JOM 23240

Über gemischte Gruppe 14-Gruppe 14-Bindungen

VI *. Hexa-o-tolylethan-Analoga o-Tol₆Sn₂, o-Tol₆PbSn und o-Tol₆Pb₂: ein Vergleich von Bindungsstärke und Polarität in der Reihung Sn-Sn, Pb-Sn, Pb-Pb

Claudia Schneider-Koglin**, Kerstin Behrends und Martin Dräger

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim-Becher-Weg 24, W-6500 Mainz (Deutschland)

(Eingegangen den 8. September 1992)

Abstract

The lead-tin compounds $o\text{-}Tol_6\text{PbSn}$, $o\text{-}Tol_3\text{PbSnPh}_3$ and $\text{Mes}_3\text{PbSnPh}_3$ have been synthesized from Li and halide precursors in THF/ether at low temperatures. The crystal structures of the S_4 symmetric $o\text{-}Tol_4\text{Pb}$ and of the three isomorphous title compounds have been determined (d(Sn-Sn) 2.883 (1), d (Pb-Sn) 2.845 (2), d (Pb-Pb) 2.895 (2) Å). The long Sn-Sn distance is in accordance with the Raman data for the pairs of $p\text{-}Tol_6/o\text{-}Tol_6$ substituents ($\nu(\text{Sn-Sn})$ 131/123, $\nu(\text{Pb-Sn})$ 114/114, $\nu(\text{Pb-Pb})$ 105/103 cm⁻¹). The sequence of the ¹¹⁹Sn and ²⁰⁷Pb chemical shifts shows clearly a polarity Pb^{δ}-Sn^{δ +} for all lead-tin compounds investigated. The ¹J (¹¹⁹Sn-²⁰⁷Pb) and ¹J(¹¹⁹Sn-¹¹⁹Sn) couplings of identically substituted compounds depend upon another in a nearly linear manner.

Zusammenfassung

Die Blei-Zinn-Verbindungen o-Tol₆PbSn, o-Tol₃PbSnPh₃ und Mes₃PbSnPh₃ wurden aus Li- und Halogenid-Vorstufen in THF/Ether bei tiefer Temperatur erhalten. Die Kristallstrukturen des S₄-symmetrischen o-Tol₄Pb und der drei isomorphen Titelverbindungen wurden bestimmt (d(Sn-Sn) 2.883 (1), d (Pb-Sn) 2.845 (2), d (Pb-Pb) 2.895 (2) Å). Der lange Sn-Sn-Abstand steht in Übereinstimmung mit den Raman-Daten für die Substituentenpaare p-Tol₆/o-Tol₆ (v(Sn-Sn) 131/123, v(Pb-Sn) 114/114, v(Pb-Pb) 105/103 cm⁻¹). Die Abfolge der ¹¹⁹Sn und ²⁰⁷Pb chemischen Verschiebungen spricht deutlich für eine Polarität Pb^δ-Sn^{δ+} in allen untersuchten Blei-Zinn-Verbindungen. Die ¹J (¹¹⁹Sn-²⁰⁷Pb) und ¹J (¹¹⁹Sn-¹¹⁹Sn) Kopplungskonstanten von gleich substituierten Verbindungen hängen nahezu linear voneinander ab.

1. Einleitung

Während ¹J-NMR-Kopplungen zwischen ¹¹⁹Sn-Atomen bereits eingehend untersucht wurden [2], sind bislang nur wenige ¹J (¹¹⁹Sn-²⁰⁷Pb)-Kopplungskonstanten bekannt [3-6]. Durch Vergleich von gleich substituierten Ethan-Analoga R₆Sn₂ und R₆PbSn kann ein Zusammenhang zwischen beiden Kopplungskon-

stanten gefunden werden. Die Strukturanalyse der Verbindungen gibt die Bindungsabstände d (Sn-Sn), d (Pb-Sn) und d (Pb-Pb). Ferner konnten asymmetrisch substituierte Pb-Sn-Verbindungen synthetisiert werden. Ein Vergleich der Ethan- mit den Methan-Analoga liefert weitere Erkenntnisse über die Bindungsverhältnisse in Verbindungen der schweren Elemente der Gruppe 14.

2. Synthesen

Nach einer modifizierten Vorschrift von Krause [7] entstehen Monostannane durch Umsetzung des Grig-

Correspondence to: Prof. Dr. M. Dräger.

^{*} V. Mitteilung, siehe Lit. 1.

^{**} Mit Teilen der geplanten Dissertation von C. Schneider-Koglin.

nard-Reagenz mit SnCl₄ in THF in sehr guten Ausbeuten. Das Monoplumban o-Tol₄Pb läßt sich nach Austin [8] durch Kochen von o-Tol₆Pb₂ in Xylol erhalten. o-Tol₆Pb₂ wird aus PbCl₂ und Grignard-Reagenz in THF nach Willemsens [9] dargestellt.

Wurtz-analoge Kopplung von R_3MLi (M = Sn, Pb) mit R_3SnI [3] führt zu symmetrisch substituierten homo- und heteronuklearen Verbindungen R_6Sn_2 und R_6PbSn (Gl. (1)).

$$R_{3}MLi + ISnR_{3} \xrightarrow{THF/Et_{2}O} R_{6}MSn + LiI$$

$$(M = Pb, Sn)$$
(1)

Die Kopplung von R₃PbLi mit Ph₃SnCl liefert analog asymmetrisch substituierte PbSn-Verbindungen.

3. Röntgenstrukturanalysen

3.1. o-Tol₄Pb

Isomorph zu $o\text{-Tol}_4\mathrm{Sn}$ [10] kristallisiert Tetra-o-tolylplumban in der Raumgruppe $P\bar{4}2_1c$ (Nr. 114). Tabelle 1 enthält Lage- und Temperaturparameter, Abb. 1 zeigt das S_4 -symmetrische Molekül mit Blick auf die S_4 -Achse.

In Tabelle 2 sind die Bindungsgeometrien von o-Tol₄Pb und o-Tol₄Sn einander gegenübergestellt. Die Substitution der Methyl-Gruppe am Phenylring bedingt eine Verlängerung der Metall-Kohlenstoff-Bindung in der Reihung Phenyl-p-Tolyl-o-Tolyl. Bezüglich der Abfolge der Bindungswinkel um Pb und Sn, d.h. Stauchung des Substituenten-Tetraeders entlang der S₄-Achse und Verdrillung der aromatischen Gruppen liegen o-Tol₄Pb und o-Tol₄Sn zwischen den Verbindungen Ph₄M und p-Tol₄M.

3.2. o- Tol_6Sn_2 , o- Tol_6PbSn und o- Tol_6Pb_2 .

Alle drei Verbindungen kristallisieren isomorph in der Raumgruppe $P\bar{1}$ (Nr. 2), obwohl die Kristalle aus verschiedenen Lösungsmitteln (Toluol für o-Tol₆Pb₂

TABELLE 1. Atomlagen und Temperaturfaktoren von o-Tol₄Pb — $P\overline{4}2_1c$

Gruppe	Atom	x	у	z	$U_{ m eq}^{-{ m a}}$
	Pb	0.00000	0.00000	0.00000	0.0519(2)
o-Tol	C (1)	0.4686(6)	0.3492(6)	0.3480(10)	0.054(4)
	C(2)	0.3875(8)	0.3436(9)	0.2244(13)	0.068(5)
	C(3)	0.3700(8)	0.2411(9)	0.1420(13)	0.079(7)
	C(4)	0.4331(8)	0.1523(8)	0.1828(13)	0.079(6)
	C(5)	0.5147(8)	0.1576(7)	0.2995(10)	0.077(6)
	C(6)	0.5329(7)	0.2570(7)	0.3837(11)	0.065(5)
	C(7)	0.3237(9)	0.4433(10)	0.1717(12)	0.095(8)

^a $U_{eq} = 1/3$ der Spur des orthogonalen U_{ij} -Tensors.

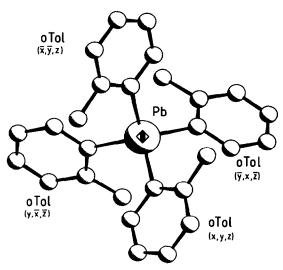


Abb. 1. Gefundenes o-Tol₄Pb-Moleküle mit Blick auf die S₄-Achse und dadurch erzeugten Punktlagen an den vier äquivalenten o-Tol-Gruppen.

und 1,1,2,2-Tetrachlorethan für o-Tol₆Sn₂ und o-Tol₆PbSn) erhalten wurden. Tabelle 3 enthält die Parameter für die beiden homonuklearen Substanzen, die Parameter des o-Tol₆PbSn sind in Tabelle 4 wiedergegeben. Abbildung 2 zeigt das o-Tol₆PbSn-Molekül mit einem "Pseudo"-Inversionszentrum in der Mitte der Bindung.

Die Bindungsgeometrien von o-Tol₆Sn₂, o-Tol₆Pb-Sn und o-Tol₆Pb₂ sind in Tabelle 5 zusammengefasst.

Der o-Tolyl-Substituent bewirkt eine Verlängerung der Metall-Metall- und der Metall-Kohlenstoff-Bindung gegenüber Phenyl- und p-Tolyl-Substitution. Erstaunlich ist der lange Sn-Sn-Abstand von 2.88 Å im o-Tol₆Sn₂. Zur Verifizierung haben wir zwei Kristalle des o-Tol₆Sn₂ vermessen (vgl. Experimentelles): beide Strukturanalysen bringen innerhalb der Standard-

TABELLE 2. Bindungsgeometrien von o-Tol₄Pb und o-Tol₄Sn [10]

	o-Tol ₄ Pb	o-Tol ₄ Sn
Bindungslängen (Å)		
M-C(1)	2.229(8)	2.152(5)
C-C _{Ring}	1.390	1.381
C (2)-C _{Me}	1.500(2)	1.489(9)
Bindungswinkel (°)		
$C(1)-M-C(1)(\bar{x}, \bar{y}, z)$	114.2(4)	112.6(3)
$C(1)-M-C(1)(y, \bar{x}, \bar{z})$	107.1(2)	107.9(1)
C-C-C	120.0	120.0
Verdrillung einer o-Tol-Gruppe (°)	a	
$C(1)-C(6)-M-C(1)(\bar{x}, \bar{y}, z)$	-53.6(4)	-52.9
$C(1)-C(6)-M-C(1)(y, \bar{x}, \bar{z})$	8.0(4)	8.3
$C(1)-C(6)-M-C(1)(\bar{y}, x, \bar{z})$	64.9(4)	66.2

^a Relativ zu den drei anderen M-C-Bindungsachsen.

$-P^{\bar{1}}$
P
o-Tol
pun
o-Tol, Sn,
von
Temperaturfaktoren
pun
Atomlagen 1
TABELLE 3.

		o -Tol $_6$ Sn $_2$ ²				$o ext{-} ext{Tol}_6 ext{Pb}_2$			
Gruppe	Atom	H	y	Z	$U_{\mathbf{eq}}^{}$	H	y	Z	Ueq b
	Sn	0.45829(6)	0.44061(4)	0.35663(5)	0.0386(2)				
	ሌ					0.45912(2)	0.44072(2)	0.35699(2)	0.0409(1)
o-Tol (1)	C(11)	0.1913(7)	0.3741(6)	0.2124(6)	0.042(3)	0.1847(6)	0.3735(5)	0.2089(5)	0.044(2)
	C(12)	0.1139(8)	0.4632(6)	0.2073(6)	0.042(3)	0.1107(6)	0.4628(5)	0.2045(5)	0.048(2)
	Q(13)	-0.0582(9)	0.4106(8)	0.1105(7)	0.055(4)	-0.0641(7)	0.4130(7)	0.1090(6)	0.064(3)
	Q(14)	-0.1523(9)	0.2733(8)	0.0202(8)	0.064(4)	-0.1572(8)	0.2736(8)	0.0195(7)	0.073(3)
	Q(15)	-0.0762(10)	0.1842(8)	0.0248(7)	0.063(4)	-0.0827(9)	0.1846(8)	0.0202(7)	0.073(3)
	C(16)	(6)0960'0	0.2334(7)	0.1209(7)	0.054(3)	0.0909(7)	0.2327(6)	0.1179(5)	0.056(2)
	Q(17)	0.2120(9)	0.6159(7)	0.3010(7)	0.055(4)	0.2064(9)	0.6150(6)	0.2986(7)	0.064(3)
o-Tol (2)	C(21)	0.4991(8)	0.2539(6)	0.3198(6)	0.042(3)	0.4997(6)	0.2470(5)	0.3197(5)	0.048(2)
	C(22)	0.4190(9)	0.1336(6)	0.3523(6)	0.047(3)	0.4211(7)	0.1302(5)	0.3515(5)	0.054(2)
	C(23)	0.4585(11)	0.0209(7)	0.3289(8)	0.060(4)	0.4577(10)	0.0171(6)	0.3282(7)	0.072(3)
	C(24)	0.5675(12)	0.0246(8)	0.2739(8)	0.067(5)	0.5690(11)	0.0190(8)	0.2756(8)	0.083(4)
	C(25)	0.6450(11)	0.1407(9)	0.2398(8)	0.068(5)	0.6456(11)	0.1342(9)	0.2383(8)	0.082(5)
	C(26)	0.6082(9)	0.2552(8)	0.2613(7)	0.054(4)	0.6098(8)	0.2515(7)	0.2591(6)	0.062(3)
	C(21)	0.2969(11)	0.1250(7)	0.4129(8)	0.064(4)	0.2986(9)	0.1248(6)	0.4148(8)	0.069(3)
o-Tol (3)	C(31)	0.6113(8)	0.5869(6)	0.2853(6)	0.042(3)	0.6169(7)	0.5912(5)	0.2821(5)	0.048(2)
	C(32)	0.7898(9)	0.6599(7)	0.3528(8)	0.050(3)	0.7938(7)	0.6633(6)	0.3508(7)	0.058(3)
	C(33)	0.8762(12)	0.7576(8)	0.3011(10)	0.071(5)	0.8815(10)	0.7614(8)	0.3028(10)	0.081(5)
	C(34)	0.7832(15)	0.7786(10)	0.1815(11)	0.076(6)	0.7890(14)	0.7795(10)	0.1769(10)	0.089(6)
	C(3S)	0.6086(14)	0.7048(9)	0.1114(8)	0.068(6)	0.6118(13)	0.7055(8)	0.1073(8)	0.079(5)
	C(36)	0.5214(10)	0.6103(7)	0.1646(7)	0.052(4)	0.5242(9)	0.6108(6)	0.1600(6)	0.061(3)
	C(37)	0.8956(10)	0.6400(10)	0.4819(9)	(5)6900	0.9002(8)	0.6436(10)	0.4816(8)	0.084(4)

^a Kristall 2. ^b $U_{eq} = 1/3$ der Spur des orthogonalen U_{ij} Tensors.

TABELLE 4. Atomlagen und Temperaturfaktoren von o-Tol₆PbSn — Pī

			*		
Gruppe	Atom	x	y	z	$U_{ m eq}^{-a}$
	Pb	0.45983(5)	0.44175(4)	0.35936(4)	0.0430(2) b
	Sn	0.45983(5)	0.44175(4)	0.35936(4)	0.0430(2) b
o-Tol (1)	C(11)	0.1872(9)	0.3727(7)	0.2106(7)	0.051(4)
	C(12)	0.1108(9)	0.4636(8)	0.2053(7)	0.053(4)
	C(13)	-0.0613(10)	0.4109(10)	0.1083(9)	0.069(5)
	C(14)	-0.1539(11)	0.2743(10)	0.0201(9)	0.077(5)
	C(15)	-0.0788(11)	0.1839(10)	0.0237(9)	0.080(5)
	C(16)	0.0939(10)	0.2340(8)	0.1196(8)	0.064(5)
	C(17)	0.2082(11)	0.6151(8)	0.3007(9)	0.070(5)
o-Tol (2)	C(21)	0.5001(9)	0.2506(8)	0.3200(7)	0.055(4)
	C(22)	0.4194(10)	0.1313(8)	0.3523(8)	0.059(4)
	C(23)	0.4593(13)	0.0197(8)	0.3292(9)	0.075(5)
	C(24)	0.5708(15)	0.0235(10)	0.2739(10)	0.086(7)
	C(25)	0.6471(14)	0.1393(12)	0.2395(10)	0.087(7)
	C(26)	0.6109(11)	0.2528(10)	0.2612(9)	0.068(5)
	C(27)	0.2961(13)	0.1221(9)	0.4113(10)	0.081(6)
o-Tol (3)	C(31)	0.6139(10)	0.5894(7)	0.2843(7)	0.053(4)
	C(32)	0.7930(11)	0.6626(9)	0.3538(9)	0.067(5)
	C(33)	0.8789(13)	0.7608(10)	0.2999(12)	0.088(7)
	C(34)	0.7841(18)	0.7791(11)	0.1805(13)	0.095(9)
	C(35)	0.6092(16)	0.7050(10)	0.1115(10)	0.080(7)
	C(36)	0.5219(13)	0.6101(9)	0.1623(8)	0.069(5)
	C(37)	0.8975(12)	0.6408(12)	0.4798(11)	0.090(7)

^a $U_{eq} = 1/3$ der Spur des orthogonalen U_{ij} Tensors. ^b Besetzung Pb: Sn jeweils 1:1 (Besetzungsfaktor 0.5).

abweichungen das gleiche Ergebnis. Die Abstandsfolge zwischen den Schweratomen wird dadurch

 $Pb-Sn < Sn-Sn \approx Pb-Pb$.

Tabelle 6 zeigt die Bindungslängen verschiedener R₆Sn₂-, R₆PbSn und R₆Pb₂-Verbindungen. Ein Vergleich der homonuklearen Dimetallane zeigt, daß die Sn-Sn-Bindung bei Substitution mit voluminösen Resten stärker beeinflusst wird als die längere und schwächere Pb-Pb-Bindung. Die längsten Metall-Metall-Abstände treten bei den t-Butyl-Verbindungen auf. Dies zeigt sich noch extremer bei den entsprechenden Silicium- und Germanium-Verbindungen [12.13].

Die Metalle sind annähernd tetraedrisch koordiniert, wobei der C-M-C-Winkel verkleinert und der M-M-C-Winkel vergrössert ist; bei den Einzelwerten besteht keine grosse Abweichung gegenüber der p-Tolyl-Substitution [3]. Die o-Tolyl-Gruppen stehen praktisch ideal gestaffelt und besitzen eine propellerartige Verdrillung: dadurch wird gewährleistet, dass die ortho-Methylgruppen den grösstmöglichen Raum einnehmen können.

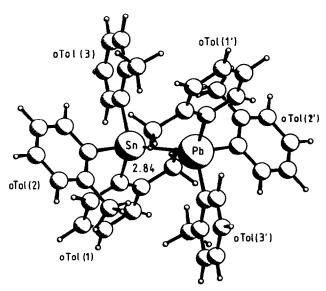


Abb. 2. Gefundenes o-Tol₆PbSn-Molekül.

TABELLE 5. Bindungsgeometrien von o-Tol₆Sn₂, o-Tol₆PbSn und o-Tol₆Pb₂ [11]

	o-Tol ₆ Sn ₂ a	o-Tol ₆ PbSn	o-Tol ₆ Pb ₂
Bindungslängen (Å)			
M-M'	2.883(1) a	2.845(2)	2.895(2)
M-C(11)	2.171(1)	2.224(7)	2.242(5)
M-C(21)	2.172(1)	2.220(10)	2.249(7)
M-C(31)	2.161(1)	2.209(10)	2.245(7)
C-C _{Ring1}	1.388	1.390	1.396
C-C _{Ring2}	1.385	1.390	1.389
C-C _{Ring3}	1.388	1.392	1.391
C(12)-C _{Me}	1.50(1)	1.51(1)	1.52(1)
C(22)-C _{Me}	1.50(2)	1.50(2)	1.53(1)
$C(32)-C_{Me}$	1.50(1)	1.49(2)	1.54(1)
Bindungswinkel (°)			
M'-M-C(11)	113.4(2)	113.7(2)	113.2(2)
M'-M-C(21)	112.2(2)	112.9(2)	112.1(2)
M'-M-C(31)	113.4(2)	114.1(2)	113.7(1)
C(11)-M-C(21)	106.0(2)	105.1(3)	105.9(2)
C(11)-M-C(31)	105.4(3)	104.7(3)	105.0(2)
C(21)-M-C(31)	105.7(3)	105.4(4)	106.2(3)
Torsionswinkel (°)			
C(11)-M-M'-C(21)'	-59.9(3)	-60.4(3)	-60.2(2)
C(11)-M-M'-C(31)'	59.9(3)	60.0(4)	60.3(3)
C(21)-M-M'-C(11)'	59.9(3)	60.4(3)	60.2(2)
C(21)-M-M'-C(31)'	-60.2(3)	-59.6(4)	- 59.5(3)
C(31)-M-M'-C(11)'	-59.9(3)	-60.0(4)	-60.3(3)
C(31)-M-M'-C(21)'	60.2(3)	59.6(4)	59.5(3)
Phenylgruppenverdrillu	ng (°)		
C(12)-C(11)-M-M'	54.1(3)	54.1(4)	54.5(6)
C(22)-C(21)-M-M'	56.1(2)	56.0(3)	56.0(4)
C(32)-C(31)-M-M'	53.0(3)	52.5(4)	51.6(7)

^a Kristall 2; Sn-Sn'-Abstand für Kristall 1 2.886(1).

TABELLE 6. Bindungslängen von Verbindungen R_6Sn_2 , R_6PbSn und R_6Pb_2 (d(MM) und d(MM') in (Å))

R ₆ Sn ₂	d(Sn-Sn)	R ₆ PbSn	d(Pb-Sn)	R ₆ Pb ₂	d(Pb-Pb)
Ph ₆ Sn ₂ [14]	2.770 a	Ph ₆ PbSn [5]	2.829 a	Ph ₆ Pb ₂ [15]	2.844 a
p-Tol ₆ Sn ₂ [3]	2.777(1)	p-Tol ₆ PbSn [3]	2.813(2)	p-Tol ₆ Pb ₂ [3]	2.851(1)
o-Tol ₆ Sn ₂ b	2.883(1)	o-Tol ₆ PbSn	2.845(2)	o-Tol ₆ Pb ₂ [11]	2.895(2)
t-Bu ₆ Sn ₂ [16]	2.894(1)	· ·		t-Bu ₆ Pb ₂	2.937 °
				c-Hex ₆ Pb ₂ [6]	2.876(4)
Bz ₆ Sn ₂ [16]	2.823(1)			5 2 - 5	

^a Mittelwerte aus jeweils zwei unabhängigen Molekülen. ^b Kristall 2; 2.886 (1) für Kristall 1. ^c Mittelwert der Pb-Pb-Abstände in vier unabhängigen centrosymmetrischen Molekülen (triklin $P\bar{1}$, Z = 4, Einzelwerte: 2.881 (11), 2.961 (11), 2.947 (11), 2.957 (11) Å).

4. Spektroskopie

4.1. ¹³C-NMR Chemische Verschiebungen und Kopplungskonstanten

Die ¹³C-chemischen Verschiebungen der in dieser Arbeit interessierenden R₄M-, R₆M₂- und R₆PbSn-Verbindungen mit Phenyl-, p-Tolyl-, o-Tolyl- und Mesityl-Substituenten sind in Tabellen der nachfolgenden Arbeit [17] über ein ¹³C-NMR-Inkrementsystem für metallorganische Verbindungen der Gruppe 14 enthalten. Tabelle 7 enthält die Kopplungskonstanten $J(^{13}C^{-119}Sn)$ und $J(^{13}C^{-207}Pb)$ für die Verbindungen R₄M und R₆M₂. Mit deren Hilfe und dem Inkrementsystem [17] erfolgte die Zuordnung der Signale. Eine Ermittlung der Kopplungskonstanten für PbSn-Verbindungen ist infolge deren Instabilität in Lösung nicht möglich.

Durch die Einführung der Methyl-Gruppe in ortho-Stellung wird die chemische Verschiebung des C (*ipso*)-1-Atoms nach tiefem Feld verschoben. Für alle Verbindungen gilt:

$$C(ipso)(o-Tol) > C(ipso)(Phenyl) > C(ipso)(p-Tol).$$

Durch die geringere Symmetrie der o-Tolyl-Gruppe erhält man 6 Signale, deren chemische Verschiebungen für Zinn und Blei in der Reihenfolge

ahnehmen

Bei den Kopplungskonstanten gilt für die Verbindungen R₄Sn, R₄Pb und R₆Sn₂

$$|{}^{1}J| \gg |{}^{3}J| > |{}^{2}J| > |{}^{4}J|$$

und für R₆Pb₂

$$|{}^{1}J| \gg |{}^{2}J| > |{}^{3}J| > |{}^{4}J|.$$

TABELLE 7. Beträge der Kopplungskonstanten der Phenyl-, p-Tolyl- und o-Tolyl-Gruppen ($J(^{13}C-^{207}Pb)$ und $J(^{13}C-^{119}Sn)$ (Hz)) für R₄M- und R₆M₂-Verbindungen in CDCl₃ (gesättigte Lösungen)

Verbindung	C-1	C-2	C-3	C-4	C-5	C-6	C-Me
Ph ₄ Sn [18]	$^{1}J = 531$	$^{2}J = 37.5$	$^{3}J = 52.0$	$^{4}J = 11.3$			
p-Tol ₄ Sn [3]	$^{1}J = 537$	$^{2}J = 38.6$	$^{3}J = 52.7$	$^{4}J = 11.4$			
o-Tol ₄ Sn	$^{1}J = 521$	$^{2}J = 32.1$	$^{3}J = 42.3$	$^{4}J = 10.5$	$^{3}J = 51.8$	$^{2}J = 41.0$	$^{3}J = 27$
Ph ₄ Pb [19]	$^{1}J = 481$	$^{2}J = 68.0$	$^{3}J = 80.0$	$^{4}J = 20.0$,
p-Tol ₄ Pb [3]	$^{1}J = 492$	$^{2}J = 69.8$	$^{3}J = 82.9$	$^4J = 19.5$			
o-Tol ₄ Pb	$^{1}J = 459$	$^{2}J = 53.8$	$^{3}J = 63.3$	$^{4}J = 17.7$	$^{3}J = 82.4$	$^{2}J = 78.3$	
Ph ₆ Sn ₂ [20]	$^{1}J = 410$	$^{2}J = 40.0$	$^{3}J = 48.6$	$^{4}J = 11.2$. ,	
	$^{2}J = 62$	$^{3}J = 8.1$					
p-Tol ₆ Sn ₂ [3]		$^{2}J = 45.7$	$^{3}J = 48.8$	$^{4}J = 11.4$			
o-Tol ₆ Sn ₂ a		$^{2}J = 34.0$	$^{3}J = 37.9$	$^{4}J = 11.9$	$^{3}J = 48.0$	$^{2}J = 41.4$	
Ph ₆ Pb ₂ [21]	$^{1}J = 177$	$^{2}J = 70.4$	$^{3}J = 66.4$	$^{4}J = 16.7$			
	$^{2}J = 116$	$^{3}J = 13.0$	$^{4}J = 8.0$				
p-Tol ₆ Pb ₂ [3]	$^{1}J = 180$	$^{2}J = 72.5$	$^{3}J = 68.5$				
_	$^{2}J = 121$	$^{3}J = 13.3$	$^{4}J = 8.0$				
o-Tol ₆ Pb ₂ [21]		$^{2}J = 55.7$		$^{4}J = 14.8$	$^{3}J = 65.3$	$^{2}J = 72.7$	$^{3}J = 46$
- -	$^2J = 103$		$^{4}J = 7.7$				- 10

^a Gemessen in 1,1,2,2-Tetrachlorethan-d₂.

Bei der o-Tolyl-Gruppe bleibt diese Grundfolge erhalten. Jedoch werden die Kopplungskonstanten geringer, besonders ${}^2J({}^{13}C-{}^{119}Sn/{}^{207}Pb)$. Für die Kopplungskonstanten am C (*ipso*) gilt:

$$| {}^{1}J(p\text{-Tolyl})| > | {}^{1}J(P\text{henyl})| > | {}^{1}J(o\text{-Tolyl})|.$$

Die Reihenfolge der Signale bei den PbSn-Verbindungen stimmt mit denen der homonuklearen Verbindungen überein. Die chemische Verschiebung des C(ipso)-Atoms am Zinn wird durch die Ar₃Pb-Gruppe nach tieferem Feld gegenüber dem Distannan verschoben. Entgegengesetzt erfolgt am C(ipso)-Atom des Bleis eine Verschiebung nach höherem Feld durch die Ar₃Sn-Gruppe. Die anderen Signallagen werden durch den Ersatz eines der beiden Metallatome gegenüber den homonuklearen Verbindungen kaum verschoben.

4.2. 119 Sn- und 207 Pb-NMR

Tabelle 8 gibt die ¹¹⁹Sn- und ²⁰⁷Pb-NMR-Daten nebst den Kopplungskonstanten der homo- und heteronuklearen Verbindungen wieder.

Allgemein lässt sich sagen, dass die Elektronenhülle des Bleis sensibler auf Änderungen der chemischen Bindung reagiert als Zinn. Dies zeigt sich beim Vergleich der R₄M- mit dem R₆M₂-Verbindungen. Vom Monoplumban zum Diplumban zeigt sich ein Tieffeld-

shift von 100 ppm, der sich beim Zinn in einen Hochfeldshift von 10 ppm umkehrt. Durch Veränderung der Substituenten folgt beim Diplumban ein Hochfeldshift beim Übergang von Phenyl über o-Tolyl zur Mesitylgruppe. Beim Distannan findet sich demgegenüber ein geringer Tieffeldshift. Ersatz eines Pb-Atoms durch ein Sn-Atom führt zu einem Hochfeldshift im ²⁰⁷Pb-NMR gegenüber dem Diplumban und einem Tieffeldshift im ¹¹⁹Sn-NMR gegenüber dem Distannan in den PbSn-Verbindungen.

Offensichtlich ist die Pb-Sn-Bindung deutlich polar, wobei Blei den elektronegativeren Partner darstellt $(Pb^{\delta}-Sn^{\delta})$. Dies steht qualitativ im Einklang mit den klassischen thermochemischen Elektronegativitätswerten von Pauling (Sn/Pb 1.96/2.33) [24]. Beim weiteren Übergang zur Pb-Ge-Bindung erfolgt nur noch eine geringe Änderung der ²⁰⁷Pb chemischen Verschiebung $(\delta(^{207}\text{Pb}) = -271.5 \text{ für Ph}_6\text{PbGe [5]})$. Dies legt eine vergleichbare Polarität zwischen Pb-Sn- und Pb-Ge-Bindungen nahe (Pauling-Elektronegativität von Ge 2.01 [24]). Eine solche empirische Bindungsdisskusion im intuitiven "Pauling-Bild" der Elektronegativitäten vernachlässigt alle Feinheiten und gegenläufigen Faktoren für die Ursachen der chemischen Verschiebungen bei den schweren Hauptgruppenelementen (für eine genauere Bindungsdiskussion dieser Elemente und zu "relativistisch-quantenmechanischen" Einflüssen

TABELLE 8. ¹¹⁹Sn- und ²⁰⁷Pb-NMR-Daten (δ (ppm) und ¹J(Hz)) für Phenyl-, p-Tolyl- und o-Tolyl-substituierte Verbindungen (gesättigte Lösungen in CDCl₃)

		δ (¹¹⁹ Sn)	¹ J(¹¹⁹ Sn- ¹¹⁹ Sn) ^a	δ (²⁰⁷ Pb)	$^{1}J(^{119}Sn-^{207}Pb)$
Ph ₄ Sn	[22]	-128.1			
p-Tol ₄ Sn	[3]	- 124.6			
o-Tol ₄ Sn		-124.5			
Ph₄Pb	[23]			-179.0	
p-Tol ₄ Pb	[3]			-171.3	
o-Tol ₄ Pb				-166.7	
Ph ₆ Sn ₂	[20]	- 144.7	4480		
p-Tol ₆ Sn ₂	[3]	- 141.9	4570		
o-Tol ₆ Sn ₂ b		-136.8	4297		
Ph ₆ Pb ₂	[11]			- 79.8	
p-Tol ₆ Pb ₂	[3]			-80.2	
o-Tol ₆ Pb ₂	[11]			-88.7	
Mes ₆ Pb ₂				- 154.5	
Ph ₆ PbSn	[5]	-62.1		-256.2	3469
p-Tol ₆ PbSn	[3]	-59.6		-254.2	3640
o-Tol ₆ PbSn				-225.0	
o-Tol ₆ PbSn ^c		-61.6		-219.6	3119
o-Tol ₃ PbSnPh ₃		-85.1		-265.2	3236
Mes ₃ PbSnPh ₃				- 449.8	
Mes ₃ PbSnPh ₃ d		-80.0		-453.1	

a Messwert ¹J(¹¹⁷Sn-¹¹⁹Sn) · 1.0465. b Gemessen in 1,1,2,2-Tetrachlorethan-d₂. c Gemessen in 1,1,2,2-Tetrachlorethan-d₂ bei 90°C. d Gemessen in Benzol-d₆ bei 60°C.

beim Blei vgl. Lit. [25]), gibt jedoch die qualitativen Trends der Tabelle 8 in etwa richtig wieder.

Innerhalb der symmetrisch substituierten PbSn-Verbindungen zeigt sich im ²⁰⁷Pb-NMR ein Tieffeldshift beim Übergang von der Phenyl- zur o-Tolyl-Gruppe. Im ¹¹⁹Sn-NMR lässt sich dagegen keine wesentliche Änderung erkennen. Deutlichere Veränderungen treten bei den asymmetrisch substituierten Verbindungen auf: das ¹¹⁹Sn-Signal wird bei o-Tolyl- bzw. Mesityl-Substitution des Bleis nach höherem Feld verschoben. Im ²⁰⁷Pb-NMR zeigt sich der gleiche Hochfeldshift wie bei den Diplumbanen.

Abbildung 3 zeigt einen in etwa linearen Zusammenhang zwischen den ¹J(¹¹⁹Sn-²⁰⁷Pb)- und der ¹J(¹¹⁹Sn-¹¹⁹Sn)-Kopplungskonstanten von gleich substituierten Pb-Sn- und Sn-Sn-Verbindungen.

4.3. Schwingungsdaten

In Tabelle 9 sind die Metall-Metall-Valenzschwingungen aus den Raman-Spektren zusammengefasst. Die Valenzschwingungen der Pb-Sn-Verbindungen liegen zwischen denen der homologen Verbindungen. Für die Paare p-Tol₆/o-Tol₆PbSn und p-Tol₆/o-Tol₆Pb₂ werden jeweils die gleichen Raman-Emissionen von 114, bzw. 104 cm⁻¹ gefunden: dies legt vergleichbare Pb-Sn- und Pb-Pb-Bindungsstärken innerhalb dieser Paare nahe. Im Gegensatz dazu erniedrigt sich die Sn-Sn-Valenzschwingung von 131 auf 123 cm⁻¹ beim Übergang von p-Tol₆Sn₂ zu o-Tol₆Sn₂,

TABELLE 9. Schwingungsübergänge der Phenyl-, p-Tolyl- und o-Tolyl-substituierten Verbindungen im Raman-Spektrum (ν (cm⁻¹))

Verbindung	ν (SnSn)	Verbindung	ν (PbSn)	Verbindung	ν (PbPb)
Ph ₆ Sn ₂ [20]	138	Ph ₆ PbSn [5]	125	Ph ₆ Pb ₂ [5]	112
p-Tol ₆ Sn ₂ [3]	131	p-Tol ₆ PbSn [3]	114	p-Tol ₆ Pb ₂ [3]	105
o-Tol ₆ Sn ₂	123	o-Tol ₆ PbSn o-Tol ₃ PbSnPh ₃	114 121	o-Tol ₆ Pb ₂	103
		Mes ₃ PbSnPh ₃	114	Mes ₆ Pb ₂	78

d.h. es erfolgt eine deutliche Abnahme der Sn-Sn-Bindungsstärke. Dies steht im Einklang mit der gefundenen, unerwartet langen Sn-Sn-Bindung von 2.883 Å im o-Tol $_6$ Sn $_2$.

5. Experimentelles

Alle Synthesen wurden unter Feuchtigkeitsauschluss in Argon-Atmosphäre durchgeführt.

5.1. Synthese des Hexa-o-tolyldistannans

Zu 6.2 g (12 mmol) o-Tol₃SnI, gelöst in 100 ml Diethylether, wird bei Raumtemperatur eine Lösung von 12 mmol o-Tol₃SnLi in 100 ml THF innerhalb von 2 h getropft. Nach 3 h Rühren wird mit verd. HCl hydrolysiert, der entstandene Niederschlag abgesaugt und aus Toluol umkristallisiert. Ausbeute 6.24 g (66%); Schmelzpunkt bei 285°C (Lit. 208–210°C [26]. 298–

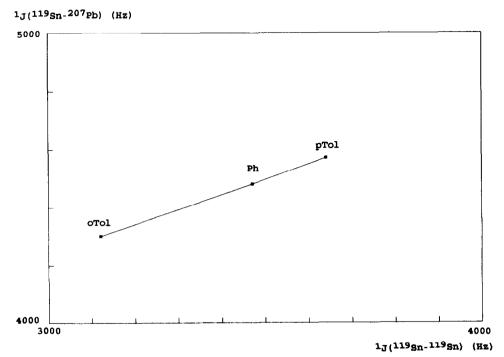


Abb. 3. Auftragung von ${}^{1}J({}^{119}\text{Sn}-{}^{207}\text{Pb})$ gegen ${}^{1}J({}^{119}\text{Sn}-{}^{119}\text{Sn})$ für die Paare o-Tol $_{6}$ -Ph $_{6}$ -p-Tol $_{6}$ -Sn $_{2}$ und -PbSn.

300°C [27]). Analyse: Gef.: C, 64.33; H, 5.40. C₄₂H₄₂Sn₂ (784.18) ber.: C, 64.33; H, 5.40%.

5.2. Synthese des Tri-o-tolylplumbyl-tri-o-tolylstannans

Bei - 78°C werden zu einer Lösung von 2.6 g (5 mmol) o-Tol₃SnI in 60 ml Diethylether 15 ml einer Lösung von 5 mmol o-Tol₃PbLi in THF innerhalb von 3 h zugetropft. Nach 12 h Rühren unter Temperaturanstieg auf 0°C wird der entstandene Niederschlag abgesaugt und aus CHCl₃ umkristallisiert. Ausbeute 2.47 g (57%); Zersetzung unter Pb-Abscheidung bei 242°C. Analyse: Gef.: C, 57.82; H, 4.72. C₄₂H₄₂PbSn (872.69) ber.: C, 57.81; H 4.85%.

5.3. Synthese des Tri-o-tolylplumbyl-tri-phenylstannans

Zu einer Lösung von 1.93 g (5 mmol) Ph_3SnCl in 30 ml Diethylether werden bei $-60^{\circ}C$ 15 ml (5 mmol) $o\text{-}Tol_3PbLi\text{-}L$ ösung in THF getropft. Nach 24 h Rühren unter Temperaturanstieg auf $-10^{\circ}C$ wird der Niederschlag abgesaugt und aus $CHCl_3$ umkristallisiert. Ausbeute 2.8 g (67%); Zersetzung unter Pb-Abscheidung bei 220°C. Analyse: Gef.: C, 54.69; H, 4.44. $C_{39}H_{36}PbSn$ (830.21) ber.: C, 56.38; H, 4.37%.

5.4. Synthese des Tri-mesitylplumbyl-tri-phenylstannans

70 ml einer tiefroten Mes₃PbLi-Lösung, aus 5.7 g (5 mmol) Mes₆Pb₂ in THF dargestellt, werden bei -60°C zu 3.86 g (10 mmol) Ph₃SnCl, gelöst in 50 ml THF, getropft. Nach 2-3 h Rühren bei maximal -45°C ist die Reaktion beendet. Der entstandene Niederschlag wird abgesaugt und aus CHCl₃ umkristallisiert. Ausbeute 4 g (44%); Zersetzung unter Pb-Abscheidung bei 215°C. Analyse: Gef.: C, 58.98; H, 5.05. C₄₅H₄₈PbSn (914.71) ber.: C, 59.08; H, 5.29%.

5.5. Röntgenstrukturanalysen

Einkristalle von o-Tol₄Pb wurden durch langsames Abkühlen einer ethanolischen Lösung über Nacht gewonnen. Die Einkristalle von o-Tol₆Pb₂ entstanden durch langsames Abkühlen einer heiss gesättigten Lösung in Toluol. Die Einkristalle von o-Tol₆Sn₂ und o-Tol₆PbSn wurden durch langsames Abkühlen im Wasserbad aus 1,1,2,2-Tetrachlorethan erhalten. Die kristallographischen Daten und Details der Strukturanalyse sind in den Tabellen 10 und 11 zusammengefasst. Zur Bestätigung des langen Sn-Sn-Abstandes im o-Tol₆Sn₂ wurden zwei verschiedene Kristalle vermessen: die Auswertung ergab praktisch identische Ergebnisse. Die Tabellen enthalten die Daten für Kristall 2.

Die Bestimmung der Dichten erfolgte mit der Schwebemethode in wässriger Na-Polywolframatlösung. Die Kristalle wurden für die Untersuchungen mittels Weissenberg-Aufnahmen (Goniometer der Fa. Huber)

TABELLE 10. Kristallographische Daten und Details der Strukturbestimmung von o-Tol₄Pb

	o-Tol ₄ Pb
Kristalldaten (Mo $K\alpha_1$, $\lambda = 0.70926$	<u>Å)</u>
Summenformel, Molmasse	C ₂₈ H ₂₈ Pb, 571.7
Kristallform	lange Nadel
Flächenindizes	100, -100 (0.05),
(Abstand vom Ursprung	010, 0-10 (0.05),
im Kristallzentrum (mm))	001, 00-1 (0.5)
Kristallfarbe	farblos
Symmetrie, Raumgruppe	tetragonal, $P\bar{4}2_1c$
•	(Nr. 114)
Gitterkonstanten	a = 12.161 (1) Å
	c = 7.964 (3) Å
zentrierte Reflexe, θ-Bereich	50, 21-23°
Elementarzellvolumen (Å ³), Z	1178 (1), 2
Dichten d_{ront} , d_{exp} (g/cm ³)	1.612, 1.62
Datensammlung (Mo- $K\overline{\alpha}$, $\lambda = 0.710$	69 Å)
Messtemperatur (°C)	22
Aufnahmebereich: ($\omega/2\theta$ -scan)	
θ (°), $\sin \theta_{\text{max}} / \lambda$ (Å ⁻¹)	1.5-30, 0.7104
Messdauer (d)	2
Intensitätsabfall (%)	4
Korrektur	Ausgleichsgerade
unabhängige Reflexe	985
verwendete Reflexe	
$\min I > 2\sigma(I)$	621
μ (cm ⁻¹)	71.99
Lösung und Verfeinerung der Strukti	ır
Parameterzahl, (Refl./Param.)	69, (9)
R-Wert	0.0330
R _g -Wert	0.0328
Gewichtssetzung w^{-1}	$\sigma^2(F) + 0.000249 \cdot F^2$
höchste DiffFMaxima	$1.2 e^{-} \text{ Å}^{-3} \text{ (nahe Pb)}$

und zur Sammlung der Reflexintensitäten (Kappa-Diffraktometer CAD4 der Fa. Enraf-Nonius) in Glaskapillaren festgeklebt und abgeschmolzen. Die Flächenindizierung für die Absorptionskorrektur ergab sich aus den Winkeln zwischen den Flächennormalen (optisches Zweikreisgoniometer der Fa. Huber und Programm Kristin [28]), bzw. durch Anfahren und Indizieren auf dem Einkristalldiffraktometer (micror/micros der CAD4-software). Die Lagen der Schweratome erhielten wir aus den Patterson-Synthesen, die der C-Atome aus den Fourier- und Differenz-Fourier-Synthesen. Alle Nicht-H-Atome wurden anisotrop verfeinert, wobei für die anisotropen Koeffizienten der speziellen Position des Pb-Atoms bei o-Tol₄Pb folgende Restriktionen ($U_{11} = U_{22}$, $U_{23} = U_{13} = U_{12} = 0$, U_{33} = freie Variable [29]) zu beachten sind. Die H-Atome wurden, ausser bei o-Tol₆Pb₂, rechnerisch "reitend" mit gemeinsamen Temperaturfaktoren, jedoch getrennt nach aromatischen H-Atomen und Methyl-H-Atomen, eingeführt. Bei der o-Tol₆PbSnVerbindung wurde die Schweratomlage 50:50 mit Pb und Sn besetzt und anisotrop mit gemeinsamen Temperaturfaktoren verfeinert.

Die abschliessende Differenz-Fourier-Synthese enthält bei den Ethan-Analoga ausser der normalen, symmetrisch um die Schweratome verteilten Restelektronendichte ("Anharmonizität" der Schwingungsellipsoide) in allen vier Fällen ein asymmetrisch zwischen den Schweratomen angeordnetes Maximum. Das Symmetriezentrum erzeugt hieraus eine zweite, zur Haupt-

achse verdrehte Schweratombindung, die sich bei Einsetzung mit 2% (98% Hauptkomponente) konsistent verfeinern lässt (Schweratomabstände ca. 2.8 Å) und zu leichten Verbesserungen im R-Wert führt: am "Hauptmolekül" ändert sich dadurch nichts, insbesondere bleiben die Schweratom-Schweratom-Abstände gleich. Wir verzichteten deshalb auf die Einfügung dieser untergeordneten "Fehlordnungs-Komponente".

Alle Berechnungen wurden im Zentrum für Datenverarbeitung der Universität Mainz (Vax-Cluster und

TABELLE 11. Kristallographische Daten und Details der Strukturbestimmung für die drei isomorphen Verbindungen o-Tol $_6$ Sn $_2$, o-Tol $_6$ PbSn, o-Tol $_6$ Pb $_2$

o-Tol ₆ Sn ₂ a	o-Tol ₆ PbSn	o-Tol ₆ Pb ₂
Kristalldaten (Mo-K $\alpha_1 \lambda = 0.70926 \text{ Å}$)		
Summenformel, Molmasse		
C ₄₂ H ₄₂ Sn ₂ , 784.2	C ₄₂ H ₄₂ PbSn, 872.7	C ₄₂ H ₄₂ Pb ₂ , 961.2
Kristallform: schräger Quader	72 72	- 42 42 27
Flächenindizes: $(0\ 1\ 0,\ 0\ -1\ 0)$, $(0\ 0\ 1,\ 0\ 0\ -1\ 0)$	-1), $(1\ 0\ -1,\ -1\ 0\ 1)$	
Abstand vom Ursprung im Kristallzentrum		
0.040, 0.038, 0.080	0.032, 0.031, 0.073	0.075, 0.125, 0.092
Symmetrie, Raumgruppe: triklin, P1 (Nr.2)		,, <u>-</u>
Gitterkonstanten		
9.348 (1) Å	9.359 (2) Å	9.356 (1)Å
	_	•
10.703 (2) Å	10.725 (3) Å	10.744 (2) Å
10.939 (3) Å	10.983 (4) Å	10.990 (5) Å
x 99.03 (2)°	99.99 (4)°	99.08 (4)°
3 111.30 (2)°	111.31 (4)°	111.19 (2)°
/ 111.40 (1)°	111.29 (2)°	111.23 (2)°
entrierte Reflexe, θ-Bereich		
5, 18–20.5°	25, 18–21.5°	50, 21.7–22.5°
Elementarzellvolumen (ų), Z		
395 (1), 1	903 (1), 1	906 (1), 1
Dichten d_{ront} , d_{exp} (g/cm ³)		
1.454, 1.44	1.607, 1.61	1.76, 1.72
Datensammlung (Mo- $K\bar{\alpha}$, $\lambda = 0.71069 \text{ Å}$)		
Messtemperatur 22°C, Aufnahmebereich (a	$(20 \text{ scop}) \circ (9) \circ $	
1.5–30, 0.7104	1-30, 0.7104	1 20 0 7104
5–30, 0.7104 Messdauer, Intensitätsabfall: Korrektur der	· · · · · · · · · · · · · · · · · · ·	1–30, 0.7104
Tage, 4%	10 Tage, 6%	7.5 T 1501
nabhängige Reflexe, verwendete Reflexe (= :	7.5 Tage, 15%
inabilities (in the second control of the s	$5213, 2929 (2\sigma)$	5272 4220 (2)
	nenindizes: μ (cm ⁻¹), Transmissionsbereich	$5272, 4330 (2\sigma)$
13.01, 0.9248–0.8841		02.52.0.2070.0.2002
13.01, 0.9248-0.8841	53.38, 0.7869-0.7053	93.53, 0.3260-0.2093
Lösung und Verfeinerung der Struktur		
Parameterzahl, (Refl./Param.), R-Wert, R.	_g -Wert	
203, 15.3, 0.0517, 0.0607	203, 14.4, 0.0446, 0.0448	201, 21.5, 0.0364, 0.0440
Gewichtssetzung w ⁻¹		, ,
$r^2(F) + 0.000918 * F^2$	$\sigma^2(F) + 0.000597 * F^2$	$\sigma^2(F) + 0.001337 * F^2$
Höchstes DiffFMaximum nahe den Sch	weratomen ($e^{-} \mathring{A}^{-3}$)	
2.6	1.8	1.8
DiffFMaximum asymm. zwischen den Sc		1.0
	_	•
l.4 (2.31 und 1.69 Å)	1.9 (2.26 und 1.68 Å)	2.4 (2.34 und 1.66 Å)

^a Kristall 2. Kristall 1: unabhängige Reflexe 5189, verwendete Reflexe 3065 (3σ), Transmissionsbereich 0.9139–0.8703, R-Wert 0.0549, R_g -Wert 0.0721, Gewichtssetzung σ^2 (F) + 0.002135 * F^2 , höchstes Diff.-F.-Max. nahe Sn 3.2, Diff.-F.-Max. asymmetrisch zwischen den Schweratomen 1.2 (2.32 und 1.69 Å).

IBM-RISC) mit shellse, shellse, [30] und lokalen Programmen durchgeführt. Tabellen der F_0/F_c -Werte und der vollständigen Lage- und Temperaturfaktoren können angefordert werden.

5.6. NMR-Spektroskopie

Spektrometer Bruker WP 80 DS; Messfrequenzen: 13 C bei 20.15 MHz, 119 Sn bei 29.88 MHz, 207 Pb bei 16.74 MHz; externe Standards: Me₄Sn bzw. Me₄Pb; Lösungen von 100–200 mg/3 ml CDCl₃ (Aldrich Nr. 15, 182-3), 1,1,2,2-Tetrachlorethan- d_2 (Merck Nr. 3495) oder Benzol- d_6 (Merck Nr. 1789).

5.7. Ramanspektroskopie

Spektrometer SPEX 1403; Anregung mit He/Ne-Laser bei 633 nm, Anregung mit Kr-Laser bei 647 nm; Proben mikrokristallin in Kapillare.

5.8. Elementaranalyse

C,H-Werte mit einem CHN-Analyzer 240 von Perkin-Elmer im Institut für Organische Chemie der Universität Mainz.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Literatur

- 1 M. Charissé, M. Mathes, D. Simon und M. Dräger, J. Organomet. Chem., 445 (1993) 39.
- 2 S. Adams und M. Dräger, Main Group Met. Chem., 11 (1988) 151.
- 3 C. Schneider und M. Dräger, J. Organomet. Chem., 415 (1991) 349.
- 4 B. Wrackmayer, Annu. Rep. NMR Spectrosc., 16 (1985) 73.

- 5 N. Kleiner und M. Dräger, J. Organomet. Chem., 270 (1984) 151.
- 6 N. Kleiner und M. Dräger, Z. Naturforsch., Teil B, 40 (1985) 477,
- 7 E. Krause und M. Schmitz, Ber. dtsch. chem. Ges., 52 (1919) 2150.
- 8 P. R. Austin, J. Am. Chem. Soc., 53 (1931) 1548.
- 9 L. C. Willemsens und G. J. M. van der Kerk, J. Organomet. Chem., 21 (1970) 123.
- 10 V. K. Belsky, A. A. Simonenko, V. O. Reiksfeld und I. E. Saratov, J. Organomet. Chem., 244 (1983) 125.
- 11 A. Sebald und R. K. Harris, Organometallics, 9 (1990) 2096.
- 12 N. Wiberg, H. Schuster, A. Simon und K. Peters, Angew. Chem., 98 (1986) 100; Angew. Chem., Int. Ed. Engl., 25 (1986) 79.
- 13 M. Weidenbruch, F.-T. Grimm, M. Herrndorf, A. Schäfer, K. Peters und H. G. von Schnering, J. Organomet. Chem., 341 (1988) 335.
- 14 H. Preut, H.-J. Haupt und F. Huber, Z. anorg. allg. Chem., 396 (1973) 81.
- 15 H. Preut und F. Huber, Z. anorg. allg. Chem., 419 (1976) 92.
- 16 H. Puff, B. Breuer, G. Gehrke-Brinkmann, P. Kind, H. Reuter, W. Schuh, W. Wald und G. Weidenbrück, J. Organomet. Chem., 363 (1989) 265.
- 17 C. Schneider-Koglin, B. Mathiasch und M. Dräger, J. Organomet. Chem., 448 (1993) 39.
- 18 B. Mathiasch, Org. Magn. Res., 17 (1981) 296.
- 19 D. de Vos, J. Organomet. Chem., 104 (1976) 193.
- 20 S. Adams und M. Dräger, J. Organomet. Chem., 326 (1987) 173.
- 21 N. Kleiner und M. Dräger, J. Organomet. Chem., 293 (1985) 323.
- 22 J. Holecek, M. Nadvornik, K. Handlir und A. Lycka, J. Organomet. Chem., 241 (1983) 177.
- 23 T. N. Mitchell, J. Gmehling und F. Huber, J. Chem. Soc., Dalton Trans., (1978) 960.
- 24 A. L. Allred, J. Inorg. Nucl. Chem., 17 (1961) 215.
- 25 W. Kutzelnigg, Angew. Chem., 96 (1984) 262; Angew. Chem., Int. Ed. Engl., 23 (1984) 272.
- 26 H. Morris, W. Byerly und P. W. Selwood, J. Am. Chem. Soc., 64 (1942) 1727.
- 27 H. Gilman und S. D. Rosenberg, J. Org. Chem., 18 (1953) 1554.
- 28 S. Roller, KRISTIN, Programm zur Indizierung von Einkristallflächen, Mainz, 1986
- 29 W. J. A. M. Peterse und J. H. Palm, Acta Crystallogr., 20 (1966) 147.
- 30 G. Sheldrick, SHELX76, Program for Crystal Structure Determination, Cambridge, 1976; SHELX86, Göttingen, 1986.