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Abstract 

The action of Pd(AcO), on the imines C,R,H,~,CH=N(CH,)pC,R~Hs_~ has been studied. Five-membered endo-metallacycles 

were obtained from the imines la (R = 4-Cl, p = 0, R’ = 2’,4’,6’-Me,) and lb (R = 243, p = 0, R’ = 2’,4’,6’-Me,), by activation of 

a C(aromatic)-H bond and from the imine lc (R = 2,6-Cl,, p = 0, R’ = 2’,4’,6’-Me,), by oxidative addition of the ortho C-Cl 
bonds to Pd’ formed in situ. Six-membered endo-metallacycles were obtained from the imine Id (R =2,4,6-Me,, p = 0, 
R’ = 2’,4’,6’-Me,) by activation of a C(aliphatic)-H bond. Imines le (R = 2,6-U,, p = 1, R’ = 2’-Me) and If (R = 2,6-C],, p = 1. 

R’ = 2’-Cl afforded five-membered exe-metallacycles, but the formation, in low yield, of the endo-compounds by oxidative addition 

of the ortho C-Cl bonds was also observed. These results show the strong tendency of imines to form endo-cyclic compounds. 

Complexes [PdBrtC-NXPPh,)] can be obtained by the action of PPh, on the new cyclometallated compounds prepared. 

[PI1(1-CH,-2-(CH=~-2’,4’,6’-Me,C,H,)-3,5-Me2C,H2)Br], crystallizes in the monoclinic space group C2,‘c with a = 19.333(3); 

b = 13..511(2); c = 14.092(2) A, p = 96.94(2) and Z = 4. The endo six-membered ring displays a half-skew-chair conformation, with 

the palladium atom out of the plane (0.937 A) defined by the other atoms. 

1. Introduction 

Cyclopalladation is one of the classic ways to acti- 
vate C-H bonds in heterosubstituted organic 
molecules. The factors that influence the ease and 
manner of cyclopalladation reactions are not throughly 
understood but the following mechanism is widely ac- 
cepted: (i) initial coordination of the ligand to the 
metal, and (ii) electrophilic attack of Pd” on the C-H 
bond [l]. Moreover, there is a strong preference for 
five-membered cyclometallated compounds, and also 
preferential activation of C(aromatic)-H bonds com- 
pared to C(aliphatic)-H bonds, but recently, a few 
six-membered cyclopalladated compounds have been 
prepared by activation of C(aliphatic)-H bonds [2l. 

Correspondence to: Dr. J. Granell. 

0022-328X/93/$6.00 

Schiff bases are suitable for the study of cyclometal- 
lation reactions since they can undergo metallation on 
different carbon atoms (polyfunctional). We have shown 
that imines have a strong tendency to form en&-cyclic 
cyclometallated compounds (when the C=N bond is 
part of the metallacycle). This endo effect is so strong 
that the action of Pd(AcO), on the imine 2,4,6- 
Me,C,H,CH=N-CH,C,H,, in refluxing acetic acid, 
affords the cyclometallated compound [Pd(l-CH,-2- 
(CH=NCH,C,H,)3,5-Me,C,H,)Ac0],, where the ac- 
tivation of a C(aliphatic)-H bond with formation of a 
six-membered endo-metallacycle takes place in prefer- 
ence to the activation of a C(aromatic)-H bond and 
formation of a five-membered exe-metallacycle [2c]. 
Furthermore, the five-membered exe-metallacycle 
[P&2-(CH,N=CH-2’,4’,6’-(CH&C,H,)C,H,)(AcO& 
isomerizes to the six-membered metallacycle [Pd{l- 

CH,-2-(CH=NCH,C,HS)3,5-(Me),C,H,}AcO], [3]. 
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This endo effect is not restricted to cyclopalladation 
reactions. Recently it has been shown that oxidative 
addition of cjrzho-halogcnated imines to palladium(O) 
complexes affords preferentially the crzdo mctallacy- 
cles [3]. The reaction between [Pt > Me,(,zz-SMe, )?I and 
N-benzylideneamines shows that the cr~tfo cffcct is also 
important for platinum compounds [S]. IMorcovcr. the 
selective activation of C-F bonds with formation of 
erzdo compounds takes place even in the presence of 
weaker C--H. C--Cl OI- C-Br bonds, when [l’t :Me,(p- 
SMe,),] reacts with C,FjCI-1=NC’H~(2-X(‘,,~-I_,‘) [h]. 

In- order to obtain additional information on the 
factors that influence the cast and mode of cyclomctal- 
lation reactions WC report here the action of PcI(AcO), 
on the 2v’-benzylidencamines la-f, in which. in princi- 
ple, different metallacycles might hc obtained. 

Cyclopalladation reactions usually afford dinuclear --~~ =--~- 
compounds [Pd(C NIX] [I], but there is also evidence 
for the formation of trinuclcar and even polynuclear 
species [7.X]. The characterization of such compounds 
is not easy and very often they are treated with phos- 
phines or amines to afford mononuclear complexes. 
which are easily characterizable. 

The molecular structure of such dinuclear 01 
polynuclear compounds has not been extensively inves- 
tigated. X-Kay diffraction studies of some acctato- and 
chloro-bridged complexes have been reported [q]. and 
there is also one bromo-bridged cyclometallatcd com- 
plex, whose crystal structure has been &terminated 
[IO]. Here we report the X-ray crystal structure of the 
bromo-bridged complex [Pd{ l-CH,-7-(CEi=N-1’.3’.(1’- 
Me,C,,H,)-3.j-Me,C,,~-i,}Br],. 

2. Results and discussion 

Imines la-f were treated with Pd(AcO),, in a 3: 1 
ratio, in anhydrous acetic acid under reflux. Subse- 
quent treatment of the residues with LiBr in ethanol 
afforded the bromo-bridged cyclometallatcd com- 
pounds 2 (see Scheme 1). Five-membered erzdo-metal- 
lacycles were obtained from the imincs la,h by activa- 
tion of a C(aromatic)-H bond. These imines might also 
afford a five-membered ek--o-metallacycle by activation 
of a C(aliphatic)-H bond. but their formation was not 
observed. Imine lc. with two chlorine substituents in 
the ortlzo positions of the benzal ring, gave the five- 
membered erzdo-metallacyclc, and no five-membered 
exx-o-metallacyclc was observed. The formation of the 
endo-cyclic compound with this imine can he explained 
by oxidative addition of one of the orfkr (‘-Cl bonds 
to palladium(O), formed by reduction in sirzr of Pd” by 
the imine. This is a well known process, and has been 
proposed to occur in the catalytic arylation from ole- 

Scheme 1, ti) Pd(AcO)l. in refluxing acetic and. (ii) I,iRr, 

room tempcratirrc‘ 

t31011. 

fines and organic halides Ill]. The six-membered 
endo-metallacycle was obtained from the imine Id by 
activation of a C(aliphatic)-H bond in preference to 
the formation of ;I five-memhcred L~.~o-mctallacycle, 
also by activaticn~ of a C(aliphatic)-H bond. This shows 
thai the \iz.c of ttic metallacycle is not the dccisivc 
factor in the c~yclometsl!atioz~ rcaztictnx of imincs, and 
that the cwtlo cffcct is important in deciding the metal- 
lation position. The formation of five-membertd UO- 
metallacycles was obscrvcd from the iminea le and lf. 
A small quantity of the (Jrztio-cyclic compounds was 
also obtained. by osidativc addition of the ol-tlzct C-Cl 
bonds of these imincs to Pd” formed in sift, and it was 
possible to isolate and purify the crztla-derivative 2e. 
The rJ.vo-compounds obtained contain the imine in the 
% form isec belou b aliliough tither isomer, E or Z. 
can give eao-dcrivatiLcs. As the fret imine is in the Ii 
form. II--% isomeriration occurs during the cyclomctal- 
lation reaction. 

2.1. Kerrctiotr with PI% 

The action of PPh: on the cyclomctallated com- ~~ m~mm.Z=- 
pounds 2 [PdBrtC NJ]-. in a :! : i molar ratio was 
studied to cjbtain mare soluble easily characterizable I-~-p. 
mononuclear complexes. Compounds 3 [PdBrf C-NJ- 
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(PPh3)]  w e r e  o b t a i n e d  in g o o d  yie lds  in all cases.  T h e  
31p{1H} N M R  s p e c t r a  ( T a b l e  1) show tha t  t he  phos -  

p h i n e  is trans to t he  i m i n e  n i t r o g e n ,  aH N M R  spe c t r a  

o f  t h e s e  c o m p o u n d s  also c o n f i r m  this a r r a n g e m e n t  ( see  

be low) .  

2.2. Proton  N M R  spectra 
P r o t o n  N M R  spec t r a  ( T a b l e  1) a f fo rd  conc lu s ive  

e v i d e n c e  of  t he  p a l l a d a t i o n  pos i t ion .  In  c o m p o u n d s  

c o n t a i n i n g  P P h  3, t he  a r o m a t i c  p r o t o n s  o f  t h e  pa l l a -  

d a t e d  a r o m a t i c  r ing  in t he  f i v e - m e m b e r e d  me ta l l a cy -  

TABLE 1. Proton a and 31p b NMR data 

Compound Aromatic HC=N, aliphatic 31 p 

2a 

3a 

2b 

3b, 3c 

2d 

3d 

3e ( exo ) 

3e ( endo ) 

7.18 (d (1H), 3J(HH) = 8.3, H s) 
7.0-6.90 (br m (4H), H 2, H 4, H 7, Hg) 

7.80-7.30 (br m (16H), H 5, PPh 3) 
6.95 (dd (1H), 4j(HH) = 7.9, 4J(HH) = 1.9, H 4) 
6.86 (s (2H), H 7, H 9) 
6.30 (dd (1H), 4J(HP) = 5.9, 4j(HH) = 1.9 H 2) 

7.0-6.70 (br m (5H), H 2, H 3, H4, H7, H9) 

8.00-7.20 (br m (15H), PPh 3) 
6.90 (d (1H), 3j(HH) = 7.4, H 4) 
6.85 (s (2H), I-I 7, H 9) 
6.55 (t (1H), 3j(HH) = 7.4, H 3) 
6.34 (t (1H), 3j(HH) =4j(HP) = 7.4, H 2) 

7.0 (s (1H), H 4) 
6.90 (s (2H), H7, H 9) 
6.81 (s (1H), H 2) 

7.70-7.20 (br m (15H), PPh 3) 
6.94 (s (2H), H 7, H 9) 
6.71 (s (1H), H 4 
5.68 (s (1H), H 2) 

7.73 (s (1H), HC=N) 
2.33-2.23 (br m (9H), Me 6, Me s, Melo) 

8.05 (d (1H), 4J(HP) = 7.5, HC=N) 
2.32 (s (6H), M%, Melo) 
2.26 (s (3H), Me s) 

8.15 (s (1H), HC=N) 
2.35-2.20 (br m (9H), Me 6, Me s, Mel0) 

8.60 (d (1H), 4J(HP) = 7.4, HC=N) 
2.36 (s (6H), Me 6, Me10) 
2.27 (s (3H), Me s) 

7.70-7.20 (br m (18H), H 2, H 3, H 4, PPh3) 
6.70-6.55 (br m (1H), H 9) 
6.35-6.25 (br m (2H), H 7, H s) 

7.80-7.20 (br m (18H), H7, H s, H9, PPh3) 
6.75 (d (1H), 3J(HH) = 7.1 H 6) 
6.60 (s (1H), 3J(HH) = 7.3, H 4) 
6.40 (t (1H), 3J(HH) = 7.3, H 3) 
6.25 (t (1H), 3J(HH) = *J(HP) = 7.4, H 2) 

2f 7.50-6.80 (br m (6H), H z, H 3, Ha, H7, Hs, H9) 9.05 (br s (1H), HC=N) 
4.87 (s (2H), CH2-N) 

3f 7.70-7.20 (br m (18H), H z, H 3, H4, PPh3) 9.73 (br m (1H), HC=N) 
6.70-6.55 (br m (1H), H 9) 5.04 (br s (2H), CH2-N) 
6.40-6.30 (br m (2H), H 7, H 8) 

40.98 

42.18(s) 

7.79 (s (1H), HC=N) 
3.28 (s (2H), CH2-Pd) 
2.41 (s (3H), Me 5) 
2.35-2.20 (br s (9H), Me 6, Mes, Meao) 
2.17 (s (3H), Me 3) 

8.05 (d (IH), 4J(HP) = 12.4, HC-=N) 
2.92 (d (2H), 3j(HP) = 11.9, CHz-Pd) 
2,57 (s (6H), Me 6, Me10) 
2.33 (s (3H), Me 8) 
2.29 (s (3H), Me 5) 
2.09 (s (3H), Me 3) 

9.77 (d (1H), 4J(HP) = 5.22, HC=N) 
4.86 (br s (2H), CH2-N) 
2.07 (s (3H), Me10) 

8.00 (d (1H), 4j(HP) = 7.5, HC=N) 
5.40 (br s (2H), CH2-N) 
2.35 (s (3H), Me10) 

36.89(s) 

42.61(s) 

42.8(s) 

41.98(s) 

a In CDC13; chemical shifts in ppm with respect to internal SiMe4; coupling constants in Hz; numbering as in figure, b In CHCI3; chemical shift 

in ppm with respect to 85% H3PO4. 

Pd Pd 
2 1 ." ~ 6  7 

3 ( /  ~ - -  HC --- N ~ (CH2)n( / \ ) 8 

4 5 10 9 
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Fig. 1. Molecular structure of 2d. 

),Ci7 
ClO 

C18 C12 

cles 3a,b,c,e,f and those of the palladated benzylic unit 
in the six-membered metallacycle 3d, resonate at high 
field. This could be caused by a phosphine phenyl ring, 
suggesting a cis arrangement of the phosphine and the 
metallated carbon atom and, in consequence,  a trans 
arrangement of phosphorus and nitrogen atoms. 

The chemical shill of  methyne protons is useful for 
the structural characterization of cyclopalladated com- 
plexes. This signal appears shifted to high field (0.3-1.2 
ppm) relative to that of the free imine in the endo-de-  

TABLE 3. Bond distances (,~) for 2d 

Br Pd 2.450( 1 ) (?(7) -- C(6 ) 1.406( I 0) 
Br'  -Pd 2.¢~3911 ) ('(16) ('((~) 1.5(151161 
N - Pd 2.05015 ) C( 8)-CI7 ) 1.423( 1111 
C( I ) -Pd 2.tt2117t ('(lit) ('ff~) 1.388110) 
C(8) N 1.298181 t'(141 ('lt)t 1.390(11) 
C191 N i.43619~ C( I I)-('(111) 1.383( 11 ) 
C(2) - ( (1 )  ].50(11113 ( ' (17)  (~(I0} 1.498111) 
C(3)- C(21 1.4i3( 11 ~ C( 12)--C(l 1 ) 1.300(15) 
C(71 C(2) 1.417(111 C(I3) ( (12)  1.40111151 
C(4) C(3) /.-111(131 C(18) ('1121 1.542(121 
C151 (7(4) t .3b;71101 ( (  141- ('(13) 1.404111 ) 
C( 15 ) -( ' 1 4 1  1.505112! C( 191-((14) 1.518(13) 
(7(61-C15) 1.368( 131 

rivatives [12], and also in the et'o-metallacycles, if the 
imine adopts the E-form [4]. However, in the exo- 
metallacycles with the imine in the Z form, the methyne 
proton resonates downfield [3,13]. The shift can be 
explained by the paramagnetic anisotropy of the metal 
[14], showing a close approach of Pd and H atoms, or 
by a weak lhree-ccntre four.-electron intcraction C -  
H . . .  M .  d i f f e r e n t  f r o m  a n  agostic interaction [15]. The 
methyne proton resonance is shifted downfield in the 
new exo-metallacycles, showing that the imine is in the 
Z R)rm. 

2,3. Molecular structure oJ 2d 
The crystal structure of 2d has been determined 

(Fig. 11. Crystallographic data and selected bond 
lengths and angles are listed in Tables 2-4,  and atomic 
coordinates for non-hydrogen atoms are given in 
Table 5. 

TABLE 2. S u m m a w  of crystallographic data for 2d 

Formula C3sHv~Br,N2Pd : 
Mol wt 901.4 
System monoclinic 
Space group C 2 / c  

a (A) 19.333(3) 

b (A) 13.511(2) 

c (A) 14.092(2) 
,8 (°) 96.94(2) 

V (~3) 3654(1) 
d,.,, k. (g cm 3) 1.638 
Z 4 
F(000) 1792.0 
Crystal size (mm 3) /).(17 ~< 0.07 × 0.1 
p.(Mo K a )  (cm t) 33.09 

A(Mo K a )  (/k) 0.71069 
T (°C) 25 
Reflections collected 2678 
R O.052 
R,, /1.056 

TABLE 4. Bond angles ('~) for 2d 

Br ' -  Pd -Br  86.3(1) C(lt)) C(6)- C(5) 1t9.2(81 
N- P d - B r  177.2121 C( 16)-C(6)-C171 121.0(8) 
N-Pd- -Br '  t~0.2121 C(6)-C(7)-C(21 119.717) 
C ( I ) - P d - B r  92.0(2) C(81 -C171-C(21 120.517) 
( (1)  Pd Br'  176.t)(2) 17181-17171 C(0) 119.717) 
C ( 1 ) - P d - N  85.6(3I (7(7) ('(8) N 124.3(7) 
P D - B R - P d '  93.7( 1 ) (2( 10)-C191-- N 117.4(7) 
( ( 8 ) - N  Pd  120.215! 171141 C(9) N 119.9(7) 
C(9)--N- Pd l !~).~(41 C(14)-C(91-( ' ( t0)  122.6171 
C(9)-N -C(8) l 16.9(6) C( 11 )-C(101-C(9) 118.11(8) 
C(2)--C(I)-Pd 111.3t51 (7t171 (7(lid (71,91 121.11171 
C(31 C(21 C(I) 119.~, /81 CIlT)-C(10)--( ' (II)  121.0(8) 
C(7) (7(2) C(1) 121.317t ( '~12).-C(Ilt-C(10) 121.419) 
C(7) ( (2) -C(3)  I I~LI(7) C(13)-C(12)-C(11) 1211.5(81 
C(4)-C(3)-(2(21 120,3(9! C( 18)-C( 12)-C(11 ) t21.4(111 
C151-C(4~-C(31 118.5(81 C(18~ C(12t-C(13) 118.1t 121 
C(15)-C(41-.C131 II~LS(tl) C(14) C(13t C(121 IItLS(9) 
C(15)-C(41 C151 122.0(91 1211231 ( '(141-( (q) 117.618) 
(?(6)-(2(5) (7(4) 122.5(81 C( t91-C(141-C(0) 121.0(71 
(?(7) C(6) (151 l iONS)  C(t9~-C(14)-('1131 121.3(81 
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TABLE 5. Final atomic coordinates ()<:104) of 2d (Beq= 
87r2 /32Uiya* a* aia j) 

x y z Beq 

Pd 26723(3) 32228(4)  11258(3) 2.80(2) 
Br 28454(5) 14970(6) 6743(6) 4.34(4) 
N 2567(3) 4659(4) 1555(4) 2.96(23) 
C(1) 3030(5) 2948(6) 2508(5) 3.77(31) 
C(2) 3617(4) 3630(6) 2861(5) 3.60(32) 
C(3) 4247(5) 3232(7) 3317(5) 4.34(36) 
C(4) 4792(4) 3865 (10 )  3 6 9 6 ( 5 )  4.94(44) 
C(5) 4682(5) 4879(9) 3652(6) 4.90(44) 
C(6) 4082(5) 5288(7) 3203(5) 4.18(36) 
C(7) 3541(4) 4671(6) 2792(5) 3.39(30) 
C(8) 2942(4) 5097(6) 2260(5) 3.25(28) 
C(9) 2035(4) 5241(5) 1017(5) 3.26(28) 
C(10) 2 2 3 4 ( 4 )  5836(5) 294(5) 3.82(32) 
C(ll) 1719(6) 6 3 5 1 ( 6 )  -269(6) 4.63(41) 
C(12) 1038(6) 6279(7) - 127(7) 5.55(47) 
C(13) 839(5) 5680(7) 604(8) 5.01(43) 
C(14) 1347(4) 5163(6) 1206(6) 4.06(34) 
C(15) 5 4 6 4 ( 5 )  3426(10)  4 1 6 2 ( 7 )  6.63(55) 
C(16) 4 0 2 5 ( 7 )  6397(9) 3123(9) 5.95(55) 
C(17) 2 9 8 3 ( 5 )  5919(8) 130(6) 5.16(44) 
C(18) 465(8) 6 8 5 7 ( 9 )  -752(10) 8.21(69) 
C(19) 1155(5) 4538(8) 2030(8) 5.71(51) 

The crystal structure consists of discrete molecules 
separated by van der Waals' distances. The complex is 
a centrosymmetric palladium dimer with two asymmet- 
rically bridging bromine atoms. The two cyclopalla- 
dated ligands are transom around the Pd2Br 2 unit, as 
observed in analogous cyclopalladated dimers [9,10]. 
The asymmetry within the bridges arises from the 
different trans groups; the Pd-Br  bond trans to a 
benzylic carbon is longer (2.639(1) A) than that trans 
to nitrogen (2.450(1) A), consistent with relatively large 
and small trans influences for benzylic carbon and 
imine nitrogen, respectively. The PdzBr 2 is planar, in 
contrast to some chloro-bridged cyclopalladated com- 
pounds, in which this ring is folded [9b,f]. 

The palladium atom is square-planar coordinated to 
benzylic carbon, imine nitrogen and the two bridging 
bromine atoms. The coordination plane shows some 
tetrahedral distortion, the deviations from the mean 
plane being +0.033, +0.038, -0.033 and -0.047 
for Br, N, Br'  and C1, respectively. The angles between 
adjacent atoms in the coordination sphere lie in the 
range 96.2(2) ( N - P d - B r ' )  to 85.6(3) ° (N-Pd-C1).  The 
smallest of these angles is that between the nitrogen 
and carbon atoms of the chelated ligand. The palla- 
dium-ligand distances are similar to those found for 
the analogous six-membered cyclometallated com- 
pound [Pd{1-CH 2-2-(CH=N-C~Hs)-3,5-(CH 3)2C6H 2)- 
Br(PPh3)] [2c] and [Pd{1-CHz-2-(CH=N-C6Hs)-3,5 - 
Me2C6Hz}(2,4-1utidine)(PPh3)]CIO4 [16], except that 
Pd -N  bond which is shorter in 2d (2.050(5) A) than in 

the above cyclopalladated compounds (2.138(4) and 
2.119(7) A respectively), but the relative trans influ- 
ences of PPh 3 and bromine may explain this. 

The six-membered metallacycle adopts a half-skew- 
chair conformation, with the palladium atom out of the 
plane (0.937 A) defined by the other atoms. The six- 
membered metallacycle also adopts a half-skew-chair 
conformation in [Pd{1-CH2-2-(CH=N-C6Hs)-3,5- 
Me2C6H2}Br(PPh3 )] and [Pd{1-CHz-2-(CH=N-C6Hs)- 
3,5-Me2C6H2}(2,4-1utidine)(PPh3)]CIO 4, with the pal- 
ladium atom out of the plane defined by the other 
atoms (1.325 and 1.086 .A respectively [2c,16]. 

3. Conclusion 

The results described confirm the strong tendency 
of imines to form endo-cyclic compounds. This ten- 
dency (endo effect) is so strong that the oxidative 
addition to Pd °, formed by reduction of the 
palladium(II) salts by imines forms endo-cyclic com- 
pounds by activation of a C-C1 bond in preference to 
exo-cyclic compounds. Furthermore, the activation of 
C(aliphatic)-H bonds with formation of five-membered 
exo-metallacycles was not observed, in sharp contrast 
with the easy preparation of six-membered endo-metal- 
lacycles with C(aliphatic)-Pd bonds. Cyclometallation 
reactions of analogous imines derived from methyl 
ortho substituted anilines show that only endo-cyclic 
cyclometallated compounds are formed [17]. 

There is no clear explanation for this endo effect [3]. 
The bond distances and bond angles of analogous 
endo- and exo-cyclometallated compounds are similar 
[18] and in consequence it is not easy to relate the 
stability of such complexes to their structures. Recent 
mechanistic studies of the formation of cyclometallated 
platinum compounds of N-benzylideneamines show 
that the entropy could be responsible for the favoured 
formation of endo-compounds [5]. Mechanistic studies 
of the cyclometallation of ortho-arylphenoxide ligands 
at Group 5 metal atoms suggest that rotation of the 
aryl ring to be metallated into a coplanar conformation 
in which the C - H  bond about to be activated is being 
brought close to the metal contributes to cyclometalla- 
tion reactions [19]. The strong tendency of imines to 
form endo-cyclic compounds may be related to re- 
stricted rotation around the C:-N bond, which favours 
the approach of the C - X  bond to be metallated to the 
coordination plane, previous to the metallation. 

4. Experimental details 

Routine NMR spectra were obtained on a Bruker 
WP 80SY spectrometer (1 H, 80.13 MHz; 31p{1H}, 32.8). 
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~H spectra (200 MHz) were obtained on a Varian 
XL-200 spectrometer. IR spectra were recorded as 
KBr discs on a Perkin-Elmer 1330 spectrometer. Mi- 
croanalyses were performed by the Institut de Qmmica 
Bio-Org~nica de Barcelona (CSIC). 

4.1. MateriaLr and  synthesis  
Solvents were dried and distilled before use. Imines 

were prepared by literature procedures [20]. 

4.1.1. C o m p o u n d s  2a,b, dcf 
A stirred suspension of Pd(AcO) 2 (1 mmol, 224 rag) 

in anhydrous acetic acid (30 ml) was treated with an 
excess of imine la, lb, ld  or I f  (2 mmol) and the 
mixture was refluxed for 3 h (la, If) or for 2 h (lb, ld). 
The solution was filtered to eliminate the small amount 
of black palladium formed. The filtrate was concen- 
trated in z'acuo and the residue was dissolved in ethanol 
and treated with an excess of LiBr (2 mmol. t73 nag) at 
room temperature for 1 h. The solids obtained were 
filtered and recrystallized from chloroform/methanol ,  
to afford compounds 2, as yellow solids, in 60-90% 
yield. 

[ P d { 2 - ( H C =  ' ' ' " 5 " " N - 2  , 4 , 0  -Me  c( 6 t t2) -~  -(- l (  ~, H ¢ } B r ] ,  
(2a). Yield 708 mg (80%). Anal. Found: C, 43.7: H, 
3.4; N, 3.2. Csetq~0Br2Cl2NePd e calcd.: C. 4:3.37; H, 
3.42; N, 3.16%. 

[ P d  {2- ( H C  = N - 2  , 4 , 6 ' -Me ~C o H 2)-3-  ( 7 (  ~, H~ } Br/2 
(2b). Yield 532 mg (60%). Anal. Found: C, 43.4; H, 
3.3; N, 3.0. C s 2 H ~ o B r e C I 2 N 2 P d  2 calcd.: C, 43.37; H, 
3.42; N, 3.169), 

............ . - - -  - _~ ~ , , _ M e ~ ( o H 2 ) _ 3 ,  5_ [ P d { 1 - C H e - 2 - ( C H = N - 2  ,4 , 6 '  " 
Me2CoH 2}Br]2  (2d). Yield 766 mg (85q4). Anal. 
Found: C, 50.7; H, 4.8; N, 3.(t. C~sHa.aBr2N2Pd:2 calcd.: 
C, 5{).62; H, 4.93; N, 3.11~{. 

/ P d { 2 - ( C H  2 N = C I t - 2 ' , 6 '  " ~ " . - C l 2 (  6 H ~ )-, - C I (  ,, 1t ~ } B r /  , 
(2f(exo)) .  Yield 628 mg (65%). Anal. Found: C, 34.8; 
H, 1.7; N, 2.8. C2sHIsBr :CI~ ,N:2Pd ,  calcd.: C, 34.75; H, 
1.88; N, 2.8992. 

4.1.2. C o m p o u n d s  2¢ 2e(exo),  2e(endo)  
A stirred suspension of Pd(AcO) 2 (1 mmol, 224 mg) 

in anhydrous acetic acid (30 ml) was treated with an 
excess of imine le or le (2 mmol) and the mixture was 
heated under reflux for 2 h (le) or for 30 rain (le). The 
solution was filtered and the solid obtained was recrys- 
tallized from chloroform/methanol  to afford 2c or 
2e(endo) .  Compound 2e(exo) was obtained from the 
solution, by concentration in z~acuo and reaction of the 
residue obtained with an excess of LiBr (2 mmol. 174 

nag) in ethanol, at room temperature for 1 h. The solid 
obtained was filtered and recrystallized from chloro- 
form/methanol  to afford 2e(ero). 

/ P d {  2- ( H C  = N - 2  ', 4 ', 6 ' -Me ~('¢ t t2  ) - 3 - C I C  o t t  ¢ } CI] e 
(2c). Yield 200 nag (25~). Anal. Found: C, 48.3: H, 
3.8: N, .3.4. C~:H,, CI N , P d :  calcd.: C, 48.21: H, 3.80: 
N, 3.519;. 

/ ed?'U(fig;77,vcn ,-(2 '-M,,C,, ,% )/-.~-C:lC,, H, ) Cl/~ 
. ( * Y  (2e(endo)) .  Yield S'~ mg (7 >). Anal. Found: C, 46.5: 

H, 3.2; N, 3.5 C : , o H > C I : , N e P d :  calcd.: C, 46.84; H. 
3.41: N, 3.64%. 

(2e(exo)).  Yield 510 mg (55%). Anal. Found: C. 38.6; 
H. 2.'7; N, 3.1. C3~;H :,~BrzCI ~N ~ Pd ~ catcd.: C, 38.87; H, 
2.61: N, 3.(12~. 

4.1..3. /PdBr ( ( "  N) t Iph.¢ /  ( 3 a - f )  
A stirred suspension of 2 (0.5 mmol) in acetone (30 

ml) was treated with PPh s (1 mmol. 262 rag) and, if the 
cyclometallatcd starting material was 2c or 2e(endo) ,  
LiBr (2 retool, 174 rag) was added to the reaction 
mixture. The mixture was heated under reflux for 1 h, 
and then filtered. The filtered solution was concen- 
trated m racuo  and the solid obtained after addition of 
ether was recisstallized from chloroform/methanol to 
afford 3 in 80--91}c~ yield. 

/ P d ~ 2 - ( t t C =  N - 2 '  4 ' . 6  ' -Me  ,,(',, t t~  )-5-C1C,,  t t ~ } B r  
(PPh~)]  r3a). Yield 634 mg ~9(V;~). Anal Found: C. 
57.6: [t. 4.3: N. 1.8. (~.~H~, BrCINPPd ca[cd.: C. 57.89: 
H. 4.29: N. 1,98c~. 

/ P d { 2 - ( f t C =  N - 2 '  4 ". t~ ' -Me  ,,C~ H2 ) -3 -CIC, ,  t1:  ] Br  
( P l " h , ) /  (3b). Yield 0{Ptl mg c85%). Anal Found: C. 
57.6: H. 4.3: N. 1.9. C~4H-.,,BrC1NPPd calcd.: C. )7.8-): 
H. 4.29: N. 1.98G. 

[ P d { 2 - ¢ H C =  N-2"  4 '. 0 ' - M e , C 6  H2 ) -3 -CIC, ,  H 3 ) B r  
(PPh,~)/  (3c). Yiekt 565 mg 180c,4;). Anal. Found: C, 
57.7: H. 4.4: N. 2.0. ('v~H ~,.BrC1NPPd calcd.: (', 57.89: 
H 4.29: N. 1.98c~. 

/ Pd  { 1- ( 7 1  ~-2- ( C H  = V-2  '. 4 ', 6 "-Me ~(-~ t t ,  )-3, 5 - M e ,  
C ~ H 2 } B r ( P P h , , I /  (3d). Yield 6116 mg (85%). Anal. 
Found: C. 62.3: H. 5.2: N. 1.8. C : -H: -BrNPPd calcd.: 
C. 62.32: H. 5.24: N I.%C~. 

[ P d  (2- ~ H(" = N C I 1  ,- ( 2 "-MeC,, t t  ~ 1-3- ( ' IC  ~ H~ / J B r  
(PPh.~)] (3e(endoJt.  Yield 550 mg (809b). Anal  
Found: C. 57.6: tt. 4.0: N. 1.9. C~3[t2sBrCINPPd calcd.: 
C. 57.33: H. 4.0~,*: N _.¢ ~ 1 "~c''_ ,- 
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[ P d { 2 - ( C H 2 N = C H - 2 ' , 6  ' -CI2C6H3) -3 -MeC6H3}Br  
(PPh3)] (3e(exo)). Yield 540 mg (75%). Anal .  Found:  

C, 54.8; H, 3.5; N, 1.9. C33H27BrC12NPPd calcd.: C, 
54.61; H, 3.76; N, 1.93%. 

[Pd{2-  ( C H  2 N = C H - 2  ', 6 '-Cl2C 6 H 3)-3-CLC 6 H 3 } B r  
(PPh3)] (3f(exo)). Yield 595 mg (80%). Anal .  Found:  
C, 51.5; H, 3.2; N, 1.8. C32H24BrCI3NPPd calcd.: C, 
51.50; H, 3.25; N, 1.88%. 

4.2. Data collection 
A prismatic  crystal (0.07 × 0.07 × 0.1 m m  3) was se- 

lected and m o u n t e d  on an Enra f -Nonius  CAD4 
diffractometer.  Un i t  cell pa ramete rs  were de te rmined  
from automat ic  cent r ing  of 25 reflections (12 _< 0 < 21 °) 
and  ref ined by the least-squares method.  In tensi t ies  
were collected with graphi te  monochromat i zed  Mo K a  
radiat ion,  using the ~o-20 scan technique;  5805 reflec- 
t ions were measu red  in the range 2 < 0 < 30. Rin t (on 
F )  = 0.009, 2678 of which were assumed as observed 
applying the condi t ion  I > 2.5cr(I). Three  reflections 
were measured  every 2 h as or ien ta t ion  and intensi ty 
controls,  bu t  significant intensi ty decay was not  ob- 
served. Lorentz  polar izat ion,  bu t  not  absorbt ion,  cor- 
rect ions were made.  

4.3. Structure solution and refinement 
The  s t ructure  was solved by Pa t te rson  synthesis, 

using the SHELXS compute r  p rogram [21] for crystal 
s t ructure  de t e rmina t ion  and ref ined by the full-matrix 
least-squares method,  with the SHELX76 compute r  pro- 
gram [22]. The  funct ion  min imized  was ~ w [ l F o l -  
I F  c l] 2, where  w = (o-2(Fo) + 0 .00441F o [2 ) - l .  f ,  f ,  and  

f "  were taken from In t e rna t iona l  Tables  of X-Ray 
Crystal lography [23]. The  posi t ions of 15 H atoms was 
computed  and  the r ema inde r  were located from a 
difference synthesis, all ref ined with an overall isotropic 
t empera tu re  factor using a r iding model  for computed  
hydrogen atoms. The  final R factor was 0.052 (R w = 
0.056) for all reflections observed. The  n u m b e r  of 
ref ined paramete rs  was 221. Max. shi f t /e .s .d .  = 0.06, 
Maximum and m i n i m u m  peaks in final difference syn- 
thesis were 0.3 and - 0 . 3  e ~ - 3 ,  respectively. 

5. Supplementary material available 

Tables  of hydrogen coordinates ,  s t ructure  factors 
and  thermal  paramete rs  are available from the authors.  
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