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Abstract 

The synthesis of PhCCo,(CO),(ci.s-Ph,PCH=CHPPhz) (2) from PhCCo&CO), (1) and the bidentate phosphine cis- 
Ph,PCH=CHPPh, is described. Cluster 2 is readily prepared in moderate to high yield using a variety of procedures. The 

diphosphine ligand in 2 bridges adjacent cobalt atoms as shown by r3C and 3’P NMR spectroscopic measurements and X-ray 

diffraction analysis. PhCCo,(CO),(cis-Ph,PCH=CHPPh,) crystallizes in the monoclinic space group P2,/c with a = 12.7065 (9) 
b = 18.385 (2) c = 15.943 (1) A, p = 98.025 (6)“, V= 3688.0 (5) A3,‘, and Z = 4. Full-matrix least-squares refinement yielded 

R = 0.0445 for 2021 (I > 3a(I)) reflections, The redox properties of 2 have been examined by using cyclic and rotating disk 

electrode voltammetric techniques. In CH,Cl, solvent, 2 exhibits reversible O/ - 1 and O/ + 1 redox couples. The reversibility of 

the O/+ 1 redox couple is highly dependent on the temperature and the nature of the solvent. Use of MeCN or THF as solvent 

leads to an irreversible, multi-electron oxidation. The electrochemistry of 2 is compared to the known cluster PhCCo,(CO),(dppe). 

1. Introduction 

Bidentate-phosphine ligand substitution in alkyli- 
dyne-bridged tricobalt clusters, RCCo,(CO),, contin- 
ues to be investigated in connection with hydroformyla- 
tion catalysis [1,2] and redox reactivity [3-51 and NMR 
fluxionality studies [6]. In these cases, the diphosphine 
ligand serves to bridge adjacent cobalt atoms via equa- 
torial coordination. However, this mode of substitution 
is dependent on the nature of the ancillary phosphine. 
For example, the reaction between PhCCo,(CO), and 
l,l’-bis(diphenylphosphino)ferrocene (dppf) affords the 
axially bridged cluster PhCCo,(CO),(dppf), the molec- 
ular structure of which has been determined by X-ray 
diffraction analysis [7]. The coordination mode adopted 
by the dppf ligand is driven by minimization of unfa- 
vorable intramolecular contacts between the dppf and 
p.,-benzylidyne capping ligands. 

Recently, we have examined the reaction between 
PhCCo,(CO), (1) and 2,3-bis(diphenylphosphino) 
maleic anhydride (bma) in the hope of preparing the 
diphosphine-substituted cluster PhCCo,(CO),(bma), a 
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cluster that should exhibit novel redox properties due 
to the presence of the ancillary bma ligand [S-14]. 
However, the anticipated cluster PhCCo,(CO),(bma) 
was not observed, but rather the new cluster Co,- 
(CO),{~u-~2-n1-C(Ph)C=C(PPh2)C(0)OC(O)](~CL- 
PPh,), which possesses a six-electron p2,-benzylidene- 
n2-n’-(diphenylphosphino)maleic anhydride ligand, was 
isolated [15]. The reason for this unusual ligand trans- 
formation is not currently known but it most likely 
stems from an electronic effect associated with the bma 
ligand. Accordingly, we sought to prepare a suitable 
cluster derivative that would enable us to test this 
hypothesis. The unsaturated diphosphine cluster 
PhCCo,-(CO),(cis-Ph,PCH=CHPPh,), which is ex- 
pected to be structurally similar yet electronically dif- 
ferent compared to the unobserved cluster PhCCo,- 
(CO),(bma), represents one such model cluster com- 
pound. 

In this paper we describe the synthesis and spectral 
and X-ray crystallographic characterization of the lig- 
and-bridged cluster PhCCo,(CO),(cis-Ph,PCH= 
CHPPh,) (2). The redox properties of 2 have been 
examined by cyclic and rotating disk electrode tech- 
niques, which indicate that 2, with its unsaturated 
diphosphine ligand, behaves similarly to the known 
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saturated diphosphine cluster PhCC‘o ,(CO)-(dpp~‘)[.J]. 

The effect of polar ~lvents on the 0,’ + I r-ctic~ sf;ttC 
in 2 is discussed. 

2. Results and discussion 

A clean reaction hctween PhCC‘oJC’O\,, [ih] and 

ci.r-Ph , PCH=CHI’Ph 1 was ohserveti when cquimolar 

amounts of reactants wcrc heated overnight at 75X’ 

(cqn. (1 )). l’L(‘ analysis revealed Ihe pre\cncc elf ;I 

slower moving matcriat that i\ readil!, assignccl 

to the product cluster. PhCCoJC‘O)J (l\-F’h .fTH== 
CHPPh,). Cluster 2 wilb ~~bxccluently isolatcri in 75’< 

yield by chromatography using silica gel and 

CH,C’l,/pctrolcum ether. Alternative synthetic mcth- 

ads were also cxamincd as :I route 10 clubter 2. 

Mc,NO-promoted oxidativc decarhonylalion4 [17] and 

sodiohenzophenonc ketyl-initiated electron-transfer 

chain (ETC) reactions [IX] also gave cluslcr 2 in iso- 

lated yields that ranged from 50 to X)Q. 

Ph 

+ 

CIS-Ph,PCH=CHPPh2 

The IR spectrum of 2 in C’H z(~‘lz rcvcaled two 

prominent v(CO) hands at 2057s and ZOOhvs cm ‘. 
which are assigned to terminal carbonyl group\, along 

with a very weak v(C‘C)) band at IS? I cm ‘_ The 
intensity pattern and frequency of thcsc terminal car- 

bonyt bands are in agreement with the IK data r-t’- 

ported for the tliphr)sphine-hricigecl cluster Ph(‘Co.;- 

(CO)-(dpps) [3]. The ” P{‘H) NMR \pcctrum or an i/l 

siru generated sample of 2. rccorcled al 33.3 K, exhih- 

iced ;I major ( :> 9.5’; ) “P resonance at f.36.l along 

with ;I pair of equal intensity resonances .I! 6 77.7 and 

103.6. The major resonance is assigned to ctustcr 2 

with a bridging diphosphinc l&and while the minor 

species is ascribed to the isomcric clusters which is 

substituted with a chelating diphosphinc ligand. A 

chelating diphoaphine ligand in 2 may hc ri~ticinalil;ed 
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Fig. 2. CIKTIY diagram of PhCCo,(CO)~((,12-Ph:PCtI=C’HPPh2) with 

the thermal ellipsords drawn at the 50c; probahilit) lacl. 

data. Selected bond lengths and angles are given in 
Table 3. The internal polyhedron of 2 consists of a 
triangular array of cobalt atoms capped by a k.,-her@- 
idyne group. The mea? value for the Co-C‘cj (2.481 A) 
and /L,-C-Co (1.01 A) bond lengths arc similar to 
those reported for the parent cluster [El and related 
diphosphine-substituted derivatives [ 1.7.X]. The Co- 
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PhC‘Co,(C‘O),i, ic-1’11 ~P(‘I1=(‘11PPh ,i (2) 

f~O.;12(h) 

113.Oi4) 
QO.Xi5) 

I_lO.?.i5) 
WI)(h) 

I-ii O(5) 
I17 X(-l) 

I%iI) 
177.1 I , 

I TX.1 i ) 

17611) 
12S.Of7) 

1.14(i) 
1.14fl) 
I I fl( I I 

I If!(Y) 
l.lSi2) 
I l7!3) 

I .?lili 
l.%l) 
I .YOi 1 ) 
I .X0( 1 f 
I ‘M I ) 
; SlOiYl 

A 

B D 

2W 

1 I I I 1 1 I 1 , , 1 I I I 

0.4 -0.4 -1.2 0.4 -0.4 -1.2 

Potential (VoltSI Potential (Volts) 

Fig. 3. Cathodic scan cyclic voltammograms of ~1. 3 x IO ’ M PhCCo,(C:O),(cls-Ph,PC‘H=CHPPh, 1 m dichloromethanc containing 0.25 M 
TBAP at 11 = 0.1 V/s and iA) 173 K. (B) 22X K. (C) 706 K. and (13) 22X K with 0.1 ml of added %lle<‘N. 
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CO bond distances range from 1.74(l) to 1.80(l) A with 
an average distance of 1.77 A. The remaining bond 
lengths and angles are unexceptional and require no 
additional comments. 

2.3. Cyclic and rotated disk electrode uoltammetric stud- 
ies 

Cyclic voltammetric studies were carried out at a 
platinum electrode in either CH,Cl, or MeCN solu- 
tion containing 0.25 M tetra-n-butylammonium per- 
chlorate (TBAP) as the supporting electrolyte. Figure 3 
shows the cyclic voltammograms (CV> of a recrystal- 
lized sample of 2 recorded in CH,Cl, solution as a 
function of temperature and added MeCN. At 273 K, 
the CV of 2 (Fig. 3(A)) shows a well-defined redox 
couple at E,,z = - 1.30 V, which has been assigned to 
the O/ - 1 redox couple. On the basis of the unity 
value of the cathodic and anodic peak current ratios 
(i”,/i”,> at all scan rates examined and the observed 
linear relationship between the square root of the scan 

rate (u> and the current function (i,), the reduction is 

judged to be a reversible, diffusion-controlled process 
[26]. Calibration of the peak current (i’,) against fer- 
rocene and rotating disk electrode (RDE) voltammetry 
(uide infra) support the one-electron nature of the 
reduction. 

A quasi-reversible oxidation at E,,z = 0.46 V is ob- 

served and assigned to the O/ + 1 redox couple. The 
peak current ratio (ii/ii> of - 0.2 is considerably 
lower than that expected for a reversible, diffusion- 
controlled, electron-transfer reaction. This behavior in- 
dicates that the intermediate radical cation 2+ is extri- 
cated rapidly from the vicinity of the electrode, pre- 

sumably by way of an EC process [26,27]. Increasing 
the scan rate (u) to 5 V/s led to a slight enhancement 
in reversibility as i;/i”, increased to - 0.7. When 2 
was examined out to 1.4 V (not shown), ill-defined 
waves at Ei = 0.95 and 1.26 V were also observed. 
Increasing the scan rate to 10 V/s did not lead to any 
noticeable reversibility and these additional oxidation 
waves were not examined further. 

The kinetic stability of 2+ is promoted by recording 
the CV at low temperature. Figures 3(b) and (c) show 
the CV of 2 recorded at 228 and 206 K, respectively. 
The reversibility of the oxidation wave at E,,2 = 0.46 V 
improves dramatically as the temperature is lowered, 
becoming fully reversible at 206 K and readily 
assignable to the O/ + 1 redox couple 1281. 

It is interesting that no evidence for the formation 
of PhCCo,(CO),(v’-cis-Ph,PCH=CHPPh,) or 
PhCCo,(CO), was observed during these cyclic voltam- 
metric experiments. The dppe-substituted cluster, 
PhCCo,(CO),(dppe), has been reported to decompose 
upon reduction to the radical anion, giving the T1-dppe 

cluster and the parent nonacarbonyl cluster [3]. The 
CV of PhCCo,(CO),(dppe) recorded in CH,Cl, sol- 
vent at 228 K is identical to that shown in Fig. 3(B). 
The similarity of the redox potentials between 2 and 
PhCCo,(CO),(dppe) suggests that the unsaturated car- 
bon backbone in cis-Ph,PCH=CHPPh, does not per- 
turb either the HOMO or LUMO levels in 2 to a 
measurable extent. 

Cyclic voltammograms of 2 recorded in MeCN/0.25 
M TBAP (not shown) exhibited a reversible one-elec- 
tron reduction at E,,2 = - 1.35 V and an irreversible 
multielectron oxidation wave at _!$ = 0.50 V. The for- 
mer CV wave is accordingly assigned to the O/ - 1 
redox couple while the latter wave is consistent with 
the generation of 2+ by a one-electron oxidation, fol- 
lowed by solvent interception and decomposition. The 
overall oxidation is thus best described by a solvent- 
modulated EC scheme. An analogous process is ob- 
served when MeCN is added to 2 in CH,C1,/0.25 M 
TBAP. Figure 3(D) shows the resulting CV after the 
addition of 0.1 ml of MeCN/0.25 M TBAP to a 
CH,C1,/0.25 M TBAP solution of 2. The O/ + 1 redox 
couple is rendered completely irreversible and the 
presence of an unknown species at EE = 0.05 V is 
noticed. This unknown species is only observable at 
low temperature. The effect of a polar solvent on the 
O/ + 1 redox couple in 2+ may be a general phe- 
nomenon as the addition of an equivalent amount of 
THF/0.25 M TBAP afforded a CV identical to Fig. 3d. 
We are currently investigating the nature of this un- 
known redox species. 

Cluster 2 was also examined at a platinum electrode 
by rotating disk voltammetry in CH,CI, solvent con- 
taining 0.25 M TBAP. The RDE voltammogram shown 
in Fig. 4 clearly reveals the presence of a well-defined 

f I I I I I I 
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Fig. 4. Anodic scan RPE voltammogram of ca. 3 X 10m3 M 

PhCCo3(CO),(cis-PhzPCH=CHPPh,) in dichloromethane contain- 
ing 0.25 M TBAP at 273 K and v = 0.05 V/s. 



reduction wave with a half-wave potential ( E,,LI 01 
- 1.78 V along with a broad. ill-defined oxidation 
wave: which results from closely spaced oxidation wavt’s 
(ride .cupm). The Nernstian nature of the 0,’ -- 1 rcdox 
couple is verified by ;I plot of 1: 1’5. h&ii,, -- i)/i]. 
which reveals ;I slope close to the theoretically pre- 
dictcd value of 54.2 mV for ;i reversible. one-electron 
transfer [2h]. Morcovcr. application of ‘l’omc<‘ criterion 
for reversibility ( j E, 1 - E, A I) yields a value of 01 

mV. consistent with a reversible, one-t‘lcclr’on reduc-- 
tion [29]. No kinetic complications were observed with 
the O/ - I redox couple as plot ot i,, (‘5. ~1)’ . wax 
linear over the electrode rotation rate 01 300-1~00 
rev./min. The diffusion coefficient of 2 has btcn detcr- 
mined from the slope of the plot of i,, i’.s. (ti’ ’ axing 

the Levich equation [I%)]. l’h e experimentally measured 
value of i.34 i< IO ” cm’/s agrees well wifh the re- 
ported values for other tricobalt clusters of this gcnrc 
[3] and with the theoretically calculated V;LILIC of 4.93 >r 

10 -” cm’/s. obtained from the Stokes--Einhtcin aqua- 

tion. which is shown in eqn. (7) [.;l”j. 

3. Experimental details 

Dicobalt octacarbonyl and ri.s-Ph,PCH=CHPPh Z 
were purchased from Prcssurc Chemical C’o. and used 
as received. PhC(‘oq(CO), was prepared according to 
the procedure reported by Scyfcrth and co-workers 
[lh]. All reactions were carried out under argon using 
Schlenk techniques [32]. THF and tolucne were dis- 

tilled from sodium/ bcnzophenone kctyl while CH ?c‘I J 
and MeCN were distilled from Cafi?. Ail distilled 
solvents were stored under argon in Schlcnk vessels. 
The tetra-n-butylammoilium pcrchloratc used in the 
electrochemical studies was purchased from Johnscm 
Matthey Electronics and recrystallized from petroleum 
ether/ethyl acetate and dried irl IWWO for Z days. 

Infrared spectra wcrc recorded on a Nicolet 2OSXB 
FT-IR spectrometer in 0.1 mm NaCl cells. ‘I‘hc “C and 
3’P NMR spectra were recorded on ;1 Varian ?OO-VXR 
spectrometer at 75 and 131 MHz. rcspccti\ely. The “P 
chemical shift of cluster 2 wax referenced to external 
855 H,PO,, taken to have f == 0. The poyiti\c chcmi- 
cal shift of 2 is to low field of the external i;tandard. 

3.2. Sqntlwris of Ph~_(‘CO i (CO) 7 !cis-Pi2 7 ?‘CiI= CI~PPh 2 i 
Since all the procedures utilized similar amounts of 

PhCCo,(CO),, and cis-Ph 2 PC’H=CHPPh 3 mci gave the 
final product in identical yields, only the thermolysis 
reaction between PhC(.‘o,(CO),, and c,ii-Ph,PCH= 
C’HPPh, is described in detail. 

To a Schlenk tube containing 0.2 g (0.39 mmol) of 

PhCCo3(CO),, and 0.17 g (iI.J.3 nimol) of cis- 

Ph ,PCH=CHPPh , W;IX itdded 20 1111 of tolucnc IYcl 

springc. The rcifclion \L;IS he~rlcd at - 7.i’c‘ overnight 
and then ;~llo~cd to zooi 10 room tempcraturc. ‘l‘l.<‘ 
examination showed cluster 2 tc\ bc tho major product. 
Purificaliull was achicvcd by using silica gel chromatog- 
raphy with petroleum ~‘ther,~‘C’IH ;(‘I, as the cluant. XII 

analytical sample ;ind crystals snitahlc lor X-i-a) 

diffraction analysis fi2rc pxnvn from 2 (‘f-1 .C‘I 1 solll- 

tion containing 2 that had been laycrcd \vith hcptanc. 
Yield: 0.3 g (3’; ). IK(C‘I_1,C’l,) 14(‘0): 3157 s. 2000 
vs. IX31 w,b cm !. “P{‘Ii} NMK (C‘DC‘I:. 7.33 li): ii 
36.‘. “(‘(‘H) NMR iTHI- ~‘b~n~onc-ii,, 15 : I I/V). iX.3 
IO: ii 21 I (I!(‘): 31-1 tL’C1: 3)3 (7C‘). r\nal. Fo~111cl: C‘. 

54.hl. H. 7.71). (‘,,,H >-(‘o:O-.I-‘. l;.~(‘H,(‘ll calcti.: C’. 

54.m”; : 14. 3.15’ ; 

A suitable blach crystal of dimensions 0.08 \! O.?;! ‘x 
0.43 mmi wax scaled inside :I I.,indcm;lnn capillary and 

mounlcd on thr: goniomcitcr of ;III Enraf-Nonius C:AD--1 
(‘AD--I diffractomctcr cmplo)-ing I\40 Iici radiation 
(A == 0.71071 .4). I‘hc diffractometer was configured 
with a crystal-ro-dctect~~r distance of I73 mm and take- 
off angle of 3.SO‘. ,At‘:cr the crystal wa5 ccntcrcd in the 
,X-ray bcant. ai aufoitlat ii, search i-out inc wax uacd lo 

locate up to 75 rcfl~ctions. \Qhich \\crc used to calcu- 
late a preliminary cell. After anal!% of this initial cell 
rcvcaled no higher 5!rnmctry or ccntcring [.??I. the cell 
parameters wcrc ref’incti hosed on least-quares rufinc- 

mcnt tti 15 rci‘lcction4 with 2H :b 7C-. Inlensity data 
were collcctcd hy using an H-20 scm technique with 
variable scan uitlth _!.w 1-2 (0.80 in 0.35 tan N). Back- 

grounds W~I-c‘ mta>uraI 175 cxtcnding the calcul:rted 
width on cithcr end of the .scan b! 7S(, A fiucd 
vertical detector nperturc C-1 mm) and a horizc~ntal 

detector aperture (.i 1. tan H) wcrc cased. Kctlcction\ 
with /jtr( I) ._ 2 for rhe prcscan \\,ere rcjectcd as weak. 
and thnsc whcrc I, (I( i 1 :, 10 wcrc acccptcd after the 
proscan. Reflections not falling into these two catr- 
gorics wt‘rc resciinned a1 \pecds ranging from (I.(37 to 
5.33’i’miri for up to 13) s ii1 811 attempt (0 incrcasc 
I//WC / 1 10 IO. ‘IIirec reflections (0 0 0. 1 ~-- S. 0. 0 0 8) 

wcr-e mcasurcd after ever! 3600 s of cxposurc time in 
order to monitor crystai dcca~ C C: 1 (i 1. (~‘rystal align- 
mcnt wi1S chcckcd b)~ using the same three retlcctions 
every 3%~ data points. the scat tcring vectors deviated 
Ian than 0. IO” from their ialculatud flues throughout 
data collection. -17x6 rcfcction\ wt‘rc collected bc- 
twccn 7 c: i’ci i &I’. with index ranges i II. + X, _t1. ot 
which -1550 wcrc unique ( H,,,,,, =~ 0.03~). 



K Yang et al. / Bidentate ligand substitution PhCCo,(CO), 219 

(4), respectively, where C is the total number of inte- 
grated counts, B is the sum of the left and right 
backgrounds, A is an attenuation factor (14.3 or 11, 
and S is the scan rate. The observed structure factors 
and their standard deviations were calculated by using 
eqns. (5) and (6), where L, is a Lorentz polarization 
correction term, and p = 0.04. An absorption correc- 
tion was applied (DIFABS [34]), but no correction was 
made for extinction. 

Z=AS(C-2B) (3) 

u(Z) =AS(C + 4B)1’2 (4) 

F, = ( Z/L,)“2 (5) 

u(F,) = [{Q)’ + ( PQ~]“‘/& (6) 

All computations were carried out on a DEC 

VAXStation 3100/76. Calculations, except where 
noted, were performed with the MO~EN crystallographic 
software package [35]. The structure was solved by 
MULTAN [36] which revealed the positions of the Co 
and P atoms. All remaining non-hydrogen atoms were 
located with difference Fourier maps and least-squares 
refinement. With the exception of the phosphorus 
phenyl carbons, all non-hydrogen atoms were refined 
with anisotropic thermal parameters. Hydrogen atoms 
were generated and allowed to ride on the appropriate 
carbon [U(H) = 1.3 U,,(C)]. The function minimized 
during refinement was Cw( 1 F, 1 - 1 F, />2, where w = 
~/(uF)~. Final refinement based on 2021 unique re- 
flections with Z > 3a(l) converged at R = 0.0445 = 

(C I F,, I - I F, I )/CC I F, I ) and R, = 0.0488 = 
[ wC( I F, I - I F, I j2/( w C( I F,, I 2)]‘/2. The standard de- 
viation of an observation of unit weight = 0.58. 

After the final of least squares, the maximum shift 

of a parameter was less than 0.02 of its estimated 
standard deviation, and the final difference map 
showed no feature higher than 0.4 e A-3 (close to 
C114). Scattering factors were taken from Cromer and 
Weber [37], and anomalous dispersion effects were 
included in F, using the values of Cromer [38]. Plots of 
Cw( I F, I - I F, lj2 cs. I F, I, sin 8, or data collection 
order showed no unusual trends. 

3.4. Electrochemical measurements 
Cyclic and rotating disk electrode voltammetric 

measurements were conducted with a PAR Model 273 
potentiostat/ galvanostat, equipped with positive feed- 
back circuitry to compensate for IR drop. The CV cell 
used was of airtight design and based on a three-elec- 
trode configuration, which enabled all cyclic voltammo- 
grams to be obtained free from oxygen and water. The 
CV experiments employed a platinum disk (area = 

0.0079 cm2> as the working electrode and a coiled 
platinum wire as the auxiliary electrode. The RDE 
voltammograms were recorded in a Vacuum Atmo- 
spheres Dribox that was equipped for low-temperature 
measurements using a PAR Model 616 RDE unit. The 
working electrode consisted of a commercially avail- 
able platinum disk electrode (area = 0.126 cm2>. All 
voltammograms utilized a silver wire quasi-reference 
electrode and all potential data are referenced relative 
to the formal potential of the Cp,/Cp,Fe+ redox 
couple run under identical conditions, taken to have an 
E l,2 = 0.306 V [26]. 

Supplementary material auailable. Listing of ob- 
served and calculated structure factor amplitudes and 
tables of anisotropic thermal parameters, and idealized 
hydrogen parameters. Ordering information can be 
supplied by the authors upon request. 
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