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Abstract 

We have synthesized (C,Me,)Ta(norbomane-exo-2,3-dithiolate)z 
and found that the two dithiolate ligands coordinate to Ta with 
opposite orientations with respect to Cp*. In the ‘H NMR time 
scale, this unique geometry is rigid up to 100°C. 

sets of peaks arising from the ndt protons, which were 
fully assigned based on a series of decoupling proce- 
dures and the NOE measurements (Cp* protons us. 
Hl). Their chemical shifts are compared with those of 
[Ph,P]ITa(ndt),] [4] and H,ndt in Table 1. 

In the course of our study on the homoleptic dithio- 
late complexes of Group 5 metals [l-31, we found that 
[A][M(ndt),] (A = Et4N+, (“B&,N+, Ph4P+; M = Nb, 
Ta; ndt = norbornane-exo-2,3-dithiolate) had two un- 
usual geometrical isomers, syncZa.stic I and anticlastic 
II (Scheme 11, and they underwent facile interconver- 
sion in solution [4]. The kinetic data for the isomeriza- 
tion suggested polytopal rearrangement pathways with- 
out M-S bond rupture. In order to gain further insight 
into the behavior of such a dithiolate ligand at the 
Group 5 metal center, we synthesized a closely related 
bis-ndt complex, Cp*Ta(ndtjz (Cp* = C,Me,) Cl), 
which is the focus of this paper. Also, this is an 
outgrowth of our continuing interests in half-sandwich 
complexes of tantalum having S-donor ligands [5-71. 

Non-equivalence of the two ndt ligands in 1 is 
consistent with the structure III in Scheme 2 (top) in 
which the methylene bridge of ndt-A points away from 
the Cp* ring and that of ndt-B adopts the opposite 
orientation. Interestingly, the Hl doublet moves to 
downfield relative to the corresponding H,ndt signal, 
significantly so for ndt-B. On the other hand, a large 
downfield shift of the H5 resonance was observed for 
ndt-A. The ring-current effects of Cp* must be respon- 
sible for these phenomena. 

When a solution of Cp*TaCl, in THF was added 
dropwise to a solution of 2 equiv. of Li,(ndt) in THF, a 
dark brown color developed immediately. Evaporation 
of the solvent, extraction of the solid with hexane, and 
recrystallization from hexane/THF afforded 1 as deep 
green microcrystals in 41% yield 18 *I. The complex 1 is 
air/moisture sensitive, but thermally stabIe up to ca. 
180°C in the solid state. In the ‘H NMR (400 MHz, 
C,D,) spectra, illustrated in Fig. 1, there appear two 

The interesting geometry of 1 may be relevant to the 
unsymmetrical folding of two ethylene-c&1,2-dithiolate 
(edt) ligands observed for Cp*Ta(edt), (2) [51, i.e., 
structure IV shown in Scheme 2 (bottom). This coordi- 
nation mode was rationalized in terms of the maximum 
bonding interactions between C=C r orbitals of edt 
and the two low-lying vacant d orbitals of Ta. The two 
identical conformers, IV and IV ‘, are in equilibrium 
(AG5,yc = 14.9 kcal mol-‘1 in solution, probably uia an 
inversion process of the TaS,C, chelate rings. Such a 
process does not equilibrate the two ndt ligands in 1, 
because the non-equivalence originates from the un- 
symmetric nature of ndt itself imposed on the direction 
perpendicular to the TaS, plane. Having a sizeable 
Cp* ligand, complex 1 is also unlikely to undergo 
polytopal rearrangements because of steric reasons. In 
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Fig. 1. h MHz ‘H NMR spectrum (ppm/b) of Cp*Ta(ndt)r (1) in 
C,D,. Note that multiplicity of each resonance is masked in the 
small-scale chart, and the details along with the numbering scheme 
are given in Table 1. 

fact, the spectral pattern of Fig. 1 remains unchanged 
up to 100°C in toluene-ds. 

If the ndt ligands in 1 would be fhrxional, then a 
possible pathway could be the one involving Ta-S 
bond rupture, which should be a high energy process 
according to the temperature independence of the ‘H 
NMR up to 100°C. Suppose that the H3 signals coa- 
lesce at 100°C [9*], then the calculated barrier to the 

ndt-A III ndt-B 

IV 

Scheme 2. 

pathway could be 19 kcal mol-‘. Since we did not 
observe even a sign of broadening of these peaks, the 
activation energy must be much higher. The rigidity of 
the ndt coordination in 1 provides a firmer footing for 
the non-bond-rupture mechanisms proposed for the 
facile I * II rearrangement of [A][M(ndt),l (M = Nb, 
Ta) (AG,,, = 12.6-13.7 kcal mol-‘1 and for the IV it 
IV’ equilibration of 2. 

It should be noted here that the EI fragmentation of 
1 consists of signals derived from Cp*Ta(S,Xndt)+ and 
Cp’Ta(S,),+ in addition to the parent ion isotopic 
cluster. This is analogous to the stepwise liberation of 
ethylene portions in the EI fragmentation pattern of 2, 
suggesting that C-S bonds of the alkanedithiolates are 
cleaved cleanly in the EI mass condition. 
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H1 HZ H3 

‘H NMR Chemical shift, ppm Coupling constant, Hz 
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8 Cp*Ta(ndt),, deep green microcrystals, m.p. 200-202°C (dec.). 
W/VIS (A,,(e), THF, nm) 271(2700), 323(2200), 384(1900), 600 
br (400). far-IR (Nujol mull, cm-‘): 399 s, 386 s, 371 m, 360 s, 348 
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(Cp*Ta(S,Xndt)+), 444 (Cp*Ta(S,J,+J. Anal. Found: C, 45.28, H, 
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9 The difference in ‘H chemical shifts between ndt-A and ndt-B is 
smallest for H3. 


