanism [6 *I>. If a first order reaction is assumed to 
follow the electron transfer, and use is made of the Nicholson method [7], a 
half-life of ca. 10 s can be roughly estimated for the radical anion [l]-. 

This electrochemical behaviour does not substantially change when the solvent 
is changed from CH,CN to CH,COCH, or CH,Cl,. Small shifts in the formal 

* Reference number with asterisk indicates a note in the list of references. 
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Scheme 2. Proposed EC mechanism for the reduction of compound 1. 

electrode potentials, E o ‘(O/l - ) = E,(A) + E,(B)/2, are observed, namely: - 1.14 
(CH,CN); - 1.08 (CH,COCH,); - 1.23 (CH,Cl,) V vs. SCE. 

Controlled potential electrolysis at a Hg pool (E, = - 1.25 VI of an acetonitrile 
solution of 1 shows a change in colour from green to orange. In situ CV tests, 
carried out as the electrolysis proceeded, showed that peak B is progressively 
replaced by peak C in the oxidation scan. As expected from the CV results, in the 
electrolysis [l-l was converted into a new species, [l*]-, oxidizable at the potential 
of peak C. Nevertheless, exhaustive reoxidation of the electroreduced solution at 
E, = 0.0 V regenerates 1 in ca. 75% yield, indicating that the transformation 
[l-l + [l’l- is very readily reversible, and probably involves a simple geometrical 
reorganization. 

The redox processes undergone by 1 are depicted in Scheme 2. 
The X band EPR spectrum of an electroreduced solution of 1 in acetonitrile, 

recorded at liquid nitrogen temperature, shows an axial pattern with g I = 2.011, 
g,, = 2.095 ( f 0.005) and a peak-to-peak line width, AHpp = 145 (k 0.5) G (Fig. 2). 

H 

Fig. 2. X-band EPR spectrum of an one-electron reduced acetonitrile solution of 
nitrogen temperature. DPPH (2,2’-diphenylpicrylhydrazyl) was used as reference. 

1 recorded at liquid 
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Fig. 3. Cyclic voltammograms of an acetonitrile solution of 1 at 400 mV s-’ recorded before (dotted 

line) and after (bold line) bubbling of CO for 2 h. 

When the temperature is raised to the glass-liquid transition, the signal becomes 
sharp and isotropic with giSO = 2.04 (50.02) and AHpp = 11 (rt 1) G. There are no 
hyperfine couplings with H, P and magnetically active OS isotopes; this could 
indicate that the added electron in [l*]- is highly delocalized. Interestingly, in the 
case of [OS&-H)~(CO),~]-, the EPR spectrum [3] exhibits a hyperfine structure, 
indicating that the unpaired electron interacts with the two hydrides and then 
occupies a LUMO having “OS-H,-OS” character [3]. 

When CO was bubbled at room temperature through an acetonitrile solution of 
1 in the electrochemical cell there was a change in colour from green to yellow, 
and IR monitoring indicated that after 2 h [Os,(HXCO),{Ph,PCH,P(Ph)C,H,]l 
(2) had been quantitatively formed [4]. Also the CV responses changed during the 
1 + CO + 2 transformation; a new peak, D, grew at a more negative potential, 
E,(D) = - 1.60 V at 200 mV s- ‘, followed in the reverse scan by small peaks 
probably due to the reoxidation processes of electrogenerated fragments. Compari- 
son of the heights of peaks A and D indicates that 2 undergoes a chemically 
irreversible one-electron reduction (Fig. 3). This is even clearer from a comparison 
of the dc polarograms recorded on a solution of 1 before and after addition of CO. 

Finally, stirring of an acetonitrile solution of 2 under CO atmosphere for a week 
at room temperature gradually but completely 141, converted the yellow cluster 2 
into the orange Os,(CO),,(dppm) cluster (3). The CV response showed a new peak 
E (E,(E) = - 1.71 V at 200 mV s-‘1 followed in the reverse scan by small 
reoxidation peaks of the fragmentation products. Comparison of the peak heights 
recorded on the same solution before and after the 1 + 2C0 -+ 3 transformation 
(peaks A and E respectively) indicates that peak E corresponds to a chemically 
irreversible two-electron reduction process [8 * ] (Fig. 41, probably a complex ECE 
process, as elegantly demonstrated by Robinson et al. [9] for Os,(CO),,. The 
negative shift of potential on passing from Os,(CO),, 193 to Os,(CO),,,(dppm) is 
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Fig. 4. Cyclic voltammograms of an acetonitrile solution of 1 at 200 mV s-’ recorded before (dotted 

line) and after (bold line) stirring under a CO atmosphere for 1 week. 

consistent with the higher (T donor/r acceptor ratio of diphosphines relative to 
that to of the CO ligand [lo]. It is noteworthy that the cluster Os,(CO),,(PPh,), 
could not be reduced within the CH,Cl, solvent range [9]. 

The work has shown that the CV technique can be used to monitor the stepwise 
sequence 1 + 2 --) 3. 

Experimental section 

The compound [Os,(HXCO),{Ph,PCH,P(Ph)C,H,]l 1 was synthesized as pre- 
viously described 141, and its purity and that of its CO adducts 2 and 3 was 
confirmed by IR and ‘H- and “‘P-NMR spectroscopy on a Perkin Elmer 580 B and 
a Jeol GX-270 spectrometer, respectively. 

The EPR spectra were recorded on a Bruker 200 D-SCR instrument operating 
at 9.78 GHz (X-band) and equipped with a variable-temperature ER 411 VT unit. 

The electrochemical apparatus for voltammetric and polarographic measure- 
ments has been previously described 131. The solvents, supporting electrolytes, and 
gases (Ar or CO) were purified by established procedures [3]. All potentials are 
referred to the saturated calomel electrode (SCE). Ferrocene was used as an 
internal standard; under the experimental conditions used the FeCp”/‘+ couple is 
located at + 0.38 in CH,CN, + 0.5 1 in CH,COCH,, and + 0.49 V vs. SCE in 
CH,Cl, respectively. 

Before running CV and dc polarographic experiments in the coordinating 
CH,CN solvent we confirmed that 1 is inert in such a medium. Stirring of 1 in 
CH,CN at room temperature for 1 week caused no change in the IR and 
“‘P-NMR spectra, indicating that no adduct of 1 with CH,CN is formed. 

The CO was saturated with CH,CN before being bubbled into the electrochem- 
ical cell; this prevents removal of the solvent and subsequent change in the 
concentration in the solution under study. 
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