Preliminary communication

Single and unsupported Ru-H-Ru bond: preparation and crystal structure of $\{Ru_2H(\mu-H)Cl(syn-Me_4[14]aneS_4)_2\}Cl$ $(Me_4[14]aneS_4 = 1,4,8,11$ -tetrathiacyclotetradecane) *

Toshikatsu Yoshida, Tomohiro Adachi, Toshihiro Tanaka

Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 591 (Japan)

and Fumitaka Goto

Industrial Research Division, Otsuka Pharmaceutical Co. Ltd., Tokushima 771-01 (Japan) (Received June 28, 1991)

Abstract

Treatment of cis-RuCl₂Me₄[14]aneS₄ with an excess of NaBH₄ in EtOH gave {Ru₂H(μ -H)-Cl(Me₄[14]aneS₄)₂)Cl (1) together with *trans*-RuH(Cl)(*syn*-Me₄[14]aneS₄) (2). Compound 1 represents a novel example of a single μ_2 -hydrido complex of crown thioether without any supporting bridged ligands or metal-metal bond. The molecular structure of 1 was elucidated by an X-ray diffraction study.

Most M-H-M three center two electron bonds (3c-2e) of transition metals so far reported are supported by additional bridging ligands and/or metal-metal bonds and single, unsupported μ_2 -hydrido complexes still remain a rarity. $[M_2(\mu-H)(CO)_{10}]^-$ (M = Cr, Mo, W) [1], $[W_2(\mu-H)(CO)_9(NO)]$ [2], $(\eta^5-C_5H_5)_2Nb(CO)(\mu-H)M(\eta^5-C_5H_5)(CO)_3$ (M = Nb, V) [3], and $\{(\eta^5-C_5H_5)_2WH(\mu-H)PtPh(PEt_3)_2\}^+$ [4] may be such complexes bearing no definite metal-metal bond. The compounds were characterized by X-ray and neutron diffraction studies. Here we present the preparation and crystal structure of $\{Ru_2H(\mu-H)Cl(Me_4[14]aneS_4\}_2Cl$ (1), which represents a novel example of a single μ_2 -hydrido crown thioether complex containing no supporting ligands or metal-metal bond.

A reaction of cis-RuCl₂Me₄[14]aneS₄ [5] with a large excess of NaBH₄ in EtOH at room temperature gave compound 1 as brown crystals together with *trans*-RuH(Cl)(*syn*-Me₄[14]aneS₄) (2) in 54 and 16% yield, respectively. The choice

Correspondence to: Dr. T. Yoshida, Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 591, Japan.

^{*} Dedicated to Professor Akio Yamamoto on his retirement from Tokyo Institute and in recognition of his contributions to organometallic chemistry.

of the reaction solvent is critical for the formation of 1 since a similar reaction carried out in MeOH afforded the mononuclear complex 2 selectively [6]. The reaction is also highly dependent on the ring size of crown thioethers. Thus, treatment of 15- and 16-membered crown thioether complexes cis-RuCl₂L (L = Me₆[15]aneS₄, Me₈[16]aneS₄) with a stoichiometric amount and a large excess of NaBH₄ in EtOH under similar conditions gave *trans*-RuH(Cl)L and *trans*-RuH(η^1 -BH₄)L as the sole product, respectively [6,7]. The ionic character of 1 was readily confirmed by the facile precipitation of {Ru₂H(μ -H)Cl(Me₄[14]aneS₄)₂}-BPh₄ on addition of NaBPh₄ into the MeOH solution.

The ¹H NMR spectrum of 1 measured in CD_2Cl_2 at room temperature shows two hydrido signals at δ -20.8 (d, J = 13.9 Hz) and -33.3 (d, J = 13.9 Hz). The chemical shift of the former is comparable with the terminal hydride (δ -23.1) of 2 [6], while the extensive shielding of the latter may be assigned to a bridging hydrido ligand (H_b) [8]. The observation of four Me singlets [δ 1.03 (3H), 1.04 (3H), 1.07 (3H), and 1.10 (3H)] and four CH₂ doublets [δ 1.91 (2H, J = 9.9 Hz), 2.44 (2H, J = 9.9 Hz), 3.09 (2H, J = 10.9 Hz), and 3.78 (2H, J = 10.9 Hz) of the $SCH_2CMe_2CH_2S$ moieties along with three multiplets [$\delta \sim 2.3$ (2H), ~ 2.8 (2H), and ~ 3.0 (4H)] owing to the CH₂ protons of SCH₂CH₂S groups indicates the presence of two inequivalent $Me_4[14]aneS_4$ ligands both adopting a syn conformation. The IR spectrum shows a single and very strong $\nu(Ru-H_t)$ band $(H_t =$ terminal hydride) at 1820 cm⁻¹, but a ν (Ru-H_b-Ru) band was not detected in the expected region. The lower $\nu(Ru-H_{,})$ frequency compared with that (1958 cm⁻¹) of 2 [6] suggests that the hydride of strong trans influence rather than the chloro ligand is located as a bridging ligand at the opposite axial site of the terminal hydride. Consistent with this, two hydrido ligands, mutually in trans, couple strongly (see above). The single crystal X-ray diffraction of $1 [9^*]$ unequivocally confirmed the structural features thus proposed on the basis of the spectral data.

The molecular structure of 1 is shown in Fig. 1 together with the selected bond distances and angles. The molecule possesses C_2 symmetry with a face to face disposition of the RuH(*syn*-Me₄[14]aneS₄) and RuCl(*syn*-Me₄[14]aneS₄) moieties. Both the H_t and Cl ligands in these moieties are located at the congested axial site surrounded by ring C atoms of *syn*-Me₄[14]aneS₄. These two fragments are connected together by the H_b ligand, thus the geometry about the two Ru atoms is essentially octahedral. The Cl, Ru1, and Ru2 atoms are exactly colinear. The least-squares plane defined by the four S atoms [±0.019(5) Å] of the RuCl(*syn*-Me₄[14]aneS₄) fragment is also strictly parallel with the corresponding plane [±0.040(4) Å)] of the other moiety. The long separation between the two Ru

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 1. ORTEP drawing of the cation $\{Ru_2H(\mu-H)C|(Me_4[14]aneS_4)_2\}^+$ in 1 with thermal ellipsoids at the 50% probability level. The selected molecular dimensions are: Ru1-S1(1) 2.292(3), Ru1-S1(4) 2.293(3), Ru2-S2(1) 2.299(3), Ru2-S2(4) 2.299(3) Å; S2(1)-Ru2-H₁ 85.9(1), S2(4)-Ru2-H₁ 87.8(1), S1(1)-Ru1-H_b 89.4(1), S1(4)-Ru1-H_b 88.4(1), S2(1)-Ru2-H_b 94.1(1), S2(4)-Ru2-H_b 92.2(1), Cl-Ru1-S1(1) 90.6(1), Cl-Ru1-S1(4) 91.6(1), S1(1)-Ru1-S1(4) 87.7(1), S1(1)-Ru1-S1(4') 92.3(1), S1(1)-Ru1-S1(1') 178.8(2), S1(4)-Ru1-S1(4') 176.9(2), S2(1)-Ru2-S2(4') 87.4(1), S2(1)-Ru2-S2(4') 92.3(1), S2(1)-Ru2-S2(1') 171.7(1), S2(4)-Ru2-S2(4') 175.7(2)°.

atoms [3.410(2) Å] clearly indicates that the Ru-Ru bonding interaction is negligibly small if any. The Ru1-H_b, Ru2-H_b, and Ru2-H_t distances are 1.82(15), 1.60(15), and 1.69(13) Å, respectively. The average Ru1-S [2.292(3) Å] and Ru2-S distances [2.299(3) Å] are very similar to the corresponding mean separation found in 2 (2.297(2) Å) [6]. Th equatorial S atoms of the two moieties are mutually staggered with the torsion angle S1(1)-Ru1-Ru2-S2(4) of 54.3(1)°. This configuration, where the free lone pair orbitals of the S atoms in two equatorial planes are interlocked, seems to be favorable in reducing the electrostatic repulsions between the lone pair electrons.

The RuH(*syn*-Me₄[14]aneS₄) and RuCl(*syn*-Me₄[14]aneS₄) fragments differ in their direction of Ru atom deviation from the 4S plane, the Ru1 atom by 0.043(2) Å toward the Cl atom surrounded by the ring C atoms, while the Ru2 atom by 0.126(2) Å toward the H_b ligand located at the uncongested axial site. This probably arises from the difference in steric demands of the axial H_t and Cl ligands. The molecular structure of 2 suggested that the cavity surrounded by the ring C atoms in *syn*-Me₄[14]aneS₄ has the volume just to accommodate a hydrido ligand [6]. Therefore, to admit the more bulky Cl ligand into the congested axial side, the room should be dilated by bending down the S-C vectors toward the equatorial plane. Such a deformation of the *syn*-Me₄[14]aneS₄ ligand may be accompanied by displacement of the Ru atom from the 4S plane toward the congested side along the C_2 axis, while an upright deformation of the C-S vectors could induce the deviation toward the opposite and uncongested axial side.

Indeed, the dihedral angle [47.4(6)°] between the 4S plane and the least-squares plane defined by the S1(1), S1(4), C1(5), and C1(7) atoms of the RuSCH₂CMe₂CH₂S ring is more acute than the corresponding angle [53.9(4)°] of the RuH(*syn*-Me₄[14]aneS₄) moiety. Despite the dilation of the cavity, the nonbonded distances between the Cl and axial H atoms bonded at the C1(5) and C1(7) [2.61(1) and 2.73(1) Å, respectively] is still significantly shorter than the sum of corresponding van der Waals radii. To reduce the stereochemical repulsions between these atoms as much as possible, the Ru1–Cl bond [2.589(4) Å] is considerably elongated compared with those of 2 (2.559(2) Å) [6] and *trans*-RuH(Cl)(diop)₂ (2.549(1) Å) [11]. By contrast, the H₁ ligand in the RuH(*syn*-Me₄[14]aneS₄) moiety shows van der Waals contacts with the axial H atoms of the ring C2(5) and C2(7) atoms (2.51(3) and 2.45(4) Å, respectively).

The single and unsupported M-H-M bond of transition metals is known to be inherently bent [1,12,13] and this is also the case observed for a Cr-H-Cr linkage [158.9(1)°] in $[Cr_2(\mu-H)(CO)_{10}]^-$ possessing a D_{4h} non-hydrido framework $[Cr_2(CO)_{10}]$ [14]. Therefore, the C_2 geometry of 1 does not warrant a linearity of the Ru-H-Ru bond. The poor quality of the bond parameters of the H_b ligand in 1 [15*] and the limitations of the X-ray diffraction method to determine the accurate positions of hydrido ligand [13] prevent delineation of the nature of the Ru-H-Ru bond. However, it is worth recalling here that the H_b ligand is completely surrounded by the free lone pair orbitals of eight S atoms. Should the Ru-H-Ru linkage bend, a severe electrostatic repulsion would appear between the lone pair and Ru-H_b bonding electrons. We are now carrying out extended Hückel MO calculations to estimate the effect of these lone pair orbitals on the geometry of the Ru-H-Ru 3c-2e bond. Finally it is to be noted that the single and unsupported Ru-H-Ru bond in 1 is stable even in solution and there exists no equilibrium between 1 and 2.

Acknowledgment. We are grateful to Takasago Research Institute, Inc. for support of this research.

References and notes

- 1 D.W. Hart, R. Bau and T.F. Koetzle, Organometallics, 4 (1985) 1590 and references cited therein.
- 2 J.P. Olsen, T.F. Koetzle, S.W. Kirtley, M. Andrew, D.L. Tipton and R. Bau, J. Am. Chem. Soc., 96 (1974) 6621.
- 3 W.A. Herrmann, H. Biersack, M.L. Ziegler and P. Wülknitz, Angew. Chem., Int. Ed. Engl., 20 (1981) 388.
- 4 A. Albinati, R. Naegeli, A. Tongni and L.M. Vananzi, Organometallics, 2 (1983) 926.
- 5 T. Ueda, T.H. Yamanaka, T. Adachi and T. Yoshida, Chem. Lett., (1985) 535.
- 6 T. Yoshida, T. Adachi, T. Ueda, T. Tanaka and F. Goto, J. Chem. Soc., Chem. Commun., (1990) 342.
- 7 T. Yoshida, T. Adachi, H. Akao and T. Tanaka, to be published.
- 8 D.S. Moore and S.D. Robinson, Chem. Soc. Rev., 12 (1983) 415.
- 9 Crystal data of 1: $C_{28}H_{58}Cl_2S_8Ru_2 \cdot 1/2(CH_3)_2CO \cdot H_2O$ (from acetone), FW = 971.2, trigonal, space group R_3c (No. 167), a = 18.615(6), c = 64.937(13) Å, V = 19487(11) Å³, Z = 18, $D_c = 1.49$ g cm⁻³, $\mu(Mo-K_{\alpha}) = 17.3$ cm⁻¹. 5204 unique reflections ($5 \le 2\theta \le 55^{\circ}$) were collected on a Rigaku AFC-6 diffractometer using graphite monochromated Mo- K_{α} radiation; 1975 reflections with $|F_o| \ge 6\sigma(F_o)$ were used in the structure determination by the Patterson method and by block-diagonal least-squares refinements for 225 parameters to converge to $R(R_w) = 0.055$ (0.063), GOF = 1.42. Refinement was carried out with anisotropic thermal parameters for non-hydrogen atoms and

C16

with fixed thermal and positional parameters $(B_{iso} = 4.0 \text{ Å}^2)$ for non-hydrido hydrogen atoms. The H_t and H_b atoms were found in the difference Fourier maps and were refined isotropically by the low-angle method $(\sin \theta / \lambda < 0.40 \text{ Å}^{-1})$ [10]. The difference Fourier map using all reflection data failed to reveal the positions of the hydrido ligands. Atomic coordinates, bond lengths and angles, the thermal parameters, and $F_o - F_c$ tables are available from the authors.

- 10 S.L. Palca and J.A. Ibers, Acta Crystallogr., 18 (1965) 511; S.W. Kirtley, J.P. Olsen and R. Bau, J. Am. Chem. Soc., 95 (1973) 4532.
- 11 R.G. Ball and J. Trotter, Inorg. Chem., 20 (1981) 261.
- 12 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edition, Wiley, New York, 1988.
- 13 R. Bau, R.G. Teller, S.W. Kirtley and T.F. Koetzle, Acc. Chem. Res., 12 (1979) 176.
- 14 J. Roziere, J.M. Williams, R.P. Stewart, Jr., J.L. Petersen and L.F. Dahl, J. Am. Chem. Soc., 99 (1977) 4497.
- 15 The root mean square amplitude of thermal displacement of the H_b atom normal to the Ru \cdots Ru vector is 0.2(3) Å.