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Abstract 

Irradiation of the title compound 1 through quartz in toluene solution at -20°C produces 
cb-Mo(CO),(PMe,), and OPMe, as the major products along with lesser amounts of mer- and 
fat-MdCO),(PMe,), and MdCOXPMe,),. Irradiation of 1 through Pyrex produces in addition 
substantial amounts of an unstable species formulated as tram-Mo(CO),(PMe,),. 

Interest in the thermal and photochemical reactions of transition metal-carbon 
dioxide complexes has been sparked by their potential role in catalytic schemes for 
CO, reduction, splitting, and incorporation into organic compounds [l]. Recent 
studies in this laboratory have provided the first examples of photochemically 
induced transformations of carbon dioxide complexes including reductive dispro- 
portionation [2] and decarbonylation [3]. The complex (Me,P),Mo($-CO,), (1) is 
a representative of the only known series of bis-CO,-monometallic adducts [4] and, 
as such, appeared to offer new pathways for photoinduced CO, transformations. 
Herein we report preliminary observations on the photolysis of 1 which results in 
oxygen transfer from CO, to phosphine. 

The UV-Vis spectrum of yellow 1 in toluene features broad tailing absorptions 
at ca. 290 and 320 nm. Although such solutions are stable in the dark for weeks at 
- 2O”C, irradiation at this temperature [5 *] (4OOW Hg-vapor lamp, quartz vessel) 
of a 10 mM solution of 1 in toluene under a CO, atmosphere results in virtually 
complete disappearance of 1 over 4-5 h. IR monitoring indicates the appearance 
of a major new species 2 with absorptions at 1848 and 1786 cm-‘, minor products 
with additional bands at 1917, 1824 and 1763 cm-‘, as well as a quantity (8% by 
weight) of an uncharacterized brown precipitate [6*]. ‘H and 31P NMR spectra of 
the hexane-soluble fraction of the reaction residue [7*] combined with literature 
data [81 lead to the conclusion that the major MO-containing product 2 is cis- 
Mo(CO),(PMe,), (29% yield) and that the minor components are mer- 

* Reference number with asterisk indicates a note in the list of references. 
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Mo(CO),(PMe,), (3, ca. S%), fuc-Mo(CO),(PMe,), (4, ca. 1%) and Mo(CO)- 
(PMe,), (5, trace). Crystallizing from the hexane extract was OPMe, (ca. 35% 
yield) identified by IR, ‘H and 31P NMR analysis. Also formed was a substantial 
quantity of free PMe, [9*] (detected by ‘H NMR monitoring of the irradiated 
solution in benzene-d,) (Scheme 1). 

Photolysis of 1 through Pyrex (> 300 nm) proceeded at a similar rate but IR 
monitoring revealed a second major component 6 (IR: 1824 cm-‘) in addition to 2 
,which gradually decayed over a few hours [lo]. The instability of 6 and the position 
and singular “multiplicity” of its M-CO absorption leads us to formulate it as the 
previously unreported truns-Mo(CO),(PMe,),. Truns-6 may thus be an intermedi- 
ate in the photoconversion of 1 to k-2. 

Although formation of phosphine oxides has been observed previously in 
thermal reactions of metal phosphine complexes with CO, [ll], this study provides 
the first example of a photoinduced phosphine oxidation by a metal-CO, complex. 
Whether this process is initiated by photoinduced phosphine expulsion and subse- 
quent thermal O-transfer from coordinated CO, or by photochemical M-CO, 
charge transfer followed by phosphine oxidation awaits the results of detailed 
mechanistic and photochemical studies. 
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