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Abstract 

Treatment of cis-RuCI,Me,[14]aneS4 with an excess of NaBH, in EtOH gave (Ru,H(cL-H)- 
CI(Me,[14]aneS,),)Cl (1) together with rranr-RuH(CIXsyn-Me,[l4laneS,) (2). Compound 1 represents 
a novel example of a single pz-hydrido complex of crown thioether without any supporting bridged 
ligands or metal-metal bond. The molecular structure of 1 was elucidated by an X-ray diffraction study. 

Most M-H-M three center two electron bonds (3c-2e) of transition metals so 
far reported are supported by additional bridging ligands and/or metal-metal 
bonds and single, unsupported p2-hydrido complexes still remain a rarity. [MZ& 
HXCO),,l- (M = Cr, MO, W) Ill, [W&p-HXCO&JNO)I 121, (175-C5H5)2Nb(COXp- 
H)M(T~-C,H,XCO), (M = Nb, VI [3l, and {(r]5-C5H5)2WH(p-H)PtPh(PEt3)2)+ 
[4] may be such complexes bearing no definite metal-metal bond. The compounds 
were characterized by X-ray and neutron diffraction studies. Here we present the 
preparation and crystal structure of {Ru,H&-H)CI(Me,[l4laneS,),C1 (11, which 
represents a novel example of a single pu,-hydrido crown thioether complex 
containing no supporting ligands or metal-metal bond. 

A reaction of cis-RuCl,Me,[l4]aneS, [5] with a large excess of NaBH, in 
EtOH at room temperature gave compound 1 as brown crystals together with 
truns-RuH(ClXsyn-Me,[14]aneS,) (2) in 54 and 16% yield, respectively. The choice 
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of the reaction solvent is critical for the formation of 1 since a similar reaction 
carried out in MeOH afforded the mononuclear complex 2 selectively [61. The 
reaction is also highly dependent on the ring size of crown thioethers. Thus, 
treatment of 15 and 16-membered crown thioether complexes ck-RuC1,L (L = 
Me,[lS]aneS,, Me,[l6]aneS,) with a stoichiometric amount and a large excess of 
NaBH, in EtOH under similar conditions gave trans-RuH(Cl)L and truns- 
RuH(nl-BH,)L as the sole product, respectively [6,7]. The ionic character of 1 was 
readily confirmed by the facile precipitation of {Ru,H(p-H)Cl(Me,[l4]aneS,),J- 
BPh, on addition of NaBPh, into the MeOH solution. 

cis-RuCI2My[l4]aneS4 
excess NaBH4 

ElOH 

2 

The ‘H NMR spectrum of 1 measured in CD&l, at room temperature shows 
two hydrido signals at 6 -20.8 (d, J = 13.9 Hz) and -33.3 (d, J = 13.9 Hz). The 
chemical shift of the former is comparable with the terminal hydride (6 -23.1) of 
2 [6], while the extensive shielding of the latter may be assigned to a bridging 
hydrido ligand (H,) [8]. The observation of four Me singlets [6 1.03 (3H), 1.04 
(3H), 1.07 (3H), and 1.10 (3H)l and four CH, doublets [6 1.91 (2H, J = 9.9 Hz), 
2.44 (2H, J= 9.9 Hz), 3.09 (2H, J= 10.9 Hz), and 3.78 (2H, J= 10.9 Hz) of the 
SCH,CMe,CH,S moieties along with three multiplets [ 6 - 2.3 (2H), N 2.8 (2HI, 
and _ 3.0 (4H)] owing to the CH, protons of SCH,CH,S groups indicates the 
presence of two inequivalent Me,[l4laneS, ligands both adopting a syn conforma- 
tion. The IR spectrum shows a single and very strong u(Ru-H,) band (H, = 
terminal hydride) at 1820 cm-‘, but a v(Ru-H,-Ru) band was not detected in the 
expected region. The lower v(Ru-H,) frequency compared with that (1958 cm-‘) 
of 2 [6] suggests that the hydride of strong truns influence rather than the chloro 
ligand is located as a bridging ligand at the opposite axial site of the terminal 
hydride. Consistent with this, two hydrido ligands, mutually in truns, couple 
strongly (see above). The single crystal X-ray diffraction of 1 [9*3 unequivocally 
confirmed the structural features thus proposed on the basis of the spectral data. 

The molecular structure of 1 is shown in Fig. 1 together with the selected bond 
distances and angles. The molecule possesses C, symmetry with a face to face 
disposition of the RuH(syn-Me,[l4]aneS,) and RuCl(syn-Me,[14]aneS,) moieties. 
Both the H, and Cl ligands in these moieties are located at the congested axial site 
surrounded by ring C atoms of syn-Me,[l4]aneS,. These two fragments are 
connected together by the H, ligand, thus the geometry about the two Ru atoms is 
essentially octahedral. The Cl, Rul, and Ru2 atoms are e%actly colinear. The 
least-squares plane defined by the four S atoms [ $-0.019(5) A] of the RuCl(syn- 
Me,[l4]aneS 1 fragment is also strictly parallel with the corresponding plane 
[+0.040(4) &] of the other moiety. The long separation between the two Ru 
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Fig. 1. ORTEP drawing of the cation (Ru,H(CL-H)CI(Me,[l4]aneS4)2)’ in 1 with thermal ellipsoids at 
the 50% probability level. The selected molecular dimensions are: Rul-Sl(1) 2.292(3), Rul-Sl(4) 
2.293(3), Ru2-S2(1) 2.299(3), Ru2-S2(4) 2.299(3) A; S2WRu2-H, 85.9(l), S2(4)-Ru2-H, 87.8(l), 
Sl(l)-Rul-Hb 89.4(l), S1(4)-Rul-H, 88.4(l), S2(1)-Ru2-H, 94.101, S2(4)-Ru2-H, 92.2(l), CI- 
Rul-SW 90.6(l), Cl-Rul-U(4) 91.6(l), SNl)-Rul-Sl(4) 87.7(l), SlWRul-Sl(4’) 92.3(l), Sl(l)- 
Rul-Sl(1’) 178.8(2), S1(4)-Rul-Sl(4’) 176.X2), S2(1)-Ru2-S2(4) 87.4(l), S2(1)-Ru2-S2(4’) 92.3(l), 
S2(1)-Ru2-S20’) 171.701, S2(4)-Ru2-S2(4’) 175.7(2)“. 

atoms [3.410(2) Al clearly indicates that the Ru-Ru bonding interaction is negligi- 
bly small if any. The Rul-H,, Ru2-H,, and Ru2-H, distances are 1.82(15), 
1.60(B), and 1.69(13) A, respectively. The average Rul-S [2.292(3) Al and Ru2-S 
distances [2.299(3) A] are very similar to the corresponding mean separation found 
in 2 (2.297(2) A> [6]. Th equatorial S atoms of the two moieties are mutually 
staggered with the torsion angle Sl(l)-Rul-Ru2-S2(4) of 54.3(l)“. This configura- 
tion, where the free lone pair orbitals of the S atoms in two equatorial planes are 
interlocked, seems to be favorable in reducing the electrostatic repulsions between 
the lone pair electrons. 

The RuH(syn_Me,[14]aneS,) and RuCl(syn-Me,[l4]aneS,) fragments differ in 
their direction of Ru atom deviation from the 4S plane, the Rul atom by 0.043(2) 
A toward the Cl atom surrounded by the ring C atoms, while the Ru2 atom by 
0.126(2) A toward the H, ligand located at the uncongested axial site. This 
probably arises from the difference in steric demands of the axial H, and Cl 
ligands. The molecular structure of 2 suggested that the cavity surrounded by the 
ring C atoms in syn-Me,[l4]aneS, has the volume just to accommodate a hydrido 
ligand [6]. Therefore, to admit the more bulky Cl ligand into the congested axial 
side, the room should be dilated by bending down the S-C vectors toward the 
equatorial plane. Such a deformation of the syn-Me,[l4]aneS, ligand may be 
accompanied by displacement of the Ru atom from the 4S plane toward the 
congested side along the C, axis, while an upright deformation of the C-S vectors 
could induce the deviation toward the opposite and uncongested axial side. 
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Indeed, the dihedral angle [47.4(6)“] between the 4s plane and the least-squares 
plane defined by the Sl(l), S1(4), C1(5), and Cl(7) atoms of the 
RuSCH,CMe,CH,S ring is more acute than the corresponding angle [53.9(4)“] of 
the RuH(syn_Me,[l4]aneS,) moiety. Despite the dilation of the cavity, the non- 
bonded distances between the Cl and axial H atoms bonded at the Cl(S) and Cl(7) 
[2.61(l) and 2.73(l) A, respectively] is still significantly shorter than the sum of 
corresponding van der Waals radii. To reduce the stereochemical repul$ons 
between these atoms as much as possible, the Rul-Cl bon! [2.589(4) Al is 
considerably elongated compared with those of 2 (2.559(2) A) [6] and truns- 
RuH(ClXdiop), (2.549(l) A) [ll]. By contrast, the H, ligand in the RuH(syn- 
Me,[l4]aneS,) moiety shows van der Waals conttcts with the axial H atoms of the 
ring C2(5) and C2(7) atoms (2.51(3) and 2.45(4) A, respectively). 

The single and unsupported M-H-M bond of transition metals is known to be 
inherently bent [1,12,13] and this is also the case observed for a Cr-H-Cr linkage 
[158.9(1>0] in [Cr,(p-HXCO),,]- possessing a D4,, non-hydrido framework 
[Cr,(CO>,,] [14]. Therefore, the C, geometry of 1 does not warrant a linearity of 
the Ru-H-Ru bond. The poor quality of the bond parameters of the H, ligand in 
1 [15*] and the limitations of the X-ray diffraction method to determine the 
accurate positions of hydrido ligand [13] prevent delineation of the nature of the 
Ru-H-Ru bond. However, it is worth recalling here that the H, ligand is 
completely surrounded by the free lone pair orbitals of eight S atoms. Should the 
Ru-H-Ru linkage bend, a severe electrostatic repulsion would appear between 
the lone pair and Ru-H, bonding electrons. We are now carrying out extended 
Hiickel MO calculations to estimate the effect of these lone pair orbitals on the 
geometry of the Ru-H-Ru 3c-2e bond. Finally it is to be noted that the single 
and unsupported Ru-H-Ru bond in 1 is stable even in solution and there exists 
no equilibrium between 1 and 2. 
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