Tin(IV) and organotin(IV) complexes containing the anion of some substituted-3-methyl-4-acyl-5-pyrazolones. Crystal structure of dimethylbis(1-phenyl-3-methyl-4-benzoyl pyrazolon-5-ato)tin(IV)

Bruna Bovio
Dipartimento di Chimica Generale, Università di Pavia, viale Taramelli 12, 27100 Pavia (Italy)

Augusto Cingolani, Fabio Marchetti and Claudio Pettinari
Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, 62032 Camerino, Macerata (Itaty)
(Received January 25, 1993)

Abstract

Six-coordinate $\left.[(Q))_{2} \mathrm{SnRX}\right]$ compounds, where QH is 1-R'3-methyl-4-R"C(O)-5-pyrazolone ($\mathrm{Q}_{\mathrm{P}} \mathrm{H}: \mathrm{R}^{\prime}=p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5}$; $\mathrm{Q}_{\mathrm{M}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Q}_{\mathrm{F}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}=\mathrm{CF}_{3}$), $\mathrm{X}=\mathrm{Cl}$ or $\mathrm{R}, \mathrm{R}=\mathrm{Cl}$ or CH_{3}, have been prepared and characterized by analyses, spectral (IR, ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ data) and conductivity measurements. The crystal structure of $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$ ($\mathrm{Q}^{\prime} \mathrm{H}$ is 1 -phenyl-3-methyl-4-benzoyl-5-pyrazolone) was also determined: the sterically demanding ligand gives rise to severe distortion of the six-coordinate $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$ compound, similar to that noted in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]$ and $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]$. The $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ axis is bent $\left(153.3(3)^{\circ}\right)$ and two of the four $\mathrm{Sn}-\mathrm{O}$ bonds are exceptionally long ($2.337(4)$ and $2.412(4) \AA$) whereas the other two $\mathrm{Sn}-\mathrm{O}$ bonds are normal (2.104(3) and 2.103(4) \AA).

1. Introduction

4-acyl-5-pyrazolones are enolizable β-diketones [1] which afford stable chelates with several metals [2], a property used for metal extraction.

In a preceding paper, the results of interactions between $\operatorname{tin}(I V)$ and organotin(IV) compounds with the most representative members of the family of 4-acyl-5-pyrazolones (1-phenyl-3-methyl-4-benzoyl-5pyrazolone, namely $Q^{\prime} H$, and 1-phenyl-3-methyl-4-acetyl-5-pyrazolone, namely $\mathrm{Q}^{\prime \prime} \mathrm{H}$) have been reported [3]. Continuing our interest in tin(IV) chemistry we investigated organotin (IV) derivatives of other 1-R'3-methyl-4-R"(CO)-5-pyrazolones (Fig. 1), abbreviated $\mathrm{Q}_{\mathrm{P}} \mathrm{H} \quad\left(\mathrm{R}^{\prime}=p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{\prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5}\right) \quad \mathrm{Q}_{\mathrm{F}} \mathrm{H} \quad\left(\mathrm{R}^{\prime}=\right.$ $\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{R}^{\prime \prime}=\mathrm{CF}_{3}$), and $\mathrm{Q}_{\mathrm{M}} \mathrm{H}\left(\mathrm{R}^{\prime}=\mathrm{CH}_{3}\right.$ and $\mathrm{R}^{\prime \prime}=$ $\mathrm{C}_{6} \mathrm{H}_{5}$), in order to compare chemical-physical and structural features with those of complexes pieviously synthesized [3,4]. An X-ray diffraction study of the

[^0]
$\mathrm{Q}_{\mathrm{P}} \mathrm{H}: \mathrm{R}^{\prime}=p-\mathrm{NO}_{2} \mathrm{Ph}, \mathrm{R}^{\prime \prime}=\mathrm{Ph}$;
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}: \mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{R}^{\prime \prime}=\mathrm{Ph}$;
$\mathbf{Q}_{\mathbf{F}} \mathbf{H}: \mathbf{R}^{\prime}=\mathbf{P h}, \mathbf{R}^{\prime \prime}=\mathrm{CF}_{3}$.

Fig. 1. Structure of 1-R'-3-methyl-4-R"C(O)-5-pyrazolones.
structure of $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$ compared with those of related compounds $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left({ }^{(} \mathrm{Bu}\right)_{2}\right]$ and $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\right.$ $\left({ }^{n} \mathrm{Bu}\right)_{2}$], has been also reported. It is shown that the stable but sterically demanding Q^{\prime} causes the tin cation to distort from octahedral symmetry, while maintaining six-coordination.

2. Results and discussion

The reaction between $\mathrm{Q}_{\mathrm{P}} \mathrm{H}, \mathrm{Q}_{\mathrm{M}} \mathrm{H}$ or $\mathrm{Q}_{\mathrm{F}} \mathrm{H}$ and $\left[\left(\mathrm{CH}_{3}\right)_{n} \mathrm{SnCl}_{4-n}\right]\left(n=0,1\right.$ or $2 ; \mathrm{QH}=\mathrm{Q}_{\mathrm{P}} \mathrm{H}, \mathrm{Q}_{\mathrm{M}} \mathrm{H}$, or $\mathrm{Q}_{\mathrm{F}} \mathrm{H}$) in methanol containing potassium hydroxide yielded the compounds $\left[(\mathrm{Q})_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{n} \mathrm{Cl}_{4-n-2}\right](n=0$, 1 , or 2) (1-9) as colourless or brown solids characterized by analytical data, melting points, and yields (Table 1).

The complexes 1-6 $\left(\left(Q_{P}\right)^{-}\right.$and $\left(Q_{M}\right)^{-}$derivatives) are moisture-stable, whereas the $\left(Q_{F}\right)^{-}$derivatives, 7-9, gradually absorb water and decompose, regenerating $Q_{F} H$, as confirmed by elemental analyses, IR and ${ }^{1} \mathrm{H}$ NMR spectra. The compounds decompose more quickly at $\mathrm{ca} .80-90^{\circ} \mathrm{C}$. However, the complexes 7-9 are sufficiently stable to be well characterized. The reactions between $\mathrm{Tl}\left(\mathrm{Q}^{\prime}\right)$ and $\mathrm{Tl}\left(\mathrm{Q}^{\prime \prime}\right)$, prepared according to the literature [2e], and $\mathrm{Me}_{3} \mathrm{SnCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0^{\circ} \mathrm{C}\right)$ were also attempted: the expected $\left[\left(\mathrm{Q}^{\prime}\right) \mathrm{SnMe}_{3}\right]$ and $\left[\left(Q^{\prime \prime}\right) \mathrm{SnMe}_{3}\right]$ were not isolated, but the $2: 1 \mathrm{com}$ plexes $\left[\left(Q^{\prime}\right)_{2} \mathrm{SnMe}_{2}\right]$ and $\left[\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnMe}_{2}\right]$ always precipitated from the reaction solutions. $\mathrm{Me}_{3} \mathrm{SnCl}$ probably disproportionates in presence of $\mathrm{Q}^{\prime \prime}$ and Q^{--}to $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ and $\mathrm{Me}_{4} \mathrm{Sn}$. The presence of $\mathrm{Me}_{4} \mathrm{Sn}$ in the reaction solutions was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

All the compounds 1-9 are insoluble in water but soluble in chlorinated solvents and some are soluble in acetone and DMSO. Conductivity measurements in acetone for compounds which are sufficiently soluble,

TABLE 2, Selected IR data ${ }^{\mathrm{a}}\left(\mathrm{cm}^{-1}\right)$ of the complexes 1-9

Compound	$\nu(\mathrm{C}=0)$	$\nu(\mathrm{Sn}-\mathrm{O})$	$\nu(\mathrm{Sn}-\mathrm{Cl})$
$\mathrm{Q}_{\mathrm{P}} \mathrm{H}$	1635s		
$\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	1608s	410m	
$\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	1612s	438w	310w
$\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{SnCl}_{2}\right)$	1614s	463s	352s
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}$	1630s		
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	1600s	395m	
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	1600s	420w	320 m
$\left[\left(\mathrm{O}_{\mathbf{M}}\right)_{2} \mathrm{SnCl}_{2}\right]$	1580s	460 m	340s
$\mathrm{Q}_{\mathrm{F}} \mathrm{H}$	1675s		
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	1605s	380m	
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	1620s	365w	340w
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{SnCl}_{2}\right]$	1600s	363s	350s

${ }^{2}$ Nujol mull.
show that these complexes like [$\left(Q^{\prime}\right)_{2} \operatorname{SnRX}$] [3] and $\left[\left(\mathrm{Q}^{\prime \prime}\right)_{2} \operatorname{SnRX}\right][3]$ are non-electrolytes.

The important infrared spectral bands and their tentative assignments are in Table 2. The shift of the $\nu(\mathrm{C}=\mathrm{O})$ absorption band from $1630-1675 \mathrm{~cm}^{-1}$ in the free bases to $1580-1620 \mathrm{~cm}^{-1}$ in the chelates, and the non-appearance in the spectra of complexes of the broad absorption band due to $\nu(\mathrm{OH} \cdots \mathrm{O})$ suggests that both the carbonyl groups are involved in bonding to the tin through oxygen atoms [5]. By analogy with assignments for bis(acetylacetonato)- and bis(benzo-ylacetonato)-tin(IV) chelates [6] we have assigned the

TABLE 1. Analytical and other data for $\left(\mathrm{Q}_{\mathrm{P}}\right)^{-},\left(\mathrm{Q}_{\mathrm{M}}\right)^{-}$and $\left(\mathrm{Q}_{\mathrm{F}}\right)^{-}$derivatives

Compound ${ }^{\text {a }}$	Yields \%	M.p. ${ }^{\circ} \mathrm{C}$	Elem. Anal. (Found (calc.) (\%))		
			C	H	N
$1\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3} \overline{7}_{2}\right]\right.$	80	282-283	$\begin{gathered} 54.14 \\ (54.50) \end{gathered}$	$\begin{gathered} 3.78 \\ (3.81) \end{gathered}$	$\begin{gathered} 10.35 \\ (10.59) \end{gathered}$
$2\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	68	240-242	$\begin{gathered} 51.88 \\ (51.66) \end{gathered}$	$\begin{gathered} 3.41 \\ (3.34) \end{gathered}$	$\begin{gathered} 10.40 \\ (10.33) \end{gathered}$
$\mathbf{3}\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{SnCl}_{2}\right]$	50	320-322	$\begin{gathered} 49.17 \\ (48.95) \end{gathered}$	$\begin{gathered} 3.00 \\ (2.90) \end{gathered}$	$\begin{gathered} 9.84 \\ (10.07) \end{gathered}$
$4\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	72	201-202	$\begin{gathered} 54.20 \\ (53.91) \end{gathered}$	$\begin{gathered} 4.88 \\ (4.87) \end{gathered}$	$\begin{gathered} 9.55 \\ (9.67) \end{gathered}$
$5\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	65	120-122	$\begin{gathered} 50.24 \\ (50.08) \end{gathered}$	$\begin{gathered} 4.35 \\ (4.20) \end{gathered}$	$\begin{gathered} 8.91 \\ (9.34) \end{gathered}$
$6\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCl}_{2}\right]$	58	175-177	$\begin{gathered} 46.15 \\ (46.49) \end{gathered}$	$\begin{gathered} 3.59 \\ (3.58) \end{gathered}$	$\begin{gathered} 8.86 \\ (9.04) \end{gathered}$
$7\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	36	158-159	$\begin{gathered} 45.90 \\ (45.45) \end{gathered}$	$\begin{gathered} 3.35 \\ (3.23) \end{gathered}$	$\begin{gathered} 7.72 \\ (8.15) \end{gathered}$
$8\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right] \cdot 2 \mathrm{~S} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	45	106 dec	$\begin{gathered} 41.85 \\ (41.54) \end{gathered}$	$\begin{gathered} 3.67 \\ (3.62) \end{gathered}$	$\begin{gathered} 7.29 \\ (7.18) \end{gathered}$
$9\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{SnCl}_{2}\right]$	62	133-135	$\begin{gathered} 39.20 \\ (39.60) \end{gathered}$	$\begin{gathered} 2.40 \\ (2.22) \end{gathered}$	$\begin{gathered} 7.47 \\ (7.70) \end{gathered}$

[^1]bands around $450 \mathrm{~cm}^{-1}$ to predominant ($\mathrm{Sn}-\mathrm{O}$) stretching modes. Moreover, for the compounds $2,3,5$, 6,8 and 9 , bands assignable to $\nu(\mathrm{Sn}-\mathrm{Cl})$ are observed, consistent with their empirical formulae. In the spectrum of 8 there is also a strong peak centred at 3300 cm^{-1} with a shoulder at $3600 \mathrm{~cm}^{-1}$, indicating coordinated or lattice water.

The ${ }^{1} \mathrm{H}$ NMR data of 4 -acyl-5-pyrazolones and their complexes are listed in Table 3. The upfield shift of the methyl signals suggests a shielding of these protons upon coordination [7]. Moreover, the presence of several broad signals, (except in the spectra of $\left[(\mathrm{Q})_{2} \mathrm{SnMe}_{2}\right] 1,4$ and 7$)$ for each magnetically equivalent proton group, indicates the presence of isomers in solution.

Investigation of ${ }^{13} \mathrm{C}$ NMR spectra (Table 4) of the chelates shows a downfield shift of methyl carbon resonances upon coordination indicating reduced shielding in the chelates. Furthermore, the isomers in solution inferred from the ${ }^{1} \mathrm{H}$ spectra is also evident in
the ${ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra (Table 5) (compounds $2,3,5,6,8$ and 9) in which several absorptions have been found for each carbon atom and for the tin nucleus. Only in the case of dimethyltin(IV) complexes were isomers not detectable, but this is likely to be due to fluxionality around the coordination centre rather than to the absence of isomers.

All the ${ }^{119} \mathrm{Sn}$ chemical shifts fall in the typical range of hexacoordinated $\operatorname{tin}(I V)$ derivatives [7] and are affected by the electronegativity of the groups bonded to tin and by geometric distortions which modify bond angles at tin. For all $\left[\mathrm{Q}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{n} \mathrm{Cl}_{4-n-2}\right](n=0,1$, or 2) the ${ }^{119} \mathrm{Sn}$ chemical shift is a function of n (Fig. 2) as previously found for the $\left(\mathrm{Q}^{\prime}\right)^{-}$and $\left(\mathrm{Q}^{\prime \prime}\right)^{-}$complexes with $\operatorname{tin}(\mathrm{IV})$ [3].

In the Tables 3 and 4 spin-spin coupling constants of the $3-\mathrm{CH}_{3}$ protons and of $\mathrm{CF}_{3}-\mathrm{C}(\mathrm{O})-$ and $5-\mathrm{C}(\mathrm{O})$ carbon atoms with fluorine (compounds 7, 8 and 9) are also reported. No significant difference with respect to the free neutral $\mathrm{Q}_{\mathrm{F}} \mathrm{H}$ is observed [8].

TABLE 3. ${ }^{1} \mathrm{H}$ NMR data ${ }^{\text {a }}$ for the derivatives $\mathbf{1 - 9}$ (in CDCl_{3})

[^2]The ${ }^{19} \mathrm{~F}$ NMR data (Table 5) show the multiplicity found in the ${ }^{119} \mathrm{Sn}$ spectra. All the signals are shifted downfield (for example, for compound 7: $\delta=-71.2$ $\mathrm{ppm})$ with respect to the free neutral $\mathrm{Q}_{\mathrm{F}} \mathrm{H}(\delta=-75.2$ $\mathrm{ppm})$, as with $\left[(\mathrm{hfac})_{2} \mathrm{SnMe}_{2}\right](\delta=-77.1 \mathrm{ppm})$ compared to hfacH ($\delta=-77.6 \mathrm{ppm}$) hfacH $=1,1,1,5,5,5-$ hexafluoro-2,4-pentanedione) [9].

In Table 6 are some spectral data (IR, ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{119} \mathrm{Sn}$ NMR) of our $\left[\mathrm{Q}_{2} \mathrm{SnMe}_{2}\right]$ compounds, compared with those of the analogous β-diketonates. The ${ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$ and the ${ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$ values observed
for our compounds are comparable with those reported in literature for [(acac) $)_{2} \mathrm{SnMe}_{2}$] [10] ($\mathrm{acacH}=2,4-$ pentanedione), [(hfac) $\mathbf{2}_{2} \mathrm{SnMe}_{2}$] [10], [(bzac) $)_{2} \mathrm{Sn}-$ Me_{2}] [10] [(bzacH = 1-phenyl-1,3-butanedione)], and [(dbzm) ${ }_{2} \mathrm{SnMe}_{2}$] [10] (dbzmH = 1,3-diphenyl-1,3propanedione), to which trans structures in solution have been assigned on the basis of NMR, Raman and Mössbauer studies.

It has been noted that the ${ }^{119} \mathrm{Sn}$ chemical shift varies with the bonding geometry and the electronic density for hexacoordinated dimethyltin(IV) complexes [11]. In

TABLE 4. ${ }^{13} \mathrm{C}$ NMR data in CDCl_{3}

Compound	CH_{3}	N-R'	C(O)-R'	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{C}(5) \end{aligned}$	$\begin{aligned} & \mathrm{C}(3) \\ & \mathrm{C}(4) \end{aligned}$	R-Sn	others ${ }^{\text {a }}$
$\overline{\mathbf{Q}_{\mathbf{P}} \mathrm{H}}$	16.2	132.5; 135.3	119.3; 124.9	188.0	149.1		
		142.5; 144.8	128.2; 128.6	165.1	104.6		
1	16.5	131.8; 138.9	$120.1 ; 124.6$	b	150.9	9.8	
		$143.2 ; 144.4$	$127.8 ; 128.6$	b	b		
2	16.0	132.6; ${ }^{\text {b }}$	119.8; 120.1	b	b	b	
	16.3						
3	16.4	132.5; 133.0	119.4; 120.5	b	b		
	16.5	133.3; 133.5	120.7; 120.8	b	b		
	16.6	133.8	121.0; 121.2				
			$124.6 ; 124.7$				
			$124.9 ; 125.0$				
			128.2; 128.3				
			128.5; 128.6				
			128.7; 128.9				
			129.2				
$\mathrm{Q}_{\mathbf{M}} \mathrm{H}$	15.5	32.5	127.7; 128.3	193.0	147.0		
			130.0; 131.6	169.6102 .4			
			133.2; 138.5	160.4			
4	16.2	31.8	127.5; 128.2	b	148.2	8.4	
			130.9;	b	b		
5	16.1	32.0	127.9; 128.3	b	148.7	b	
			131.9	b			
6	16.2	32.2	128.2; 128.4	190.5	149.7		
	16.3	32.4	128.5; 128.6	163.4	104.4		
	16.4	32.5	$128.8 ; 128.9$				
			132.2; 132.3				
			132.5; 132.7				
			136.3; 136.6				
$\mathrm{Q}_{\mathrm{F}} \mathrm{H}$	14.8q	121.4; 128.0	116.2q	177.3q	147.9		${ }^{2} J(\mathrm{C}-\mathrm{F})=284.3$
		129.3; 136.3		161.0	99.6		${ }^{3} \mathrm{~J}(\mathrm{C}-\mathrm{F})=38.8$
							${ }^{5} J(C-F)=3.9$
7	15.8 q		117.2 q	173.2q	148.4	9.1	${ }^{2} J(\mathrm{C}-\mathrm{F})=284.0$
		$129.1 ; 137.3$		164.2	101.2		${ }^{3} J(C-F)=39.3$
							${ }^{5} J(\mathrm{C}-\mathrm{F})=5.2$
8	15.3 q		116.7 q	${ }^{\text {b }}$	148.4	8.5	${ }^{2} J(C-F)=283.5$
		$129.0 ; 136.5$		b			${ }^{5} J(C-F)=3.6$
9	$\begin{aligned} & 14.7 \mathrm{q} \\ & 15.7 \mathrm{q} \end{aligned}$	121.2; 121.3	b	b	148.0		${ }^{2} J(C-F)=4.9$
		121.5; 121.8		b	97.8		${ }^{2} J(C-F)=3.9$
		123.3; 127.8					
		128.0; 128.2					
		129.0; 129.2					
		129.3; 129.4					
		135.8; 136.1					

[^3]TABLE 5. ${ }^{119} \mathrm{Sn}$ and ${ }^{19} \mathrm{~F}$ NMR data in CDCl_{3}

No.	Compound	$\begin{aligned} & -\delta(p p m)^{a} \\ & { }^{119} \mathrm{Sn} \end{aligned}$	$\begin{aligned} & -\delta(\mathrm{ppm})^{\mathrm{b}} \\ & { }^{19} \mathrm{~F} \end{aligned}$
1	$\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	321.0	
2	$\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	491.6	
		496.2	
3	$\left[\left(\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{SnCl}_{2}\right]$	632.2	
		634.6	
		638.1	
		665.2	
4	$\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	308.7	
5	$\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	492.0	
		495.5	
		499.3	
6	$\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCl}_{2}\right]$	564.4	
		564.9	
		629.2	
		632.4	
7	$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\mathrm{c}}$	286.4	71.2
8	$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{SnCH}_{3} \mathrm{Cl}\right]$	471.1	71.2
		474.5	72.2
			75.9
9	$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{SnCl}_{2}\right]$	620.8	70.2
		622.8	70.6
		626.0	70.7
			76.3

${ }^{3} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{4}$ external std.
${ }^{b} \mathrm{CFCl}_{3}$ internal std.
c $-\delta\left(\mathrm{Q}_{\mathrm{F}} \mathrm{H}\right)=75.2 \mathrm{ppm}$.
fact, the ${ }^{119} \mathrm{Sn}$ resonances of the $\left(\mathrm{Q}^{\prime}\right)^{-},\left(\mathrm{Q}^{\prime \prime}\right)^{-},\left(\mathrm{Q}_{\mathrm{P}}\right)^{-}$, $\left(\mathrm{Q}_{\mathrm{M}}\right)^{-}$and $\left(\mathrm{Q}_{\mathrm{F}}\right)^{-}$derivatives are shifted downfield with respect to [(acac) SnMe_{2}], [(bzac) $\mathbf{S n M e}_{2}$], and

Fig. 2. Effect of the substitution on the ${ }^{119} \mathrm{Sn}$ chemical shift of $\left[(\mathrm{Q})_{2} \mathrm{SnR}_{n} \mathrm{Cl}_{2-n}\right]$ (average values for $n=0$ and $n=1$).
[(dbzm) $)_{2} \mathrm{SnMe}_{2}$], in keeping with a lower donating ability of the pyrazolonates, and also with a marked distortion from octahedral geometry in our compounds. Furthermore, the introduction of an electron withdrawing group $\left(\mathrm{Q}_{\mathrm{P}}{ }^{-}\right)$or of a less sterically hindered group ($\mathrm{Q}_{\mathrm{M}}{ }^{-}$) into the pyrazolone moiety does not produce any electronic modification around the metal atom, whereas an electron withdrawing group in the 4-acyl moiety $\left(\mathrm{Q}_{\mathrm{F}}{ }^{-}\right)$reduces the donor capacity, as indicated by the downfield ${ }^{119} \mathrm{Sn}$ chemical shift and by the lower $\nu(\mathbf{S n}-\mathrm{O})$ stretching frequency compared to all the other β-diketonate complexes.

2.1. X-Ray crystal structure $\left[\left(Q^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$

The crystal structure involves discrete molecules, with no $\mathrm{Sn} \cdots \mathrm{Sn}$ interactions. An ortep [12] represen-

TABLE 6. Comparison with several bis(β-diketonate)dimethyltin(IV) compounds

Compounds ${ }^{\text {a }}$	$\nu(\mathrm{C}=0)$	$\nu(\mathbf{S n}-\mathbf{O})$	$(-\delta)^{119} \mathrm{Sn}$	${ }^{1} \mathrm{H}\left(\mathrm{Sn}-\mathrm{CH}_{3}\right)$	${ }^{2} \mathbf{J}(\mathbf{S n}-\mathrm{H})$	${ }^{1} \mathrm{~J}(\mathrm{Sn}-\mathrm{C})$
[($\left.\left.\mathrm{Q}_{\mathrm{P}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	1608	410	320.98	1.10	100.0	b
$\left[\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	1600	395	308.67	0.90	101.2	893
$\left[\left(\mathrm{Q}_{\mathrm{F}}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	1605	380	286.44	1.05	100.0	888
$\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right)^{\text {c }}$	1598	400	318.50	1.02	99.0	933
$\left[\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\text {c }}$	1602	395	320.60	0.83	105.0	919
[(acac) ${ }_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$]	$1565{ }^{\text {d }}$	$430{ }^{\text {d }}$	$365.00{ }^{\text {e }}$	$0.50{ }^{\text {d }}$	$99.3{ }^{\text {f }}$	$977{ }^{\text {f }}$
[(hfac) $2_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$]	$1560{ }^{\text {8 }}$	$375{ }^{8}$	$309.30{ }^{8}$	$1.09{ }^{8}$	$99.6{ }^{8}$	$838{ }^{\text {e }}$
$\left[(\mathrm{bzac})_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	$<1600{ }^{\text {d }}$	$450{ }^{\text {d }}$	$353.50{ }^{\text {c }}$	h ${ }^{\text {d }}$ d	$98.4{ }^{\text {f }}$	$931{ }^{\text {f }}$
$\left[(\mathrm{dbzm})_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$	$<1600{ }^{\text {d }}$	$425{ }^{\text {d }}$	$348.00{ }^{\text {e }}$	$0.93{ }^{\text {d }}$	$97.0{ }^{\text {f }}$	913 f

[^4]tation of the molecule and the numbering scheme are shown in Fig. 3.

The interatomic distances and bond angles are listed in Table 7. The molecule exhibits no crystallographic
symmetry and all atoms occupy general positions, though it is possible to imagine $C_{2 v}$ symmetry with a mirror plane passing through $\mathrm{Sn}, \mathrm{C}(22), \mathrm{C}(22 \mathrm{a})$ and the midpoints of the segments $\mathrm{O}(14)-\mathrm{O}(14 \mathrm{a})$ and $\mathrm{O}(15)-$

TABLE 7. Interatomic distances (\AA) and bond angles (deg) with e.s.d.'s in parentheses

In the coordination sphere			
$\mathrm{Sn}-\mathrm{O}(14)$	2.337(4)	Sn -O(14a)	2.412(4)
$\mathrm{Sn}-\mathrm{O}(15)$	2.104(3)	Sn -O(15a)	$2.103(4)$
$\mathrm{Sn}-\mathrm{C}(22)$	2.095(8)	$\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	$2.090(8)$
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(15)$	80.9(1)	$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$	80.7(1)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{C}(22)$	82.3(2)	$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22)$	84.4(3)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	85.2(2)	$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	82.2(3)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$	157.3(1)	$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{O}(15)$	157.4(2)
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(22)$	102.5(3)	$\mathrm{O}(15 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22)$	96.6(2)
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	98.6(3)	$\mathrm{O}(15 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	103.9(2)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(14 \mathrm{a})$	121.6(1)	$\mathrm{C}(22)-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	153.3(3)
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$	77.2(1)		
In the bidentate-5-pyrazolonate ligands			
$\mathrm{N}(1)-\mathrm{N}(2)$	1.398(7)	$\mathrm{N}(1 \mathrm{a})-\mathrm{N}(2 \mathrm{a})$	1.406(5)
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.320(8)$	$\mathrm{N}(2 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	1.318(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.423 (7)	C(3a)-C(4a)	$1.427(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.410(7)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$	1.422(5)
$\mathrm{C}(5)-\mathrm{N}(1)$	$1.357(6)$	$\mathrm{O}(5 \mathrm{a})-\mathrm{N}(1 \mathrm{a})$	1.343(6)
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.420(8)$	$\mathrm{N}(1 \mathrm{a})-\mathrm{C} 6 \mathrm{a})$	1.420 (6)
$\mathrm{C}(3)-\mathrm{C}(12)$	1.516(9)	C(3a)-C(12a)	1.503(6)
$\mathrm{C}(4)-\mathrm{C}(13)$	$1.401(6)$	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	$1.406(6)$
$\mathrm{C}(5) \mathrm{O}(15)$	$1.306(5)$	C(5a)-O(15a)	1.284(6)
$\mathrm{C}(13)-\mathrm{O}(14)$	$1.266(6)$	C(13a)-O(14a)	1.259(7)
$\mathrm{C}(13)-\mathrm{C}(16)$	1.494(7)	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(16 \mathrm{a})$	1.477(6)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	110.0(4)	$\mathrm{N}(2 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$	111.9(3)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	118.0(5)	$\mathrm{N}(2 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{C}(6 \mathrm{a})$	$119.2(4)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$	130.7(4)	$\mathrm{C}(5 \mathrm{a})-\mathrm{N}(1 \mathrm{a})-\mathrm{C}(6 \mathrm{a})$	128.8(4)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	106.0(4)	$\mathrm{N}(1 \mathrm{a})-\mathrm{N}(2 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	105.2(4)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.1(5)	$N(2 a)-C(3 a)-C(4 a)$	111.8(4)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	116.9(5)	$\mathrm{N}(2 \mathrm{a})-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(12 \mathrm{a})$	118.3(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	130.8(5)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(12 \mathrm{a})$	129.8(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	103.7(4)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$	104.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	132.4(5)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	131.1(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$	123.2(4)	$\mathrm{C}(5 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(13 \mathrm{a})$	123.9(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	108.2(4)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5 \mathrm{a})-\mathrm{N}(1 \mathrm{a})$	$106.5(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(15)$	132.2(4)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5 \mathrm{a})-\mathrm{O}(15 \mathrm{a})$	132.3(4)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(15)$	119.6(4)	$\mathrm{N}(1 \mathrm{a})-\mathrm{C}(5 \mathrm{a})-\mathrm{O}(15 \mathrm{a})$	121.0(4)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.0(6)	$\mathrm{N}(1 \mathrm{a})-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	119.2(6)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	119.1(6)	$\mathrm{N}(1 \mathrm{a})-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(11 \mathrm{a})$	119.6(5)
$\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{O}(14)$	122.1(4)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(13 \mathrm{a})-\mathrm{O}(14 \mathrm{a})$	$122.0(4)$
$\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{C}(16)$	123.4(4)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(13 \mathrm{a})-\mathrm{C}(16 \mathrm{a})$	121.6(5)
$\mathrm{O}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	114.5(4)	$\mathrm{O}(14 \mathrm{a})-\mathrm{C}(13 \mathrm{a})-\mathrm{C}(16 \mathrm{a})$	116.3(4)
$\mathrm{Sn}-\mathrm{O}(14)-\mathrm{C}(13)$	130.8(3)	Sn -O(14a)-C(13a)	128.5(3)
$\mathrm{Sn}-\mathrm{O}(15)-\mathrm{C}(5)$	124.5(3)	$\mathrm{Sn}-\mathrm{O}(15 \mathrm{a}) \mathrm{C}(5 \mathrm{a})$	128.9(3)
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(17)$	122.5(4)	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(16 \mathrm{a})-\mathrm{C}(17 \mathrm{a})$	120.0(6)
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(21)$	117.3(4)	$\mathrm{C}(13 \mathrm{a})-\mathrm{C}(16 \mathrm{a})-\mathrm{C}(21 \mathrm{a})$	122.0 (6)
In the phenyl rings (weighted average of bond distances and endocyclic angles) ${ }^{\text {a }}$			
C(joint)-C(ortho)	$1.385(5)$	C(ipso)	119.6(7)
C(ortho)-C(meta)	$1.388(4)$	C(ortho)	119.9(4)
C(meta)-C(para)	1.378(5)	C(meta)	120.7(3)
		C(para)	118.9(7)

[^5]$O(15 a)$, the other mirror plane coinciding with the four oxygen atoms. The shortest intermolecular approaches are normal van der Waals contacts.

The tin atom is six-coordinate, but the environment is hardly octahedral. Such a distortion has already been found in [$\left.\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]$ [3]. In the present compound the cis-angles range from $77.2(1)$ to $121.6(1)^{\circ}$ and the trans-angles from 153.3(3) to $157.4(2)^{\circ}$, compared with 74.1(2)-127.4(2) and $150.0(5)-153.1(2)^{\circ}$, respectively, in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]$ [3]. The distortion is inherent in the sterically demanding ligand, regardless of the bulkiness of the two alkyl groups, but the less bulky methyl groups give rise to a slightly smaller distortion.

There are two sets of $\mathrm{Sn}-\mathrm{O}$ bonds; $\mathrm{Sn}-\mathrm{O}(15)$ and $\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$ (2.104(3) and 2.103(4) \AA) are normal, whereas $\mathrm{Sn}-\mathrm{O}(14)$ and $\mathrm{Sn}-\mathrm{O}(14 \mathrm{a})$ are exceptionally long ($2.337(4)$ and $2.412(4) \AA$), a peculiarity observed elsewhere [3] and attributed to the asymmetry of β-diketonato ring in the $(\mathrm{Q})^{-}$ligand. The shorter $\mathrm{Sn}-\mathrm{O}$ bonds are connected with the longer $\mathrm{C}-\mathrm{O}$ bonds and vice versa, as in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]$ [3].

Other cffects of the small volume of the methyl groups can be seen in the shorter $\mathrm{Sn}-\mathrm{C}$ and $\mathrm{Sn}-\mathrm{O}$ distances in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$ (see Table 8). The separations between $\mathrm{O}(14)$ and $\mathrm{C}(22)$ or $\mathrm{C}(22 \mathrm{a})$, and between $\mathrm{O}(14 \mathrm{a})$ and $\mathrm{C}(22)$ or $\mathrm{C}(22 \mathrm{a})$, are 2.923(9)$3.037(9) \AA$, compared to $3.04(1)-3.25(1) \AA$ in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right.$] [3]. The $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ axis is bent $153.3(3)^{\circ}$ in such a way to arrange the alkyls in the space between $O(14)$ and $O(14 a)$, which are $4.145(6) \AA$ apart. The bite of the two $(\mathrm{Q})^{-}$ligands, $80.9(1)^{\circ}$ for

Fig. 3. ORTEP plot and numbering scheme of atoms. Thermal ellipsoids enclose 25% of the electron density. Hydrogen atoms are omitted for clarity.

TABLE 8. Comparison of structural features (\AA and deg) in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\mathrm{a}}\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left({ }^{(t \mathrm{Bu})_{2}}{ }^{\mathrm{b}}\right.\right.$ and $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)_{2}\right]^{\mathrm{c}}$

	a	b	cd
$\mathrm{Sn}-\mathrm{O}(14)$	2.337(4)	2.381(7)	2.35(2)
$\mathrm{Sn}-\mathrm{O}(14 \mathrm{a})$	2.412(4)	$2.461(6)$	2.38(2)
$\mathrm{Sn}-\mathrm{O}(15)$	2.104(3)	$2.145(5)$	2.12(2)
Sn-O(15a)	2.103(4)	$2.135(6)$	2.11(1)
$\mathrm{Sn}-\mathrm{C}(22)$	$2.095(8)$	2.204(11)	2.07(2)
Sn-C(22a)	$2.090(8)$	2.196 (17)	2.12(2)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(14 \mathrm{a})$	121.6(1)	127.4(2)	118.7(4)
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$	77.2(1)	74.1(2)	79.2(5)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(15)$	80.9(1)	79.8(2)	82.0(4)
$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$	80.7(1)	79.3(2)	80.3(4)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{C}(22)$	82.3(2)	82.9(4)	87.0(6)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	85.2(2)	83.6(6)	83.9(6)
$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22)$	84.4(3)	84.9(3)	80.5(7)
$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	82.2(3)	82.3(5)	83.4(7)
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(22)$	102.5(3)	106.9(3)	100.1(7)
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	98.6(3)	96.8(4)	101.8(6)
$\mathrm{O}(15 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22)$	96.6(2)	98.4(4)	98.5(6)
$\mathrm{O}(15 \mathrm{a})-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	103.9(2)	105.6(6)	97.9(6)
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$	157.3(1)	153.1(2)	160.9(4)
$\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{O}(15)$	157.4(2)	152.1(2)	159.3(4)
$\mathrm{C}(22)-\mathrm{Sn}-\mathrm{C}(22 \mathrm{a})$	153.3(3)	150.0(5)	154.7(8)

${ }^{\text {a }}$ This work.
${ }^{\text {b }}$ trans-di(t-butyl)bis(1-phenyl-3-methyl-4-benzoyl-pyrazolon-5-ato)tin(IV) [3].
c trans-di(n-butyl)bis(1-phenyl-3-methyl-4-benzoyl-pyrazolon-5-ato)tin(IV) [13].
d The numbering of atoms is the same as used for our compound.
$\mathrm{O}(14)-\mathrm{Sn}-\mathrm{O}(15)$ and $80.7(1)^{\circ}$ for $\mathrm{O}(14 \mathrm{a})-\mathrm{Sn}-\mathrm{O}(15 \mathrm{a})$, is nearly the same as in $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]$ and $\left[\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right][13]$ (Table 8).

The six-membered chelate rings show different conformations. The $\mathrm{Sn}, \mathrm{O}(15), \mathrm{C}(5), \mathrm{C}(4), \mathrm{C}(13), \mathrm{O}(14)$ ring adopts the half-chair form. The puckering parameters calculated according to Cremer and Pople [14] are $\mathrm{Q}=0.282 \AA, \theta=55.6^{\circ}, \phi=29.9^{\circ}$, compared with $\theta=$ 45.2° and $\phi=30^{\circ}$ for the ideal half-chair.

The other ring, $\mathrm{O}(14 \mathrm{a}), \mathrm{C}(13 \mathrm{a}), \mathrm{C}(4 \mathrm{a}), \mathrm{C}(5 \mathrm{a}), \mathrm{O}(15 \mathrm{a})$, Sn , adopts the boat form. The $\mathrm{O}(14 \mathrm{a})$ and $\mathrm{C}(5 \mathrm{a})$ atoms are the bow and the stern, with displacements from the plane $\mathrm{Sn}, \mathrm{O}(15 \mathrm{a}), \mathrm{C}(13 \mathrm{a}), \mathrm{C}(4 \mathrm{a})$ of $-0.229(5)$ and $-0.093(5) \AA$, respectively. The puckering parameters are $\mathrm{Q}=0.194 \AA, \theta=108.2^{\circ}, \phi=176.1^{\circ}$, compared with $\theta=90^{\circ}$ and $\phi=180^{\circ}$ for the inverted boat conformation. The rules concerning the bond angles [15] apply inside both pyrazole rings.

As for the regions expected to be planar, the four oxygens and the tin atom do not lie in a plane and the following out-of-plane displacements (\AA) are observed: $\mathrm{Sn}, 0.0004(3) ; \mathrm{O}(14),-0.089(4) ; \quad \mathrm{O}(15), 0.073(4)$; $O(14 a), 0.060(5) ; O(15 a),-0.108(4)$. The two pyrazole rings are different: the ring $\mathrm{N}(1)-\mathrm{C}(5)$ is non-planar
(maximum displacement $\mathrm{N}(2)=0.006(5) \AA$) whereas the other ring $\mathrm{N}(1 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$ is planar (maximum displacement $\mathrm{N}(2 \mathrm{a})=-0.003(4)$ and $\mathrm{C}(3 \mathrm{a})=0.003(5) \AA$). The dihedral angles are $18.3(6)^{\circ}$ between the pyrazole $\mathrm{N}(1)-\mathrm{C}(5)$ and its adjacent chelate ring, and $7.7(9)^{\circ}$ between the pyrazole $\mathrm{N}(1 \mathrm{a})-\mathrm{C}(5 \mathrm{a})$ and its adjacent chelate ring.

The phenyl rings $\mathrm{C}(16)-\mathrm{C}(21)$ and $\mathrm{C}(16 \mathrm{a})-\mathrm{C}(21 \mathrm{a})$ are rotated by $40.0(2)^{\circ}$ and $68.0(2)^{\circ}$ with respect to the corresponding chelate rings, whereas the phenyl rings $C(6)-C(11)$ and $C(6 a)-C(11 a)$ are rotated by 14.2(9) and $36.0(4)^{\circ}$ with respect to the corresponding pyrazole rings.

3. Experimental section

The samples werc dried in vacuo to constant weight ($20^{\circ} \mathrm{C}$, ca. 0.1 Torr). Elemental analyses were carried out in house with a Carlo Erba 1106 instrument. Infrared spectra were recorded from 4000 to $600 \mathrm{~cm}^{-1}$ with a Perkin Elmer 1600 Series FTIR. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119}$ Sn NMR spectra were recorded on a Varian VXR300 spectrometer operating at room temperature (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 111.9 MHz for ${ }^{119} \mathrm{Sn}$). Melting points were taken on an Electrothermal IA 8100 instrument. The electrical resistances of solutions were measured with a Crison CDTM 522 conductimeter at room temperature. All the reagents were of analytical grade and used without further purification. $\mathbf{Q}_{\mathbf{P}} \mathrm{H}$ and $\mathbf{Q}_{\mathbf{F}} \mathrm{H}$ were synthesized by the procedure reported by Jensen [1], while $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$, prepared for the first time was obtained as follows.

3.1. 1,3-dimethyl-4-benzoyl-5-pyrazolone, $Q_{M} H$

1,3-Dimethyl-5-pyrazolone (synthesized by the procedure reported in the literature [16]) ($6.0 \mathrm{~g}, 53.5$ mmol) was placed in a flask equipped with a stirrer, separating funnel and a reflux condenser and diseglved in dioxane (60 ml) by warming. Calcium hydroxde ($10.0 \mathrm{~g}, 135 \mathrm{mmol}$) and benzoyl chloride ($11 \mathrm{ml}, 13.3 \mathrm{~g}$, 94.7 mol) were added, the latter dropwise during 10 min . The mixture was heated to reflux overnight and then poured into $\mathrm{HCl} 2 \mathrm{~N}(200 \mathrm{ml})$ to decompose the calcium complex. Two phases formed. The organic phase, separated from the acqueous phase, was evaporated and the oily mass obtained treated with water (100 ml), to give a red solid ($4.0 \mathrm{~g}, 18.5 \mathrm{mmol}$). This was recrystallized from methanol-water, and dried to constant weight. Analysis for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ found: C 67.17, H 5.73, N 12.41; calc.: C $66.65, \mathrm{H} 5.59$, N 12.95% M.p. $=137-139^{\circ} \mathrm{C}$.

3.1.1. $\left[\left(Q_{P}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$ (1)

To a methanol solution (50 ml) of $\mathrm{Q}_{\mathrm{P}} \mathrm{H}(0.65 \mathrm{~g}, 2$ mmol) were added potassium hydroxide ($0.11 \mathrm{~g}, 2$ mmol) and dichlorodimethyltin(IV) ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$): a precipitate was formed. The mixture was set aside overnight and the precipitate of 1 was filtered off and washed with methanol ($c a .10 \mathrm{ml}$), and recrystallized from chloroform/methanol. Compounds 2, 3 and 9 were obtained similarly.

3.1.2. $\left[\left(Q_{M}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]$ (4)

To a methanol solution (50 ml) of $\mathrm{Q}_{\mathrm{M}} \mathrm{H}(0.43 \mathrm{~g}, 2$ mmol) were added potassium hydroxide ($0.11 \mathrm{~g}, 2$ mmol) and dichlorodimethyltin(IV) ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$). After water addition (10 ml) the clear solution yielded a precipitate of 4 , which was filtered off and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. Compounds $5-8$ were obtained similarly.

3.2. X-Ray data collection and structure determination.

A pale yellow single crystal with dimensions of 0.07 $\times 0.14 \times 0.69 \mathrm{~mm}$ was selected for the X-ray analysis and mounted on the Enraf Nonius CAD4 diffractometer with graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation of the Centro Grandi Strumenti, Università di Pavia.

TABLE 9. Crystal data: collection of data and Refinement of the structure

Formula	$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$		
Formula weight	704.7		
space group	$P \overline{1}$		
colour	pale-yellow		
a, \AA	15.327(1)		
b, \AA	16.753(1)		
c, \AA	6.606(1)		
α, deg	97.50(1)		
$\boldsymbol{\beta}, \mathrm{deg}$	94.44(1)		
γ, deg	80.33(1)		
$V \mathrm{c}, \AA^{3}$	1655.2(2)		
Z	2		
D calcd, gcm^{-3}	1.41		
cryst. size, mm	$0.07 \times 0.14 \times 0.69$		
$\mu(\mathrm{Cu} \mathrm{K} \alpha), \mathrm{cm}^{-1}$	67.4		
data collcn instrument	Enraf-Nonius CAD4		
radiation (monochromated)	$\mathrm{CuK} \alpha(\lambda=1.5418 \mathrm{~A}$)		
T of data collection, K	293		
scan mode	$\omega / 2 \theta$		
data collcn range	$4<2 \theta<70$		
stds (measd every 100 min)	$462,241,452$		
no. of unique reflcns measd	$6513(\pm h, \pm k, l)$		
no. of data with $F_{0}^{2} \geqslant 3 \sigma\left(F_{0}{ }^{2}\right)$	5655		
No. of param refined	406		
$R^{\text {a }}$ and $R_{w}{ }^{\text {b }}$	0.050, 0.053		
${ }^{\mathrm{a}} R=\left(\Sigma\left\\|F_{\mathrm{o}}\|-k\| F_{\mathrm{c}}\right\\|\right) / \Sigma\left\|F_{\mathrm{o}}\right\|$ ${ }^{\mathrm{b}} \boldsymbol{R}_{w}=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-k\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w\right.$			

The search program was used to obtain 25 reflections, from which approximate cell dimensions were derived by the index program. Accurate lattice parameters, given in Table 9, were obtained by least-squares refinement of these reflections. The triclinic cell quoted was confirmed by use of the tracer program [17]. The $\omega / 2 \theta$ scan technique was used to collect the intensities of 6513 independent reflections within the angular range $4 \leqslant 2 \theta \leqslant 70^{\circ}$. Three standard reflections were

TABLE 10. Final coordinates and equivalent isotropic thermal parameters (with e.s.d.'s in parentheses)

Atom	\boldsymbol{x}	y	z	$B\left(\AA^{2}\right)$
Non-hydrogen atoms				
Sn	$0.37290(2)$	0.22515(2)	0.12127(5)	3.296(7)
N(1)	0.1240(2)	0.1527(3)	-0.0674(8)	4.3(1)
N(2)	0.0916 (3)	0.0825(3)	-0.0340(9)	5.1(1)
C(3)	0.1442(3)	0.0509(3)	0.1129(9)	4.7(1)
C(4)	0.2133 (3)	$0.0970(3)$	0.1794(8)	3.8(1)
C(5)	0.1969 (2)	0.1618(2)	0.0580(7)	3.8(1)
C(6)	0.0891(3)	0.1915(4)	-0.2416(10)	4.5(1)
C(7)	0.1188(6)	0.2594(5)	-0.2899(12)	7.7(2)
C(8)	0.0879(6)	0.2926(5)	-0.4684(14)	8.3(2)
C(9)	0.0257(5)	0.2591(5)	-0.5991(12)	6.8(2)
C(10)	-0.0036(5)	0.1911(5)	-0.5502(12)	6.2(2)
C(11)	0.0273(4)	0.1579(4)	-0.3721(11)	5.4(2)
C(12)	0.1270(4)	-0.0295(4)	$0.1706(13)$	7.3(2)
O(13)	0.2903(3)	0.0814(2)	$0.3062(7)$	3.7(1)
O(14)	0.3531(2)	0.1221(2)	0.3119(7)	5.14(9)
O(15)	0.2366(2)	0.2245(2)	0.0522(6)	4.38(9)
C(16)	$0.3056(3)$	0.0158(3)	0.4441(8)	3.8(1)
C(17)	$0.2430(4)$	0.0062(3)	$0.5763(10)$	4.7(1)
C(18)	0.2629(5)	-0.0541(4)	$0.7064(11)$	6.0.2)
C(19)	0.3459(6)	-0.1029(4)	$0.7074(11)$	6.5(2)
C(20)	0.4087(5)	-0.0922(4)	0.5795(13)	6.0(2)
C(21)	0.3892(4)	-0.0337(4)	0.4456(11)	4.8(1)
C(22)	$0.3745(6)$	0.2932(5)	0.4107(12)	6.1(2)
N(1a)	0.3493(2)	0.4372(2)	-0.1986(6)	3.60(9)
N(2a)	0.4144(2)	0.4757(2)	-0.2664(7)	3.9(1)
C(3a)	0.4907(2)	0.4315(2)	-0.2165(7)	3.5(1)
C(4a)	0.4786(2)	0.3643(2)	-0.1149(7)	3.3(1)
C(5a)	0.3851(2)	0.3711(2)	-0.1078(7)	3.4(1)
C(6a)	0.2584(3)	0.4694(3)	-0.2344(9)	4.2(1)
C(7a)	$0.1999(4)$	0.4673(5)	-0.0893(13)	6.6(2)
C(8a)	0.1107(5)	0.5005(6)	-0.1261(18)	8.8(3)
C(9a)	0.0808(5)	0.5353(5)	-0.3006(18)	8.2(3)
C(10a)	0.1419(6)	$0.5364(5)$	-0.4418(15)	7.6(2)
C(11a)	0.2312(5)	$0.5039(4)$	-0.4111(12)	5.4(2)
C(12a)	0.5747(3)	0.4578(3)	-0.2671(9)	4.4(1)
C(13a)	0.5401(3)	0.3074(3)	-0.0174(9)	3.9(1)
O(14a)	0.5167(3)	$0.2630(3)$	0.1016(8)	6.1(1)
O(15a)	0.3360(2)	0.3249 (2)	-0.0473(7)	4.45(9)
C(16a)	0.6359(3)	0.2965(3)	-0.0496(11)	4.2(1)
C(17a)	0.6964(4)	$0.3077(5)$	0.1169(13)	5.8(2)
C(18a)	0.7863(4)	0.2946(6)	$0.0906(16)$	7.8(3)
C(19a)	0.8185(5)	$0.2680(6)$	-0.1018(19)	8.7(3)
C(20a)	0.7593(6)	$0.2550(7)$	-0.2677(17)	9.0.3)
C(21a)	0.6690(5)	0.2712(5)	-0.2393(14)	6.5(2)
C(22a)	0.4226(6)	0.1297(5)	-0.0964(12)	6.0(2)

measured every 100 min and showed small random deviations within the limits of statistical fluctuation. The intensities were corrected for Lorentz and polarization factors and for absorption according to North et al. [18] (minimum and maximum absorption factors 0.6770 and 0.9998). A total of 5655 reflections with $I \geqslant 3 \sigma(I)$ was regarded as observed.

The structure was solved by Patterson and Fourier methods. The position of the Sn atom was obtained from the three-dimensional Patterson map. A difference electron density synthesis based upon the Sn signs revealed the position of all the non-hydrogen atoms. The full-matrix least-squares refinement of the positional and first isotropic and later anisotropic thermal parameters reduced R to 0.050 and R_{w} to 0.053 . The hydrogen atoms located in calculated positions and checked on a difference Fourier map were included in the calculations in fixed positions with the same isotropic thermal parameters of their bonded atoms. The largest shift/esd ratio in the last cycle was 0.24 . The largest residual peaks on the final difference Fourier map were 0.488 and $-0.540 \mathrm{e}^{\AA^{-3}}$, both close to the Sn atom. No extinction correction was applied.

All calculations were carried out with the EnrafNonius sDP crystallographic computing package [19] and with local programs. The final atomic coordinates for non-hydrogen atoms are given in Table 10.

4. Supplementary material available

Tables of anisotropic thermal parameters for nonhydrogen atoms, final coordinates and equivalent isotropic thermal parameters involving hydrogen atoms, planarity of molecular regions, and a list of structure factors can be obtained from one of the authors (B. Bovio).

Acknowledgments

Financial support by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and by consiglio Nazionale delle Ricerche C.N.R.-Rome is acknowledged.

References

1 B.S. Jensen, Acta Chem. Scand., 13 (1959), 1347, 1668, 1890.
2 (a) S. Miyazaki, H. Mukai, S. Umetani, S. Kihara and M. Matsui, Inorg. Chem., 28 (1989), 3014 and references therein; (b) R. Morales, H. Nekimken, C.S. Bartholdi and P.T. Cunningham, Spectrochim. Acta, A44 (1988) 165 and references therein; (c) M.Y. Mirza and R.T. Bailey, J. Inorg. Nucl. Chem, 41 (1979) 772; (d) M.Y. Mirza and F.J. Nwabue, Talanta, 28 (1981) 53; (e) F. Bonati, L.A. Oro and M.T. Pinillos, Polyhedron, 4 (1985) 357 and references therein; (f) M.S. Nagar, P.B. Ruikar and M.S. Subramanian, Polyhedron, 6 (1987) 1913.

3 C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati and B. Bovio, J. Organomet. Chem., 405 (1991) 75.
4 C. Pettinari, F. Bonati, A. Cingolani, G. Gioia Lobbia and F. Marchetti, Gazz. Chim. Ital., 122 (1992) 261.
5 S. Kawaguchi, Variety of coordination modes of ligands in metal complexes, Springer Verlag, Berlin, 1988, Chapter 5 (pp. 75-119); S. Kawaguchi, Coord. Chem. Rev., 10 (1986) 51; A.R. Siedle, Diketones and related ligands, in G. Wilkinson (ed.), Comprehensive Coordination Chemistry, Vol. 2, Pergamon Press, Oxford, 1987, Section 15.4 (pp. 365-412); R.C. Mehrotra, R. Bohra and D.P. Gaur, Metal β-diketonates and allied derivatives, Academic Press, New York, 1978.
6 M.M. McGrady and R.S. Tobias, J. Am. Chem. Soc., 87 (1965) 1909.

7 P.G. Harrison, Investigating tin compounds using spectroscopy, in P.G. Harrison (ed.), in Chemistry of tin, Blackie, Glasgow, Chapter 3, pp. 61-89 and references therein:
8 E.C. Okafor, Spectrochim. Acta, 37A (1981) 951.
9 C. Pettinari and F. Marchetti, unpublished results.

10 T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.
11 W.F. Howard, Jr., R.W. Crecely and W.H. Nelson, Inorg. Chem., 24 (1985) 2204.
12 C.K. Johnson, ortep. Report ORNL-3793, Oak Ridge National Laboratory, Tennessee, USA, 1965.
13 S. Saxena, R. Bohra and A.K. Rai, Inorg. Chim. Acta, 173 (1990) 191.

14 D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354.
15 F. Bonati and B. Bovio, J. Crystallogr. Spectr. Res., 20 (1990) 235.
16 A.I. Vogel, Vogel's textbook of practical organic chemistry, Longman, Harlow, 1989, Chapter 8, p. 1150.
17 S.L. Lawton, R.A. Jacobson, TRACER, a cell reduction program. Ames Laboratory, Iowa State University Ames, IA, 1965.
18 A.C.T. North, D.C. Phillips and F.C. Mathews, Acta Crystallogr., A24 (1968) 351.
19 B.A. Frenz and Associates Inc., College Station, TX 77840 and Enraf-Nonius, Delft, Holland (1985).
20 A. Domenicano, A. Vaciago and C.A. Coulson, Acta Crystallogr. B, 31 (1975) 221.

[^0]: Correspondence to: Dr. C. Pettinari.

[^1]: ${ }^{\text {a }} \mathrm{Q}_{\mathrm{P}} \mathrm{H}$ is 1-p-nitrophenyl-3-methyl-4-benzoyl-5-pyrazolone; $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$ is 1,3-dimethyl-4-benzoyl-5-pyrazolone; $\mathrm{Q}_{\mathrm{F}} \mathrm{H}$ is 1-phenyl-3-methyl-4-trifluoro-acetyl-5-pyrazolone.
 ${ }^{\mathrm{b}} \mathrm{S}=\mathrm{CH}_{3} \mathrm{OH}$.

[^2]: ${ }^{\text {a }} \delta$ in ppm from internal TMS.
 ${ }^{b} J$ in Hz .

[^3]: ${ }^{\text {a }} J$ in Hz .
 b Not observed due to low solubility.

[^4]: acacH = 2.4-pentanedione; hfach $=1,1,1,5,5,5$-hexafluoro-2,4-pentanedione; bzacH $=1$-phenyl-1,3-butanedione; dbzmH $=1,3$-diphenyl-1,3propanedione.
 ${ }^{b}$ Not observed.
 c Ref. [3]
 ${ }^{d}$ Ref. [6]
 ${ }^{\text {e }}$ Ref. [11]
 ${ }^{f}$ Ref. [10]
 ${ }^{\text {B }}$ Unpublished results.
 ${ }^{h}$ Not reported in literature.

[^5]: ${ }^{\text {a }}$ These values were calculated according to ref. [20].

