Synthesis of $\mathrm{Ru}^{\text {II }}$ hydride and alkenyl amidine complexes. The crystal structure of $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\left\{\mathrm{NH}=\mathrm{C}(\mathrm{Me})\left(\mathrm{Me}_{2} \mathrm{pz}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$

Javier López, Amelia Santos and Antonio Romero
Instituto de Ciencia de Materiales de Madrid, sede D, CSIC Serrano 113, 28006 Madrid (Spain)

Antonio M. Echavarren

Instituto de Quimica Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)
(Received April 27, 1992)

Abstract

The reaction of the ruthenium hydrides $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\left(\mathrm{R}^{1} \mathrm{CN}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{A}\left(\mathrm{A}=\mathrm{ClO}_{4}\right.$ or $\left.\mathrm{PF}_{6}\right)\left(\mathrm{R}^{1}=\mathrm{Me}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ or the alkenyl derivatives $\left.\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHR}^{1}\right)\left(\mathrm{R}^{2} \mathrm{CN}\right)_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}\left(\mathrm{R}^{1}=\mathrm{CMe}_{3}, \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Me}\right.$ or $\mathrm{CH}_{2} \mathrm{Ph}$) with pyrazole or 3,5-dimethylpyrazole gives the ruthenium(II) pyrazolylamidine complexes $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\left(\mathrm{NH}=\mathrm{C}\left(\mathrm{R}^{1}\right)(\right.\right.$ het $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{A}$ or $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCR}{ }^{1}\right)(\mathrm{NH}-\mathrm{C}-\right.$ $\left(\mathrm{R}^{2}\right)($ het $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{A}$, respectively (het $=\mathrm{pz}$ or $\mathrm{Me}_{2} \mathrm{pz}$). The stereochemistry of the resulting complexes has been determined by NOEDIFF experiments and by the X-ray structure determination of $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\left(\mathrm{NH}=\mathrm{O}\left(\mathrm{Me}^{2}\right)\left(\mathrm{Me}_{2} \mathrm{pz}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}\right.$.

1. Introduction

We have reported in a preliminary communication the formation of the amidine complex $[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\{\mathrm{N}-$ $\left.\mathrm{H}=\mathrm{C}(\mathrm{Me})\left(\mathrm{Me}_{2} \mathrm{pz}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ in the reaction of $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}(\mathrm{MeCN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ with 1-hydroxy-methyl-3,5-dimethylpyrazole [1]. A related complex was obtained in the reaction between $\left[\left\{\mathrm{Ru}\left(\boldsymbol{\eta}^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.\right.$ $\left.\mathrm{Cl}_{2}\right\}_{2}$] and $\mathrm{K}\left[\mathrm{HB}\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right.$] in acetonitrile [2]. Only three other examples of formation of this type of amidine derivative in transition metal complexes with coordinated nitriles have been reported [3-5]. These reactions are related to the well known nucleophilic attack of amines on coordinated nitrile ligands to give amidine complexes [6-8] (eqn. (1)). Similar processes are probably involved in the synthetically useful ruthe-nium-catalyzed amidation of nitriles, which proceeds under neutral conditions [9]. In this paper we report a more extensive study of the synthesis of amidine hydride and alkenylruthenium(II) complexes by reaction

[^0]of pyrazole and 3,5-dimethylpyrazole with the corresponding ruthenium(II) nitrile complexes.

2. Results and discussion

Cationic hydride complexes 1 [10], 2 [11] and 3 react with pyrazole or 3,5 -dimethylpyrazole in methanol or ethanol under reflux to yield white amidine complexes $4-9$ with structures I or II (Scheme 1). The reaction is most probably initiated by substitution of one of the nitrile ligands by the pyrazole, followed by an intramolecular nucleophilic attack of the pyrazole on the cis nitrile ligand.

The amidine hydride complexes are characterized by sharp absorptions in the IR at $3340-3270 \mathrm{~cm}^{-1}$

Scheme 1.

Scheme 2.
corresponding to $\nu(\mathrm{N}-\mathrm{H})$ and low-field solvent-dependent NH signals between 12 and 8 ppm in the ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra. The stereochemistry around the ruthenium centre is probably dictated by steric effects since the bulkier $3,5-\mathrm{di}$ methylpyrazole gives derivatives II exclusively whereas the reactions of hydrides 1-3 with pyrazole afford mixtures of amidine complexes I and II. Their stereochemistries were assigned by comparison of their spectroscopic data with those of 7, whose structure has been determined by X-ray diffraction [1]. Furthermore, a NOEDIFF experiment on 8 fully supports the assigned structure.

Similarly, cationic alkenyl complexes $\mathbf{1 0 - 1 2}$ yielded amidine complexes 13-17 with structures III and IV as yellow crystalline products (Scheme 2). The structure of amidine complex 14 was assigned by spectroscopic methods, including NOEDIFF experiments, and by X-ray diffraction. The stereochemistries of the remaining derivatives were assigned by analogy with that of 14.

Amidine complex 17 was also prepared by treatment of the acetonitrile pyridine ruthenium complex 18 [12] with 3,5 -dimethylpyrazole. This reaction proceeds by selective displacement of the pyridine ligand trans to the alkenyl ligand (eqn. (2)).

Fig. 1. ortep drawing of the structure of the cationic species $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe} \mathrm{e}_{3}\right)\left(\mathrm{NH}=\mathrm{C}(\mathrm{Me})\left(\mathrm{Me}_{2} \mathrm{pz}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right.$(atom numbering as in Tables 1 and 3). Numbering of the carbon atoms of the phenyl rings and the hydrogen atoms of the phenyl, methyl and pyrazolyl groups omitted for clarity.

(17)

On the other hand, $\left[\mathrm{Ru}(\mathrm{CO})(\mathrm{PhC}=\mathrm{CHPh})(\mathrm{MeCN})_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (19) [13] reacts with 3,5-dimethylpyrazole in ethanol under reflux to give amidine hydride 8 and trans-stilbene (eqn. (3)). This result can be explained by the known lability of alkenyl complex 19 under the reaction conditions, yielding hydride 2 and stilbene by reaction with ethanol [13]. Further reaction of hydride 2 with the heterocycle gives the hydride amidine complex 8.

Amidine hydride ruthenium complexes 4-9 were unreactive towards 1 -alkynes under a variety of reaction conditions. This lack of reactivity shows that the pyrazolylamidine ligand is strongly coordinated, similarly to bipy or phen, whose hydride complexes $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\left(\mathrm{L}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{A}\left(\mathrm{L}_{2}=\right.$ bipy or phen $)$ are unreactive in the hydroruthenation reaction with alkynes.
2.1. Structure for $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\{\mathrm{NH}=\right.$ $\left.\mathrm{C}(\mathrm{Me})\left(\mathrm{Me}_{2} \mathrm{pz}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{PF}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14)

The X-ray structure of amidine complex 14 revealed the $\left[\mathrm{Ru}(\mathrm{CO})(\mathrm{CH}=\mathrm{CHCMe})_{3}\right)\left\{\mathrm{NH}=\mathrm{C}\left(\mathrm{Me}^{2}\right)\left(\mathrm{Me}_{2} \mathrm{pz}\right)\right\}$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$cations (Fig. 1) and the PF_{6}^{-}anions, held together only by electrostatic interactions. The crystal

TABLE 1. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for compound 14^{a}

Bond lengths			
Ru-P1	2.408(2)	N1-C5	1.32(1)
Ru-P2	$2.398(2)$	C5-C50	1.49(2)
Ru-C1	1.850(8)	C5-C6	1.41(2)
Ru-C2	2.067(8)	C6-C7	1.33(2)
Ru - N 1	$2.180(7)$	C7-C70	1.49(2)
Ru-N3	2.113(6)	N2-C7	1.36(1)
C1-O1	1.12(1)	C2-C3	1.32(1)
N3-C8	1.24(1)	C3-C4	1.51(1)
C8-C80	1.51(1)	C4-C41	1.57(2)
N2-C8	1.39(1)	C4-C42	1.50(2)
N1-N2	1.40(1)	C4-C43	1.46(2)
Bord angles			
P1-Ru-N1	91.7(2)	N3-C8-C80	124(1)
P1-Ru-N3	90.4(2)	N2-C8-C80	120(1)
P1-Ru-P2	177.62(8)	N2-N1-C5	105.2(7)
P1-Ru-C2	89.8(2)	N1-N2-C7	110.4(8)
P1-Ru-C1	85.0(2)	N1-C5-C6	110(1)
N1-Ru-N3	72.8(3)	N1-C5-C50	120.2(9)
N1-Ru-P2	90.6(2)	C5-C6-C7	108(1)
$\mathrm{N} 1-\mathrm{Ru}-\mathrm{Cl}$	104.19(3)	C6-C5-C50	130(1)
N3-Ru-P2	89.6(2)	C6-C7-C70	127(1)
N3-Ru-C2	92.5(3)	N2-C7-C70	126(1)
$\mathrm{N} 3-\mathrm{Ru}-\mathrm{Cl}$	174.8(3)	C7-N2-C8	133.7(9)
P2-Ru-C2	87.9(3)	Ru-C2-C3	132.9 (7)
P2-Ru-C1	95.1(2)	C2-C3-C4	129.2(9)
C2-Ru-C1	90.0(4)	C3-C4-C41	110.6(9)
$\mathrm{Ru}-\mathrm{C} 1-\mathrm{O} 1$	175.9(7)	C3-C4-C42	111(1)
$\mathrm{Ru}-\mathrm{N} 1-\mathrm{C} 5$	141.8(7)	C3-C4-C43	111(1)
Ru-N1-N2	112.8(5)	C41-C4-C42	107(1)
N1-N2-C8	115.1(7)	C42-C4-C43	111(1)
N2-C7-C6	197(1)	C43-C4-C41	108(1)
N2-C8-N3	116.4(8)		

${ }^{\text {a }}$ Mean bond distances: $\mathrm{P}-\mathrm{C}$ in PPh_{3} ligands $=1.832(8) \AA ; \mathrm{C}-\mathrm{C}$ in Ph rings $=1.39(2) \AA ; \mathrm{P} 3-\mathrm{F}$ in $\mathrm{PF}_{6}^{-}=1.55(2) \AA$. Mean bond angles: $\mathrm{C}-\mathrm{P}-\mathrm{C}$ in PPh_{3} ligands $=103.1(4)^{\circ} ; \mathrm{C}-\mathrm{C}-\mathrm{C}$ in Ph rings $=120.0(9)^{\circ}$; $\mathrm{Ru}-\mathbf{P}-\mathrm{C}=115.3(3)^{\circ}, \mathrm{F}-\mathrm{P} 3-\mathrm{F}$ in $\mathrm{PF}_{6}^{-}=90(1)^{\circ}$.
also contains a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule. Selected bond distances and angles are given in Table 1. The Ru atom displays distorted octahedral coordination with $\mathrm{C} 1, \mathrm{C} 2$, N 1 , and N 3 in the equatorial plane and the two triphenylphosphines in approximately axial positions. The complex has structure I (Scheme 1) with the carbonyl ligand trans to the iminic N3 atom of the pyrazolylamidine chelating ligand. The C2-C3 bond distance of $1.30(4) \AA$ is within the range observed for σ-alkenyl ruthenium(II) complexes [14]. The $\mathrm{C}=\mathrm{N}$ bond distance (N3-C8) of 1.24(1) \AA is similar to that found for 7 [1].

3. Experimental details

IR spectra were recorded with a Pye Unicam SP-3300 S spectrophotometer using KBr disks. Only the most significant frequencies are given. NMR spectra were recorded on Varian XL $300\left({ }^{1} \mathrm{H}\right.$ NMR, 300

MHz), Bruker AM $200\left({ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}, 50 \mathrm{MHz}\right)$, and Bruker WP-80 ($\left.{ }^{13} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, 32 \mathrm{MHz}\right)$ at $30^{\circ} \mathrm{C}$ in the reported solvents. Elemental analyses were performed at the Instituto de Química Orgánica (CSIC).
$\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}(\mathrm{MeCN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}(1)[10],[\mathrm{Ru}(\mathrm{CO})-$ $\left.\mathrm{H}(\mathrm{MeCN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (2), $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)-\right.$ $\left.(\mathrm{MeCN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}(10),[\mathrm{Ru}(\mathrm{CO})(\mathrm{CH}=\mathrm{CHPh})(\mathrm{Me}-$ $\left.\mathrm{CN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}(12)$ [11], and $[\mathrm{Ru}(\mathrm{CO})(\mathrm{CH}=\mathrm{CHPh})-$ $\left.(\mathrm{MeCN})(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}$ (18) [12] were prepared as described previously.

3.1. $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\left(\mathrm{PhCH}_{2} \mathrm{CN}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (3)

A mixture of benzyl cyanide ($4.0 \mathrm{ml}, 34.6 \mathrm{mmol}$) and $\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{PPh}_{3}\right)_{3}$ [15] ($243 \mathrm{mg}, 0.26 \mathrm{mmol}$) in EtOH (20 ml , was heated under reflux for 30 min . The mixture was partially evaporated and then treated with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($65 \mathrm{mg}, 0.40 \mathrm{mmol}$). The white solid was filtered off and washed with $\mathrm{EtOH}, \mathrm{Et}_{2} \mathrm{O}$ and hexane to yield 3 ($230 \mathrm{mg}, 87 \%$). IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{C} \equiv \mathrm{N}) 2290 \mathrm{vw}$, $2250 \mathrm{vw}, \nu(\mathrm{Ru}-\mathrm{H}) 2010 \mathrm{w}, \nu(\mathrm{C} \equiv \mathrm{O}) 1940 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.60-7.08(\mathrm{~m}, 36 \mathrm{H}, \mathrm{Ph}), 6.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$), 6.42 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 3.59(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $3.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right),-12.82(\mathrm{t}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Found: C, 61.34; H, 4.43; N, 2.60. $\mathrm{C}_{53} \mathrm{H}_{45} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: C, 61.57; H, 4.39; $\mathrm{N}, 2.71 \%$.

3.2. $\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\{\mathrm{NH}=\mathrm{C}(\mathrm{Me})(\mathrm{pz})\}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{ClO}_{4}(4)$

A mixture of hydride $1(84 \mathrm{mg}, 0.1 \mathrm{mmol})$ and pyrazole ($7 \mathrm{mg}, 0.1 \mathrm{mmol}$) in EtOH (5 ml) was heated under reflux for 30 min . After cooling to room temperature, the white solid was filtered off and washed with EtOH and $\mathrm{Et}_{2} \mathrm{O}$ to give 4 ($62 \mathrm{mg}, 73 \%$) as a $35: 65$ mixture of isomers I and II. Recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane) gave partially purified isomers.

4-I. IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{NH}) 3290 \mathrm{~m}, \nu(\mathrm{CO}) 1950 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1640 \mathrm{~m}, \nu($ pyrazole CN$) 1520 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz})$, $7.50-7.20(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 6.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 6.26(\mathrm{~m}, 1 \mathrm{H}$, pz), 1.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), -11.47 (t, $J=19.0 \mathrm{~Hz}, 1 \mathrm{H}$).

4-II. IR (cm^{-1}): $\nu(\mathrm{NH}) 3275 \mathrm{~m}, \nu(\mathrm{CO}) 1935 \mathrm{~s}$, ν (amidine $\mathrm{C}=\mathrm{N}$) $1648 \mathrm{~m}, \nu($ pyrazole CN$) 1520 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz})$, $7.50-7.20(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 6.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 6.02(\mathrm{~m}, 1 \mathrm{H}$, pz), 1.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), -10.95 (t, $J=19.0 \mathrm{~Hz}, 1 \mathrm{H}$).

Anal. Found (mixture of 4-I and 4-II): C, 58.86 ; H, 4.57; $\mathrm{N}, 4.80 . \mathrm{C}_{42} \mathrm{H}_{38} \mathrm{ClN}_{3} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru}$ calc.: $\mathrm{C}, 58.43$; H , 4.44; N, 4.87\%.

3.3. $\left[\mathrm{Ru}(\mathrm{CO}) H\{\mathrm{NH}=\mathrm{C}(\mathrm{Me})(\mathrm{pzz})\}\left(\mathrm{PPh}_{3}\right)_{2} / P F_{6}\right.$ (5)

A mixture of hydride $2(100 \mathrm{mg}, 0.1 \mathrm{mmol})$ and pyrazole ($7 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{ml})$ was heated under reflux for 30 min . After cooling to room temperature, the white solid was filtered off and washed with EtOH and $\mathrm{Et}_{2} \mathrm{O}$ to give $5(87 \mathrm{mg}, 84 \%)$ as a $20: 80$
mixture of isomers I and II. Recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$ gave partially purified isomers.

5-I. IR (cm^{-1}): $\nu(\mathrm{NH}) 3332 \mathrm{~m}, \nu(\mathrm{CO})$ 1938vs, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1634 \mathrm{~m}, \nu($ pyrazole CN$) 1523 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 10.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.43(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{pz}), 7.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 7.45-7.26(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 6.48(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{pz}), 1.77$ (s, 3H, Me), -12.14 (t, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$).

5-II. IR (cm^{-1}): $\nu(\mathrm{NH}) 3330 \mathrm{~m}, \nu(\mathrm{CO}) 1928 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1635, \nu\left(\right.$ pyrazole CN) $1522 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 11.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz})$, 7.45-7.26 (m, $30 \mathrm{H}, \mathrm{Ph}$), 7.25 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}$), $6.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 1.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}),-10.61(\mathrm{t}, \mathrm{J}=19.2$ $\mathrm{Hz}, 1 \mathrm{H}$).

Anal. Found (mixture of 5-I and 5-II): C, 55.32; H, 4.33; $\mathrm{N}, 4.57 . \mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: $\mathrm{C}, 55.51 ; \mathrm{H}$, 4.21; N, 4.62\%.

3.4. $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\left\{\mathrm{NH}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{pz})\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (6)

A mixture of hydride $3(210 \mathrm{mg}, 0.2 \mathrm{mmol})$ and pyrazole ($13.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(1: 1$, 20 ml) was heated at $40^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, the mixture was partially evaporated. Addition of hexane gave a white precipitate, which was filtered off and washed with hexane and $\mathrm{Et}_{2} \mathrm{O}$ to give $6(157 \mathrm{mg}, 79 \%)$ as a $56: 44$ mixture of isomers I and II. Recrystallization ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) gave partially purified isomers.

6-I. IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{NH}) 3330 \mathrm{~m}, \nu(\mathrm{CO}) 1939 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1625 \mathrm{~m}, \nu($ pyrazole CN$) 1525 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.14(\mathrm{~m}, 1 \mathrm{H}$, pz), $8.11(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}$), $7.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz})$, $7.45-7.20(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 7.19-6.86(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 6.74(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 6.18 (t, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}) .3 .68(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $11.40(\mathrm{t}, \mathrm{J}=18.3 \mathrm{~Hz}, 1 \mathrm{H})$.

6-II. IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{NH}) 3330 \mathrm{~m}, \nu(\mathrm{CO}) 1932 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1625 \mathrm{~m}, \nu($ pyrazole CN$) 1522 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 11.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.45-7.20(\mathrm{~m}$, $30 \mathrm{H}, \mathrm{Ph}), 7.19-6.86(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 6.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$), 5.95 (t, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}$), 3.83 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $-10.73(\mathrm{t}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Anal. Found (mixture of 6-I and 6-II): C, 58.25 ; H, 4.53; $\mathrm{N}, 4.39 . \mathrm{C}_{48} \mathrm{H}_{42} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: 58.54 ; H, 4.30; N, 4.27\%.
3.5. $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}\left\{\mathrm{NH}=\mathrm{C}(\mathrm{Me})\left(\mathrm{Me}_{2} \mathrm{pz}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{IClO}_{4}(7)\right.$

A mixture of hydride $1(84 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3,5-dimethylpyrazole ($10 \mathrm{mg}, 0.1 \mathrm{mmol}$) in EtOH (5 ml) was heated under reflux for 30 min . After cooling to room temperature, the white solid was filtered off and washed with EtOH and $\mathrm{Et}_{2} \mathrm{O}$ to give 7 ($67 \mathrm{mg}, 75 \%$) (structure II). This compound is identical with the complex prepared previously from 1 and 1-hydroxy-methyl-3,5-dimethylpyrazole [1]. IR (cm^{-1}): $\nu(\mathrm{NH})$ $3270 \mathrm{~m}, \nu(\mathrm{CO}) 1930 \mathrm{vs}, \nu($ amidine $\mathrm{C}=\mathrm{N}) 1640 \mathrm{~m}, \nu$ (pyra-
zole CN) $1570 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\boldsymbol{\delta} 11.32$ (s, 1H, NH), $7.54-7.32$ (m, 30H, Ph), 5.75 (s, 1H, pz), 2.21 (s, 3H, Me), 2.17 (s, 3H, Me), 1.36 (s, 3H, Me), -10.57 (t, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. Found: C, 58.92; H, 4.64; N, 4.80. $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{ClN}_{3} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru}$ calc.: $59.29 ; \mathrm{H}, 4.75 ; \mathrm{N}$, 4.71\%.

3.6. $\left[\mathrm{Ru}(\mathrm{CO}) H\left\{N H=C(M e)\left(M e_{2} \mathrm{pz}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] P F_{6}$ (8)

This amidine complex was prepared by the same procedure starting from hydride $2(90 \mathrm{mg}, 0.1 \mathrm{mmol})$ to give 8 ($75 \mathrm{mg}, 78 \%$) (structure II). IR (cm^{-1}): $\nu(\mathrm{NH})$ $3340 \mathrm{~m}, \nu(\mathrm{CO}) 1930 \mathrm{vs}, \nu($ amidine $\mathrm{C}=\mathrm{N}) 1635 \mathrm{~m}, \nu($ pyrazole CN) $1570 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}$, NH), $7.59-7.34(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz}), 2.39(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}$), 2.35 (s, 3H, Me), 1.47 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), -10.55 (t, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 11.33(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.61-7.51 (m, 12H, Ph), 7.50-7.27 (m, 18H, Ph), 5.75 (s, 1H, pz), 2.22 (s, 3H, Me), 2.17 (s, 3H, Me), 1.34 (s, $3 \mathrm{H}, \mathrm{Me}$), $-10.56\left(\mathrm{t}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$). ${ }^{1} \mathrm{H}$ NOEDIFF (DMSO- d_{6}) showed the following nOe enhancements on irradiation of the corresponding signals: -10.56 [$\delta 1.34(2 \%), \delta 11.33(0 \%)$], 11.33 [$\delta 2.22$ $(3 \%)], 5.75[\delta 2.17(1 \%)$ and $\delta 1.34(1 \%)]$. Anal. Found: C, 56.54; H, 4.73; N, 5.05. $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: C, 56.41 ; H, 4.52; N, 4.49\%.

3.7. $\left.\operatorname{Ru}(\mathrm{CO}) \mathrm{H}\left\{\mathrm{NH}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{Me}_{2} \mathrm{pz}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$

 (9)A mixture of hydride 3 ($118 \mathrm{mg}, 0.11 \mathrm{mmol}$) and 3,5-dimethylpyrazole ($23 \mathrm{mg}, 0.24 \mathrm{mmol}$) in EtOH (15 ml) was heated under reflux for 45 min . After cooling to room temperature, the solvent was evaporated and the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{Et}_{2} \mathrm{O}$ and hexane to give crude amidine complex. Recrystallization ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) gave 9 ($95 \mathrm{mg}, 82 \%$) (structure II). IR (cm^{-1}): $\nu(\mathrm{NH}) 3320 \mathrm{~m}, \nu(\mathrm{CO}) 1925 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1625 \mathrm{~m}, \nu($ pyrazole CN$) 1570 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\boldsymbol{\delta} 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.45-7.22(\mathrm{~m}, 33 \mathrm{H}$, Ph), 6.56 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 5.64 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{pz}$), 3.88 (s, 2H, CH2), 2.48 (s, 3H, Me), 1.13 (s, 3H, Me), $-10.80(\mathrm{t}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): δ $10.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.52-7.35(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}), 7.34-7.20$ (m, 12H, Ph), 7.16-7.11 (m, 3H, Ph), 6.51 (d, $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}$), $5.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz}), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}),-10.55(\mathrm{t}, \mathrm{J}=20.0 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Found: C, $58.94 ; \mathrm{H}, 4.60 ; \mathrm{N}, 4.32 . \mathrm{C}_{50} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{~N}_{3}-$ $\mathrm{OP}_{3} \mathrm{Ru}$ calc.: $\mathrm{C}, 59.29 ; \mathrm{H}, 4.58 ; \mathrm{N}, 4.15 \%$.

3.8. $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\left(\mathrm{NCCH}_{2} \mathrm{Ph}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}\right.$ (11)

A mixture of hydride 3 ($189 \mathrm{mg}, 0.18 \mathrm{mmol}$) and 3,3-dimethyl-1-butyne ($0.10 \mathrm{ml}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml) was stirred at $23^{\circ} \mathrm{C}$ for 24 h . The mixture was filtered and the filtrate was evaporated. The residue
was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to yield $11(120 \mathrm{mg}, 59 \%)$. IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{C} \equiv \mathrm{N}) 2280 \mathrm{w}, \nu(\mathrm{CO}) 1940 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55-7.48(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}), 7.34-7.25(\mathrm{~m}, 18 \mathrm{H}$, Ph), $7.20-7.14$ (m, 8H, Ph), 6.68 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), 6.17 (dt, $J=16.5,3.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 4.72 (br d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $0.61\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta .203 .85$ ($\mathrm{t}, J=14.7 \mathrm{~Hz}$), 147.26, 134.01, $131.22(\mathrm{t}, J=22 \mathrm{~Hz}$), 130.16, 128.85, 128.77, 128.21 ($\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}$), 127.82, 127.74 (br), 125.01, 36.12, 29.31, 24.06, 23.63. Anal. Found: C, 63.30; H, 4.74; N, 2.62. $\mathrm{C}_{59} \mathrm{H}_{55} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: C, 63.49; H, 4.97; N, 2.51%.

```
3.9. [Ru(CO)(CH=CHCMe }){NH=C(Me)(pz)}
(PPh}\mp@subsup{)}{2}{\prime
```

A mixture of alkenyl complex 10 ($142 \mathrm{mg}, 0.15$ mmol) and pyrazole ($30 \mathrm{mg}, 0.45 \mathrm{mmol}$) in EtOH (15 ml) was heated under reflux for 45 min . After cooling to room temperature, the solvent was evaporated and
the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give 13 (110 $\mathrm{mg}, 75 \%$) as a $60: 40$ mixture of isomers III and IV (see Scheme 2). Recrystallization ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) gave almost pure isomers.

13-III. IR (cm^{-1}): $\nu(\mathrm{NH}) 3320 \mathrm{~m}, \nu(\mathrm{CO}) 1928 \mathrm{vs}$, ν (amidine $\mathrm{C}=\mathrm{N}) 1640 \mathrm{~m}, \nu($ pyrazole CN$) 1520 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.93$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}$), 7.72 (s, $1 \mathrm{H}, \mathrm{NH}), 7.59(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}), 7.40-7.33$ (m, $18 \mathrm{H}, \mathrm{Ph}), 7.32-7.25$ (m, 12H, Ph), 6.48 (dt, $J=16.5,3.2$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 4.92(\mathrm{dt}, J=16.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}$), 1.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $0.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right.$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 10.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.44$ (br s, 1 H , pz), 7.98 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}$), 7.43-7.31 (m, 18 H , Ph), $7.30-7.19$ (m, 12H, Ph), 6.49 (dt, $J=16.4,3.2 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}$), 6.42 (m, 1H, pz), 5.60 (br d, $J=16.4,1 \mathrm{H}$, $=\mathrm{CH}$), 1.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.46 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$).

13-IV. IR (cm^{-1}): $\nu(\mathrm{NH}) 3322 \mathrm{~m}, ~ \nu(\mathrm{CO}) 1942 \mathrm{vs}$, ν (amidine $\mathrm{C}=\mathrm{N}$) $1630 \mathrm{~m}, \nu($ pyrazole CN$) 1520 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.64$ (d, $J=2.0 \mathrm{~Hz}$,

TABLE 2. Crystal structure analysis parameters for compound 14

Formula Crystal size (mm)	$\begin{aligned} & \mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & 0.18 \times 0.3 \times 0.15 \end{aligned}$
Unit cell dimensions (A)	$\begin{aligned} & 14.321(1), 20.654(1), 17.675(1) \\ & \beta=91.80(1)^{\circ} \end{aligned}$
Symmetry	Monoclinic, $P 2_{1} / n$
Packing: $V\left(\AA^{3}\right), Z$	5225.4(5), 4
$D_{\text {(calc) }}\left(\mathrm{g} \mathrm{cm}^{-3}\right), M, F(0,0,0)$	1.4032, 1103.89, 2264
$\mu\left(\mathrm{cm}^{-1}\right)$	48.43
Experimental data	
Technique	Four circle diffractometer Philips PW
	1100 , monochromated $\mathrm{CuK} \alpha, \theta_{\text {max }} 58^{\circ}$
No. of reflections	
Measured	7753
Observed	5106 ($1 \geq 4 \sigma$ ($)$ criterion)
Standard reflections	-153 and 1-5-3 reflections every 90 min , no variation
Solution and refinement	
Solution	Patterson and Fourier synthesis
Refinement	Least squares on F_{o} with 3 blocks
Absorption correction	Yes; max and min, 1.380 and 0.187
H atoms	Difference Fourier synthesis. H2, H3 and H50 were located. The phenyl hydrogen atoms were fixed at calculated positions. For methyl hydrogen atoms, alternative positions with site occupancies 0.5 were considered.
Parameters	
No. of variables	580
Computer and programs	VAX 6410, XRAY80, SYSTEM, DIRDIF, PESOS ${ }^{\text {a }}$
Scattering factors and anomalous dispersion	Int. Tables for X-Ray Crystallography ${ }^{\text {b }}$
Final R and R_{w}	0.069, 0.068

[^1]TABLE 3. Atomic coordinates and thermal parameters for compound $14\left(U_{\text {eq }}=(1 / 3) \cdot \Sigma\left[U_{i j} a_{i}^{*} \cdot a_{j}^{*} \cdot a_{i} \cdot a_{j} \cdot \cos \left(a_{i}, a_{j}\right)\right] \times 10^{4}\right)$

Atom	x	\boldsymbol{y}	z	$U_{\text {eq }}$
Ru	0.24215(9)	$0.00255(7)$	0.24779(8)	310(1)
C1	0.3380 (5)	$0.0036(5)$	0.3204(5)	484(25)
O1	0.3924(4)	0.0061(5)	0.3671(4)	746(26)
C2	0.2427(6)	$0.1026(4)$	0.2451(5)	415(25)
C3	$0.3105(7)$	0.1461(4)	0.2490(5)	486(29)
C4	0.3047(9)	0.2186(5)	0.2410(6)	678(38)
C41	$0.2025(13)$	$0.2426(6)$	$0.2530(12)$	1097(74)
C42	0.3648(14)	$0.2500(7)$	$0.3015(13)$	1142(83)
C43	0.3325(27)	0.2386(7)	0.1659(12)	2051(178)
N1	0.2131(5)	-0.0998(3)	0.2284(4)	441(23)
N2	0.1273(6)	-0.1103(4)	0.1907(4)	533(26)
C5	0.2460(9)	-0.1581(4)	0.2443(6)	647(36)
C6	$0.1808(12)$	-0.2054(5)	0.2197(7)	838(53)
C7	0.1085(10)	-0.1750(6)	0.1863(6)	755(44)
C50	$0.3396(11)$	$-0.1658(7)$	0.2822(8)	874(52)
C70	0.0201(15)	-0.2053(8)	0.1563(10)	1291(79)
N3	0.1252(4)	-0.0030(4)	0.1721(3)	417(19)
C8	0.0872(6)	-0.0557(5)	0.1570(5)	506(31)
C80	0.0019(7)	-0.0630(8)	0.1051(7)	818(49)
P1	0.1406(1)	0.0054(1)	0.3537(1)	353(5)
C101	0.1274(6)	$0.0827(4)$	0.4022(5)	411(25)
C102	0.0418(6)	$0.1046(4)$	0.4273(5)	479(28)
C103	0.0360(8)	$0.1609(5)$	0.4708(6)	628(35)
C104	0.1168(9)	$0.1942(5)$	0.4914(6)	643(36)
C105	0.2011(8)	$0.1728(5)$	0.4681(6)	649(37)
C106	0.2082(7)	0.1172(4)	0.4219(6)	516(30)
C111	0.1779(5)	-0.0482(4)	0.4329(4)	402(24)
C112	0.1890 (8)	-0.1142(4)	0.4184(5)	565(33)
C113	0.2196(9)	-0.1551(5)	$0.4752(6)$	693(39)
C114	0.2384(8)	-0.1324(6)	0.5470(6)	708(40)
C115	0.2242(8)	-0.683(6)	0.5625(6)	703(39)
C116	0.1925(7)	-0.0252(4)	0.5051(5)	506(28)
C121	0.0207(5)	-0.0193(4)	$0.3306(4)$	399(24)
C122	-0.0197(7)	-0.0753(5)	0.3559(5)	582(32)
C123	-0.1105(8)	-0.0932(6)	0.3338(6)	704(38)
C124	-0.1599(7)	-0.0545(6)	0.2843(6)	669(38)
C125	-0.1230(6)	0.0027(6)	0.2585(5)	588(30)
C126	-0.0323(6)	$0.0206(4)$	0.2803(5)	475(27)
P2	0.3430(1)	0.0045(1)	0.1421(1)	350(5)
C201	0.2998(5)	0.0452(4)	0.0558(5)	391(24)
C202	0.2341(6)	0.0944(4)	0.0589(5)	461(27)
C203	0.2047(8)	$0.1259(5)$	-0.0081(6)	622(34)
C204	0.2383(7)	$0.1083(5)$	-0.0758(5)	588(33)
C205	0.3013(7)	0.0584(6)	-0.0802(5)	677(37)
C206	0.3325(6)	0.0268(5)	-0.0150(5)	567(31)
C211	0.4577(5)	0.0409(4)	0.1594(5)	437(26)
C212	0.5138(6)	0.0169(5)	0.2210(6)	571(32)
C213	0.6003(7)	0.0462(7)	$0.2385(7)$	768(44)
C214	0.6323(8)	0.0969(8)	$0.1947(9)$	876(51)
C215	0.5786(8)	0.1188(6)	$0.1351(8)$	807(45)
C216	0.4911(6)	0.0909(5)	$0.1173(6)$	614(36)
C221	0.3676(6)	-0.0764(4)	0.1047(4)	399(24)
C222	0.2925(6)	-0.1098(5)	$0.0693(5)$	541(30)
C223	$0.3040(8)$	-0.1722(5)	$0.0433(6)$	667(37)
C224	$0.3894(11)$	-0.2013(5)	$0.0487(7)$	795(47)
C225	0.4648(9)	-0.1691(6)	$0.0805(7)$	797(43)
C226	0.4549(7)	-0.1057(5)	$0.1089(6)$	572(33)
P3	-0.0685(2)	0.1688(1)	0.1163(2)	700(10)
F1	-0.0680(9)	0.1790(6)	$0.0294(5)$	1393(50)
F2	-0.0712(11)	0.1601(5)	$0.2046(5)$	1533(59)

TABLE 3. (continued)

Atom	x	y	z	$U_{\text {eq }}$
F3	$-0.1672(7)$	$0.2026(7)$	$0.1186(7)$	$1564(59)$
F4	$-0.0305(12)$	$0.2373(6)$	$0.1319(8)$	$1852(75)$
F5	$-0.1180(16)$	$0.1043(6)$	$0.1012(9)$	$2111(99)$
F6	$0.0219(10)$	$0.1331(10)$	$0.1172(9)$	$2418(94)$
C11	$0.3984(0)$	$0.0816(0)$	$0.5992(0)$	$2546(50)$
C12	$0.4793(0)$	$0.1398(0)$	$0.4660(0)$	$3352(79)$
C12	$0.4839(0)$	$0.1392(0)$	$0.5577(0)$	$2777(173)$

$1 \mathrm{H}, \mathrm{pz}), 7.49-7.30(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}), 7.29-7.22(\mathrm{~m}, 12 \mathrm{H}$, Ph), 7.09 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}), 6.47(\mathrm{dt}, J=16.4,3.2$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 5.08(\mathrm{br} \mathrm{d}, J=16.3$, $1 \mathrm{H},=\mathrm{CH}$), 2.04 (s, 3H, Me), 0.63 (s, 9H, CMe_{3}). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 11.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.03(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{pz}$), 7.43-7.31 (m, 18H, Ph), 7.30-7.19 (m, $13 \mathrm{H}, \mathrm{Ph}+1 \mathrm{H} \mathrm{pz}$), 6.41 (dt, $J=16.5,3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $6.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 5.03$ (br d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 2.00 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.57 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$).

Anal. Found (mixture of 13-I and 13-IV): C, 57,89; $\mathrm{H}, 5.01$; $\mathrm{N}, 4.43 . \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: $\mathrm{C}, 58.18 ; \mathrm{H}$, 4.88; N, 4.24\%.

3.10. $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\left\{\mathrm{NH}=\mathrm{C}(\mathrm{Me})\left(\mathrm{Me}_{2} \mathrm{pz}\right)\right\}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2} / P F_{6}$ (14)

A mixture of alkenyl complex 10 ($164 \mathrm{mg}, 0.17$ mmol) and 3,5-dimethylpyrazole ($27 \mathrm{mg}, 0.28 \mathrm{mmol}$) in EtOH (8 ml) was heated under reflux for 2 h . After cooling to room temperature, the solvent was evaporated and the residue was triturated with hexane to give crude 14. Recrystallization ($1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) gave yellow crystals of $14 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{mg}, 69 \%)$ (structure III) suitable for X -ray structure determination. IR (cm^{-1}): $\nu(\mathrm{NH}) 3326 \mathrm{~m}, ~ \nu(\mathrm{CO}) 1930 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1630 \mathrm{~m}, \nu($ pyrazole CN$) 1570 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.41$ (s, 1H, NH), 7.45-7.27 (m, 18H, Ph), 7.26-7.16 (m, 12H, Ph), 6.62 (dt, $J=16.3,3.2 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}), 5.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz}), 5.09(\mathrm{dt}, J=16.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}$), 2.25 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.17 (s, 3H, Me), 1.67 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.49 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$). ${ }^{1} \mathrm{H}$ NOEDIFF (CDCl_{3}) showed the following nOe enhancements on irradiation of the corresponding signals: 2.25 [$\delta 5.96(9 \%)], 8.41$ [δ $5.09(10 \%), \delta 6.62(4 \%)$, and $\delta 2.17(4 \%)], 2.17$ [$\delta 8.41$ (3\%)]. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 207.26(\mathrm{t}, J=14.3 \mathrm{~Hz}$), $162.01,156.25,149.14,144.95,133.24(\mathrm{t}, J=5.1 \mathrm{~Hz}$), $131.49,130.85(\mathrm{t}, J=21.2 \mathrm{~Hz}), 130.10,128.42(\mathrm{t}, J=4.5$ Hz , 114.73, 36.20, 29.25, 21.15, 15.01, 14.58. Anal. Found: C, 55.72; $\mathrm{H}, 4.49 ; \mathrm{N}, 3.89 . \mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: $\mathrm{C}, 55.49 ; \mathrm{H}, 4.93 ; \mathrm{N}, 3.81 \%$.

3.11. $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\left\{\mathrm{NH}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{pz})\right\}\right.$ $\left(\text { PPh }_{3}\right)_{2} J P F_{6}$ (15)

A mixture of alkenyl complex 11 ($56 \mathrm{mg}, 0.05 \mathrm{mmol}$) an pyrazole ($10 \mathrm{mg}, 0.15 \mathrm{mmol}$) in EtOH (8 ml) was
heated under reflux for 30 min . After cooling to room temperature, the yellow crystals were filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ and hexane to give $15(48 \mathrm{mg}, 89 \%)$ (structure III). IR (cm^{-1}): $\nu(\mathrm{NH}) 3318 \mathrm{~m}, \nu(\mathrm{CO}) 1925 \mathrm{vs}$, $\nu($ amidine $\mathrm{C}=\mathrm{N}) 1630 \mathrm{~m}, \nu($ pyrazole CN$) 1525 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.04(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{pz}), 7.34-7.30(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.29-7.24(\mathrm{~m}, 21 \mathrm{H}$, $\mathrm{Ph}), 6.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{pz}), 6.43(\mathrm{~d}, J=2 \mathrm{H}, \mathrm{Ph}), 6.43$ (dt, $J=16.3,3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $6.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{pz}), 5.10$ (br d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.63(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}). Anal. Found: C, 60.67; H, 4.83; N, 4.05. $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: $\mathrm{C}, 60.79 ; \mathrm{H}, 4.91 ; \mathrm{N}, 3.94 \%$.

3.12. $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)\left\{\mathrm{NH}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right.\right.$ $\left.\left(M e_{2} p z\right)\right\}\left(P h_{3}\right)_{2} J P F_{6}(16)$

A mixture of alkenyl complex 11 ($167 \mathrm{mg}, 0.15$ mmol) and 3,5-dimethylpyrazole ($10 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{EtOH}(15 \mathrm{ml})$ was heated under reflux for 1 h . After cooling to $-15^{\circ} \mathrm{C}$, the yellow crystals were filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and hexane, and recrystallized (1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) to give 16 ($125 \mathrm{mg}, 76 \%$) (structure III). IR (cm^{-1}): $\nu(\mathrm{NH}) 3320 \mathrm{~m}, \nu(\mathrm{CO}) 1930 \mathrm{vs}, \nu$ (amidine $\mathrm{C}=\mathrm{N}) 1630 \mathrm{~m}, \nu($ pyrazole CN$) 1570 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.48-7.35(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph})$, $7.34-7.25$ (m, 14H, Ph), 7.13-7.06 (m, 13H, Ph), 6.62 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 6.27 (dt, $J=16.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz}), 5.01(\mathrm{dt}, J=16.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}$), $3.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.48(\mathrm{~s}, 3 \mathrm{H}$, Me), 0.38 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 9.70$ (s, $1 \mathrm{H}, \mathrm{NH}$), $7.50-7.24(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 7.23-7.11$ (m, $13 \mathrm{H}, \mathrm{Ph}), 6.77(\mathrm{dt}, J=16.2,2.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.58(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz}), 4.92(\mathrm{dt}, J=16.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 1.49 (s, 3H, Me), 0.50 (s, 9H, CMe_{3}). Anal. Found: C, 61.15; H, 5.07; N, 3.83. $\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: C , 61.42 ; H, 5.15; N, 3.84\%.
3.13. $\left[\mathrm{Ru}(\mathrm{CO})(\mathrm{CH}=\mathrm{CHPh})\left\{\mathrm{NH}=\mathrm{C}(\mathrm{Me})\left(\mathrm{Me} \mathrm{e}_{2} \mathrm{pz}\right)\right\}\right.$ -
$\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{PF} \mathrm{F}_{6}(17)$

A mixture of alkenyl complex 12 ($59 \mathrm{mg}, 0.6 \mathrm{mmol}$) and 3,5 -dimethylpyrazole ($15 \mathrm{mg}, 0.15 \mathrm{mmol}$) in EtOH (10 ml) was heated under reflux for 1 h . After cooling to room temperature, the solvent was evaporated. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{Et}_{2} \mathrm{O}$ and hexane to give 17 ($46 \mathrm{mg}, 77 \%$) (structure III). IR (cm^{-1}): $\nu(\mathrm{NH}) 3320 \mathrm{~m}, \nu(\mathrm{CO}) 1932 \mathrm{vs}, \nu$ (amidine $\mathrm{C}=\mathrm{N}) 1628 \mathrm{~m}, \nu($ pyrazole CN$) 1570 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.71$ (s, 1H, NH), 8.11 (dt, $J=16.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 7.34-7.15(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), $6.92-6.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 6.71(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), $6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pz}), 5.89(\mathrm{br} \mathrm{d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 2.27 (s, 3H, Me), 2.21 (s, 3H, Me), 1.74 (s, 3H, Me). ${ }^{31} \mathrm{P}$

NMR (CDCl_{3}): $\delta 25.8(\mathrm{~s}),-148.8$ (hept., $J=713 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 206.89(\mathrm{t}, J=14.5 \mathrm{~Hz}), 162.47(\mathrm{t}$, $J=2.8 \mathrm{~Hz}), 156.54,147.35(\mathrm{t}, J=13.4), 145.38,140.70$, $139.53(\mathrm{t}, J=4.2 \mathrm{~Hz}), 133.34(\mathrm{t}, J=5.2 \mathrm{~Hz}), 130.78(\mathrm{t}$, $J=21.5 \mathrm{~Hz}$), $130.26,128.56$ ($\mathrm{t}, J=4.6 \mathrm{~Hz}$), 127.82 , 124.39, 124.31, 114.66, 21.32, 15.16, 14.61. Anal. Found: C, 60.33 ; H, 4.60; N, 4.05. $\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{OP}_{3} \mathrm{Ru}$ calc.: C, $60.12 ; \mathrm{H}, 4.66$; N, 4.04%.

3.14. X-ray diffraction data for compound 14

Table 2 gives the crystal structure analysis parameters of compound 14. Table 3 gives the final atomic coordinates and thermal parameters for all non-hydrogen atoms of this compound. Lists of structure factors and thermal parameters are available from the authors.

Acknowledgment

We gratefully acknowledge financial support by the Dirección General de Investigación Científica y Técnica (DGICYT) (PB87-0201-C03-02).

References

1 A. Romero, A. Vegas and A. Santos, J. Organomet. Chem., 310 (1986) C8.

2 C. J. Jones, J. A. McCleverty, A. S. Rothim, J. Chem. Soc. Dalton. Trans. (1986) 109.
3 M. A. Cinellu, S. Stoccoro, G. Minghetti, A. L. Bandini, G. Banditelli and B. Bovio, J. Organomet. Chem., 372 (1989) 311.
4 G. D. Gracey, S. J. Rettig, A. Storr and J. Trotter, Can. J. Chem., 65 (1987) 2469.
5 M. O. Albers, S. Francesca, A. Crosby, D. C. Liles, D. J. Robinson, A. Shaver and E. Singleton, Organometallics, 6 (1987) 2014.
6 D. S. C. Black, in G. Wilkinson, R. D. Gallard, J. A. McCleverty (eds.), Comprehensive Coordination Chemistry, Pergamon, Oxford, 1987, Chapters 7.4 and 61.1.
7 B. N. Storhoff and H. Lewis, Coord. Chem. Rev., 23 (1977) 1.
8 R. A. Michelin, R. Bertani, M. Mozzon, G. Bombieri, F. Benetollo and R. J. Angelici, Organometallics, 10 (1991) 1751, and references cited therein.
9 S.-I. Murahashi, T. Naota and E. Saito, J. Am. Chem. Soc., 108 (1986) 7846.

10 B. E. Cavit, K. R. Grundy and W. R. Roper, J. Chem. Soc., Chem. Commun. (1972) 60.
11 J. López, A. Romero, A. Santos, A. Vegas, A. M. Echavarren and P. Noheda, J. Organomet. Chem., 373 (1989) 249.

12 A. M. Echavarren, J. López, A. Santos, A. Romero, J. A. Hermoso and A. Vegas, Organometallics, 10 (1991) 2371.
13 A. M. Echavarren, J. López, A. Santos and J. Montoya, J. Organomet. Chem., 414 (1991) 393.
14 M. R. Torres, A. Santos, A. Perales and J. Ros, J. Organomet. Chem., 353 (1988) 221; M. R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 309 (1986) 169; A. Romero, A. Santos and A. Vegas, Organometallics, 7 (1988) 1988.
15 N. Ahmed, J. J. Levison, S. D. Robinson and M. F. Uttley, Inorg. Synth., 15 (1974) 48.

[^0]: Correspondence to: Dr. A. Santos or Professor A.M. Echavarren.

[^1]: a J.M. Stewart, F.A. Kundell and J.C. Baldwin, The Xray 80 System of Crystallographic Programs, Computer Science Center, University of Maryland, College Park, MD. P.T. Beurskens, W.P. Bosman, H.M. Doesburg, R.O. Gould, T.E.M. Van Der Hark, P.A. Prick, J.H. Noordik, G. Beurskens, V. Parthasarathi, H.J. Bruins Slot and R.C. Haltiwanger, dIRDIF System of Computer Programs, Technical Report 1983/1, Crystallography Laboratory: Toernooiveld, 6525 ED Nijmegen, The Netherlands, 1983. M. Martínez-Ripoll and F.H. Cano, pesos program Instituto de Química Física "Rocasolano", Serrano 119 E, 28006 Madrid, Spain, 1975. ${ }^{\text {b }}$ International Tables for X-ray Crystallography, Kynoch Press, Birmingham, UK, 1974.

