Journal of Organometallic Chemistry, 427 (1992) 57-62 Elsevier Sequoia S.A., Lausanne IOM 22397

Synthese und strukturelle Charakterisierung von Bis(pentamethylcyclopentadienylmolybdän- μ -sulfido)-Komplexen mit μ, η^1 -SSR-Liganden

Henri Brunner, Roland Graßl, Joachim Wachter

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstraße 31, W-8400 Regensburg (Deutschland)

Bernd Nuber und Manfred L. Ziegler

Anorganisch-chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg (Deutschland)

(Eingegangen den 23. September 1991)

Abstract

The reaction of $Cp_2^*Mo_2S_4I_2(Cp^* = \eta^5 - C_5Me_5)$ with two equivalents of NaSR (R = Me, ⁱPr, ⁱBu, Ph) gives the complexes $Cp_2^*Mo_2(\mu,\eta^1-SSR)_2(\mu-S)_2$ (2a-d) in nearly quantitative yields. The compounds have been investigated spectroscopically and in the case of R = Ph (2d) by means of X-ray diffraction analysis. The results show the presence of two η^1 -PhSS bridges (d_{S-S} 2.139(2) Å) and that exclusively the *trans*-isomer is formed. All sulfur atoms lie in one plane perpendicular to the Mo-Mo axis and bisecting it.

Zusammenfassung

Die Reaktion von $\operatorname{Cp}_2^*\operatorname{Mo}_2\operatorname{S}_4\operatorname{I}_2(\operatorname{Cp}^*=\eta^5\cdot\operatorname{C}_5\operatorname{Me}_5)$ mit zwei Äquivalenten NaSR (R = Me, ⁱPr, ^tBu, Ph) liefert die Komplexe des Typs $\operatorname{Cp}_2^*\operatorname{Mo}_2(\mu,\eta^1\cdot\operatorname{SSR})_2(\mu-\operatorname{S})_2$ (2a-d) in fast quantitativen Ausbeuten. Die Verbindungen wurden spektroskopisch sowie im Fall von R = Ph (2d) durch Röntgenstrukturanalyse untersucht. Die Ergebnisse zeigen die Präsenz zweier $\eta^1\cdot\operatorname{PhSS}^-$ -Brücken (d_{S-S} 2.139(2) Å) und die ausschließliche Bildung des *trans*-Isomeren. Alle S-Atome liegen in einer Ebene senkrecht zur Mo-Mo-Achse und halbieren diese.

Einleitung

Während die Zahl von Übergangsmetallkomplexen mit Thiolatoliganden mittlerweilen unüberschaubar geworden ist, ist der von organischen Disulfiden

Correspondence to: Dr. J. Wachter, Institut für Anorganische Chemie der Universität Regensburg, Universitätsstraße 31, W-8400 Regensburg, Deutschland.

$$M-S-S-R$$
 $M \subset S$
 M

Schema 1. Bisher realisierte Koordinationsformen für S₂R-Liganden.

abgeleitete Monoorganyldisulfidligand RSS⁻ [1] noch relativ selten. Aus bioanorganischer Sicht ist er vor allem aufgrund der Beteiligung an enzymatischen Redoxprozessen interessant [2]. Die Bildung von Persulfidliganden in heterogenen Hydrodesulfurierungskatalysatoren auf MoS₂-Basis ist ebenfalls schon diskutiert worden [3].

Aus strukturchemischer Sicht sind RSS⁻-Liganden wegen ihrer Koordinationsvielfalt von Interesse, da sie nicht nur terminal (Koordinationsform A [4,5], Schema 1) oder side-on (B [3,6,7]) an einem Metallzentrum koordinieren, sondern auch zwei Metallzentren überbrücken können. In den die Koordinationsform C enthaltenden Komplexen ist jedoch nur einer dieser Liganden präsent [8–10].

Wir berichten nunmehr über einen allgemein anwendbaren Syntheseweg zur Darstellung von Verbindungen des Typs $\mathrm{Cp}_2^*\mathrm{Mo}_2(\mathrm{SSR})_2\mathrm{S}_2$ und über die spektroskopische und strukturelle Charakterisierung der RSS⁻-Liganden. Als Edukt wird ein Komplex der Zusammensetzung " $\mathrm{Cp}_2^*\mathrm{Mo}_2\mathrm{S}_4\mathrm{I}_2$ " verwendet, der bei der Oxidation von $\mathrm{Cp}_2^*\mathrm{Mo}_2(\mu,\eta^2-\mathrm{S}_2)(\mu-\mathrm{S})_2$ (1) mit I_2 entsteht (Gl. 1) [11] und trotz bislang ungeklärter Struktur für diese Umsetzungen geeignet ist.

$$Cp^*Mo \xrightarrow{S} Mo Cp^* + I_2 \longrightarrow "Cp_2^*Mo_2S_4I_2"$$
 (1)

Darstellung und Charakterisierung der Komplexe $Cp_2^*Mo_2(\mu, \eta^1\text{-SSR})_2(\mu\text{-S})_2$ $(Cp^* = \eta^5\text{-}C_5Me_5; R = Me, ^iPr, ^tBu, Ph)$ (2a-d)

Versetzt man die grüne Suspension von "Cp₂*Mo₂S₄I₂" in Acetonitril mit zwei Moläquivalenten des jeweiligen, in Methanol gelösten Natriumthiolats, so entsteht sofort eine orange Lösung. Unter NaI-Eliminierung (Gl. 2) bilden sich in nahezu quantitativen Ausbeuten die orangeroten Verbindungen **2a-d**, die durch FD-MS und Elementaranalysen charakterisiert wurden.

"Cp*₂Mo₂S₄I₂" + 2 RSNa
$$\longrightarrow$$
 Cp*₂Mo₂(μ , η ¹-SSR)₂(μ -S)₂ + 2 NaI (2)

(2a-d) R Me Pr Bu Ph
a b c d

In den Infrarotspektren (Tab. 1) sind nur bei **2d** charakteristische Schwingungsbanden des organischen Restes der η^1 -SSR-Brücke zu erkennen. Es handelt sich um die C-H- und Ringdeformationsschwingungen der Phenylreste bei 742 und 690

Tabelle 1

IR- und ¹H-NMR-Daten der Komplexe 2a-d

	IR (cm ⁻¹ , KBr)		¹ H-NMR ^a			
ν (S–S, Mo–S)		δ (C $H_3(R)$)		$\delta (CH_3(Cp^*))$	$\delta (C_6 H_5)$	
2a	464s, 418s, 403m, 360w	2a	1.90 (s, 6H)	2.36 (s, 30H)	_	
2b	468s, 425s, 405m, 388m	2b ^b	1.00 (d, 7 Hz, 12H)	2.36 (s, 30H)	~	
2c	467s, 421s, 400m, 375m	2c	1.09 (s, 18H)	2.36 (s, 30H)	_	
2d	480m, 440vs, 428sh, 405s	2d	_	2.21 (s, 30H)	7.31 (m, 10H)	

^a δ in ppm; Lösungsmittel CDCl₃/i-TMS. ^b S-CH(CH₃)₂ nicht aufgelöst.

cm⁻¹. Die charakteristischen Absorptionen des i-Propyl- bzw. des t-Butylrestes im Bereich um 1380 cm⁻¹ sind durch die Absorptionen der Methylsubstituenten der Cp*-Liganden überlagert. Sonstige C-H- bzw. C-C-Valenz- und Deformationsschwingungen des π-Liganden sind wenig informativ. Dagegen zeigen sich pro Komplex vier charakteristische Absorptionsbanden im Bereich unter 500 cm⁻¹, die Mo-S- bzw. S-S-Schwingungen zugeordnet werden. In Bandenlage und -charakteristik ähneln sich diese Absorptionen vor allem in den Alkyldisulfidokomplexen 2a-c sehr stark.

Die ¹H-NMR-Spektren belegen einen symmetrischen Molekülaufbau der Verbindungen 2a-d. Die Integration der Ligand- und Cp^* -Protonen spricht für die Gegenwart zweier η^1 -SSR-Brücken. Aus der Präsenz von jeweils nur einem Cp^* -Resonanzsignal pro Produkt kann auf einen stereochemisch einheitlichen Verlauf der Reaktion geschlossen werden. Lägen weitere Isomere in nennbaren Mengen vor, so würden sie sich durch verschiedene Methylgruppen-Resonanzen der Cp^* -Ringe zu erkennen geben [11].

Röntgenstrukturanalyse von $Cp_2^*Mo_2(\mu, \eta^1 - SSPh)_2(\mu - S)_2$ (2d)

An einem bei - 18°C aus CH₂Cl₂/CH₃CN gezogenen Einkristall von 2d wurde exemplarisch für die Komplexe 2a-d eine Röntgenstrukturanalyse (Tab. 2, 3) durchgeführt. Den Kern des Moleküls bildet ein Metallsulfidgerüst mit einem kristallographischen Inversionzentrum (Fig. 1). Die beiden Molybdänzentren werden durch jeweils zwei η^1 -SSPh- bzw. Monosulfidbrücken, die zueinander antiständig und in einer Ebene senkrecht zur Mo-Mo-Achse angeordnet sind, zusammengehalten. Das heißt, die in 1 ursprünglich vorhandene Disulfidbrücke ist nicht mehr intakt; auf welcher Stufe der Reaktionssequenz der Bruch der S-S-Bindung vonstatten ging, kann bislang nicht festgestellt werden. Der Abstand der beiden Molybdänzentren (2.600(2) Å) ist dem in anderen vierfachschwefelverbrückten Mo^{IV}-Komplexen sehr ähnlich, was auch für die übrigen Bindungslängen und -winkel des Metallsulfidgerüstes gilt (Tab. 4). Der Abstand Mo(1)-S(1) (η^1 -SSPh-Brücke) ist im Vergleich zu dem Abstand Mo(1)-S(3) (S-Brücke) um ca. 0.1 Å länger. Mit 2.139(3) Å ist der Abstand S(1)-S(2) relativ groß, vergleicht man ihn mit den entsprechenden S-S-Abständen in (CpCrNO)₂(SCMe₃)(SSCMe₃) (2.076(4) Å) [8] oder in $[Mo_2(NTol)_2(S_2P(OEt)_2)_2S(O_2CMe_3)(SSEt)]$ (2.068(2) Å) [9]. Er liegt jedoch in der gleichen Größenordnung wie in [Fe₂(CO)₆(S₂CMe₃)S]⁻ (2.114(3) **Ă**) [10].

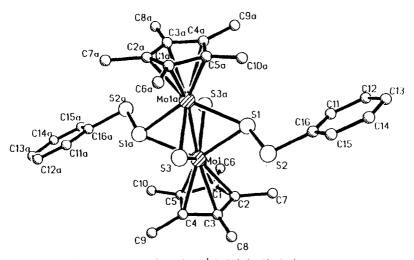


Fig. 1. Molekülstructur von $Cp_2^*Mo_2(\mu, \eta^1\text{-SSPh})_2(\mu\text{-S})_2$ (2d).

Experimenteller Teil

Sämtliche Arbeiten wurden unter Schutzgas (N₂) und unter Verwendung von trockenen, N₂-gesättigten Lösungsmitteln durchgeführt. Als Meßgeräte dienten für die Aufnahme der ¹H-NMR-Spektren ein Varian EM 360 L-Spektrometer und für die der Infrarotspektren ein Beckman Infrarot-Gitterspektrometer Modell 4240. Die Komplexe 1 und "Cp₂*Mo₂S₄I₂" wurden nach bereits beschriebenen Ver-

Tabelle 2 Atomkoordinaten und Temperaturfaktoren von $Cp_2^*Mo_2(\mu,\eta^1\text{-SSPh})(\mu\text{-S})_2$ (2d· CH_2Cl_2)

Atom	x	у	z	$U_{ m eq}$
Mo(1)	0.26664(5)	0.77031(5)	0.09801(7)	0.032(1)
S(1)	0.1825(1)	0.6477(1)	-0.0114(2)	0.039(2)
S(2)	0.2565(2)	0.5391(1)	0.0761(2)	0.056(2)
S(3)	0.3599(1)	0.6945(1)	0.0866(2)	0.040(1)
C(1)	0.2271(6)	0.8340(1)	0.2003(9)	0.059(7)
C(2)	0.2442(7)	0.7553(7)	0.2338(9)	0.057(8)
C(3)	0.3265(9)	0.7394(7)	0.2884(9)	0.068(9)
C(4)	0.3636(6)	0.8128(9)	0.2892(8)	0.056(7)
C(5)	0.3006(8)	0.8733(6)	0.2306(9)	0.058(9)
C(6)	0.1465(7)	0.8832(8)	0.145(1)	0.15(1)
C(7)	0.1844(8)	0.6945(8)	0.225(1)	0.17(2)
C(8)	0.3784(8)	0.6623(7)	0.3532(9)	0.16(1)
C(9)	0.4561(6)	0.8279(9)	0.3457(9)	0.17(1)
C(10)	0.3122(8)	0.9628(6)	0.219(1)	0.12(1)
C(11)	0.0966(7)	0.4706(6)	-0.0470(9)	0.074(9)
C(12)	0.0435(7)	0.4026(7)	~0.096(1)	0.08(1)
C(13)	0.0727(8)	0.3241(7)	-0.089(1)	0.08(1)
C(14)	0.1554(8)	0.3132(6)	-0.033(1)	0.08(1)
C(15)	0.2093(6)	0.3802(6)	0.0154(9)	0.060(8)
C(16)	0.1801(6)	0.4592(6)	0.0078(8)	0.045(7)

Tabelle 3
Ausgewählte Bindungslängen (Å) und -winkel (°) von 2d

Mo(1)-Mo(1a)	2.600(2)	Mo(1)-C(1)	2.350(16)
Mo(1)-S(1)	2.449(2)	Mo(1)-C(2)	2.329(17)
Mo(1)-S(1a)	2.477(4)	Mo(1)-C(3)	2.301(13)
Mo(1)-S(3)	2.359(3)	Mo(1)-C(4)	2.304(9)
Mo(1)-S(3a)	2.359(2)	Mo(1)-C(5)	2.316(12)
S(1)-S(2)	2.139(3)		
S(2)-C(16)	1.774(1)		
S(1)-Mo(1)-S(1a)	116.3(1)	Mo(1)-S(3)-Mo(1a)	66.9(1)
S(3)-Mo(1)-S(3a)	113.1(1)	S(1)-S(2)-C(16)	102.6(3)
Mo(1)-S(1)-Mo(1a)	63.7(1)		
S(2)-S(1)-Mo(1)	109.2(1)		

Tabelle 4
Vergleich relevanter Bindungsparameter verwandter Komplexe

Verbindung	M-M (Å)	M-S _{Brücke} (Å)	M-SR (Å)	M-S _{Brücke} -M (°)	Literatur
$\overline{\text{Cp}_{2}^{\star}\text{Mo}_{2}(\mu,\eta^{2}-S_{2})(\mu-S)_{2}(1)}$	2.599(2)	2.357(4)		66.8(1)	13
Cp ₂ 'Mo ₂ (SCH ₃) ₂ S ₂ ^b	2.582(1)	2.352(2)	2.478(2)	66.6(1)	12
$Cp_2^*Mo_2(SCH_3)_2S_2$	2.573(1)	2.350(2) 2.358(2)	2.482(2)	66.3(1)	11
$Cp_2^*Mo_2(S_2Ph)_2S_2$ (2)	2.600(2)	2.359(3)	2.449(2)	66.9(1)	а
Cp ₂ Mo ₂ (SCH ₂ CO ₂ Et) ₂ S ₂	2.590(1)	2.357(1) 2.352(1)	2.490(1) 2.474(1)	66.74(1)	15
Cp2Mo2(SCH3)4	2.603(2)		2.46(1)		14

^a Diese Arbeit. ^b Cp' = MeC_5H_4 .

fahren erhalten [11,13]. Ausbeuten und Analysenwerte der Komplexe 2a-d finden sich in Tabelle 5.

Allgemeine Vorschrift zur Darstellung von $Cp_2^*Mo_2(\mu, \eta^1\text{-SSR})_2(\mu\text{-S})_2$; $(R = Me, {}^iPr, {}^tBu, Ph)$ (2a-d)

Eine Suspension von 0.70 mmol " $Cp_2^*Mo_2S_4I_2$ " in ca. 30 ml CH_3CN wird bei Raumtemperatur mit 1.40 mmol des entsprechenden Natriumthiolats, gelöst in Methanol, versetzt. " $Cp_2^*Mo_2S_4I_2$ " reagiert sofort unter Orangefärbung der

Tabelle 5
Ausbeuten und Analysenwerte der Verbindungen 2a-d

	Masse (gef. (ber.)) ^a	Ausbeute (%)	Analyse (gef. (ber.) (%))		
			C	H	
2a	648.00 (648.77)	92	38.26 (38.59)	5.16 (5.30)	
2b	740.00 (740.87)	97	42.24 (42.15)	5.90 (5.99)	
2c	769.00 (768.93)	92	43.87 (43.74)	6.30 (6.29)	
2d	808.00 (808.90)	97	48.05 (47.51)	5.27 (4.98)	

^a Schwerpunkt des Systems; FD-MS aus Toluollösungen.

Lösung ab. Nach 30 min Rühren erhält man einen orangen Niederschlag, der abfiltriert wird. Nach Waschen mit CH_3CN wird der verbliebene Rückstand mit 20 ml Toluol extrahiert und an Al_2O_3 (Akt. II–III, Säule 22×3.5 cm) chromatographiert. Die sich jeweils entwickelnden orangeroten Zonen liefern nach Abziehen des Lösungsmittels die gewünschten Verbindungen in nahezu quantitativer Ausbeute. Die Komplexe lassen sich aus CH_2Cl_2/CH_3CN (4/1) umkristallisieren.

Röntgenographische Daten von Komplex 2d · CH₂Cl₂

Rotbrauner Kristall $(0.11\times0.22\times0.65~\text{mm}^3)$, monoklin C^62h-C2/c ; Zell-konstanten: a 20.46(4), b 16.16(2), c 14.73(2) Å, β 128.97(11)°; V 3786.48 ų, Z=4; empirische Absorptionskorrektur (psi-scan Messung: 4 Reflexe $10<2\theta<26^\circ$. Transmiss. Faktor (min./max.) 0.79/1.00), μ 1.13 mm⁻¹. F(000) 1816, $d(\text{röntg})=1.57~\text{g/cm}^3$; AED II der Fa. Stoe [16]. Mo- K_α -Strahlung, Graphit-Monochromator, im vermessenen Bereich 3473 mögliche Reflexe, $1847 \ge 2\sigma(I)$, unabhängige 1665 ($I>2.5\sigma(I)$). Die Struktur wurde gelöst mittels Patterson-, Fourier- und Differenzfouriersynthesen; die H-Atome wurden mit Hilfe des SHELXTL-Unterprogramms HFIX [17] fixiert; R=0.045, $R_{\rm w}=0.037$; Restelektronendichte (max./min.) $0.53/-0.80~\text{e}/\text{Å}^3$, shift/esd (mean/max.) -/0.04, GOOF=1.76.

Literatur

- 1 A. Shaver und S. Morris, Inorg. Chem., 30 (1991) 1926.
- 2 J.E. Hoots und T.B. Rauchfuss, Inorg. Chem., 22 (1983) 2806 und dort zitierte Literatur.
- 3 R. Prins, V.H.J. De Beer und G.A. Somorjai, Catal. Rev. Sci. Eng., 31 (1989) 1.
- 4 A. Shaver, J. Hartgerink, R.P. Cal, P. Bird und N. Ansari, Organometallics, 2 (1983) 938.
- 5 S.N. Bhattacharya, C.V. Senoff und F.S. Walker, Inorg. Chim. Acta, 44 (1980) L273.
- 6 S.V. Evans, P. Legzdins, S.J. Rettig, L. Sanchez und J. Trotter, Organometallics, 6 (1987) 7.
- 7 G.R. Clark und D.R. Russel, J. Organomet. Chem., 173 (1979) 377.
- 8 I.L. Eremenko, A.A. Pasynskii, V.T. Kalinnikov, Yu.T. Struchkov und G.G. Aleksandrov, Inorg. Chim. Acta, 52 (1981) 107.
- 9 M.E. Noble und D.C. Williams, Inorg. Chem., 27 (1988) 749.
- 10 X. Wu, K.S. Bose, E. Siun und B.A. Averill, Organometallics, 8 (1989) 251.
- 11 H. Brunner, W. Meier, J. Wachter, P. Weber, M.L. Ziegler, J.H. Enemark und C.G. Young, J. Organomet. Chem., 309 (1986) 313.
- 12 M. Rakowski DuBois, M.C. Van Derveer, D.L. DuBois, R.C. Haltiwanger und W.K. Miller, J. Am. Chem. Soc., 102 (1980) 7456.
- 13 H. Brunner, W. Meier, J. Wachter, E. Guggolz, T. Zahn und M.L. Ziegler, Organometallics, 1 (1982) 1107.
- 14 N.G. Connelly und L.F. Dahl, J. Am. Chem. Soc., 92 (1970) 7470.
- 15 W. Keim, Y. Zhu, E. Herdtweck und W.A. Herrmann, J. Mol. Catal., 58 (1990) 355.
- 16 STRUCSY, Structure System Program Package, Fa. Stoe, Darmstadt, FRG, 1984.
- 17 G.M. Sheldrick, SHELXTL-Program, Universität Göttingen, FRG, 1983.