• Substitution of phosphine for CO ligand in $HW_2(CO)_9(NO)$. The structures of $HW_2(CO)_8(NO)(\eta^1-(\eta^5-C_5H_4PPh_2)_2Fe)$, $HW_2(CO)_7(NO)(Ph_2PH)_2$, $HW_2(CO)_7(NO)(\eta^2-Ph_2PCH_2PPh_2)$, and $[HW_2(CO)_8(NO)]_2(\mu-Ph_2PCH_2CH_2PPh_2)$ (J. Organomet. Chem., 388 (1990) 151–167)

Jiann T. Lin, Shiow Y. Wang, Ping S. Huang, Yui M. Hsiao, Yuh S. Wen and Shiow K. Yeh

The last two lines of page 161 and the first line of page 162 should be corrected as follows:

 $HW_2(CO)_9(NO)$ (Fig. 6), the phosphorus atoms prefer the exo positions 8 (in complexes 4, 5, 7, 9, and $HW_2(CO)_8(NO)(P(OCH_3))$ [66]) and/or 9 (in complexes 5 and 7) to the positions 6 and 7. Such a substitution is likely to minimize steric

On page 165, Table 4, the ¹H NMR data for complex 6 (2nd line) should be corrected as follows:

W-H (-9.27, d, 1 H, ${}^{2}J(P-H) = 11.4$,

• Spectroelectrochemistry of aromatic ligands and their derivatives. III. Binuclear transition metal complexes of Cu¹, Mo⁰, and Re^I with 2,2'-bipyrimidine (J. Organomet. Chem., 411 (1991) 207-213)

Paul S. Braterman, Jae-Inh Song, Stephan Kohlmann, Conny Vogler and Wolfgang Kaim

Table 1 that appears on p. 209 should be replaced by the following:

Table 1
Reduction potentials of 2,2'-bipyrimidine and its dinuclear complexes in DMF ^a

Compounds	1st reduction	2nd reduction	Difference	
bpym ^b	-2.102(0.063) c	-2.619(irr) ^d	> 0.51	
I	-0.997(0.064)	-1.641(0.079)	0.644	
II	-0.680(0.072)	-1.355(0.092) e	0.675	
III ^f	-1.090(0.064)	-1.730(0.079)	0.640	

^a Data by cyclic voltammetry (50–200 mV s⁻¹, PAR 173/175; iR compensation), V vs. ferrocene/ferrocenium⁺ in stated solvent at 25°C. Measurements taken vs. Ag/0.01 M AgNO₃–0.09 M n-tetrabutylammonium tetrafluoroborate (TBABF₄) in stated solvent, but referred to ferrocene/ferrocenium⁺/0.1 M TBABF₄ in solvent/cell combination as used. ^b After ref. 12. ^c $E_{\rm pa} - E_{\rm pc}$ (V) in parentheses. ^d Denotes a chemically irreversible reduction process (cathodic peak potentials given at 200 mV s⁻¹ scan rate). ^e Incompletely chemically reversible, but anodic return wave detected. ^f With 0.01 M triphenylphosphine.