**JOM 23673** 

## Übergangsmetall-Stannyl-Komplexe

VIII \*. Unterschiedlicher Verlauf der Umsetzung von Cp<sub>2</sub>Mo(H)ER<sub>3</sub> (ER<sub>3</sub> = SiMePh<sub>2</sub> und SnPh<sub>3</sub>) mit Butyllithium. Substitutions-Reaktionen des anionischen Stannyl-Komplexes [Cp<sub>2</sub>Mo-SnPh<sub>3</sub>]<sup>-</sup> und Bildung von Cp<sub>2</sub>Mo(SnPh<sub>3</sub>)(CH<sub>2</sub>)<sub>4</sub>OSiMe<sub>3</sub> mit Me<sub>3</sub>SiCl und Tetrahydrofuran \*\*

## Steffen Seebald, Brigitte Mayer und Ulrich Schubert

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg (Deutschland) (Eingegangen den 9. März 1993)

#### **Abstract**

Reaction of  $Cp_2Mo(H)SiMePh_2$  with butyllithium followed by protonation with methanol gives  $(\pi - C_5H_5)(\pi - C_5H_4SiMePh_2)MoH_2$  due to silyl migration. Contrary to that, the anionic stannyl complex  $Li[Cp_2Mo-SnPh_3]$  (4) is obtained upon reaction of  $Cp_2Mo(H)SnPh_3$  with butyllithium. Complex 4 reacts with  $Me_3SnCl$  or MeI to give the bis(stannyl) complex  $Cp_2Mo(SnPh_3)SnMe_3$  and the alkyl stannyl complex  $Cp_2Mo(SnPh_3)Me$ . The reaction of 4 with  $Me_3SiCl$  or  $CF_3SO_3SiMe_3$  in THF results in the formation of  $Cp_2Mo(SnPh_3)CH_2$ 4OSiMe3 instead of the silyl stannyl complex. The complexes  $Cp_2Mo(SnPh_3)Me$  (Mo-Sn 275.42(9), Mo-C 230(1) pm,  $Sn-Mo-C 79.6(3)^o$ ) and  $Cp_2Mo(SnPh_3)(CH_2)_4OSiMe_3$  (Mo-Sn 276.9(1), Mo-C 228(1) pm,  $Sn-Mo-C 79.7(3)^o$ ) were characterized by X-ray structure analyses.

#### Zusammenfassung

Umsetzung von  $Cp_2Mo(H)SiMePh_2$  mit Butyllithium und anschließende Protonierung mit Methanol ergibt  $(\pi-C_5H_5)(\pi-C_5H_4SiMePh_2)MoH_2$  durch Silylgruppen-Wanderung. Im Unterschied dazu wird durch Umsetzung von  $Cp_2Mo(H)SnPh_3$  mit Butyllithium der anionische Stannyl-Komplex  $Li[Cp_2Mo-SnPh_3]$  (4) gebildet. Komplex 4 reagiert mit  $Me_3SnCl$  oder MeI zu dem Bis(stannyl)-Komplex  $Cp_2Mo(SnPh_3)SnMe_3$  und dem Alkyl-Stannyl-Komplex  $Cp_2Mo(SnPh_3)Me$ . Bei der Umsetzung von 4 mit  $Me_3SiCl$  oder  $CF_3SO_3SiMe_3$  in THF wird statt des Silyl-Stannyl-Komplexes  $Cp_2Mo(SnPh_3)CH_2$ 4OSi $Me_3$  gebildet. Die Komplexe  $Cp_2Mo(SnPh_3)Me$  (Mo-Sn 275.42(9), Mo-C 230(1) pm, Sn-Mo-C 79.6(3)°) und  $Cp_2Mo(SnPh_3)CH_2$ 4OSi $Me_3$  (Mo-Sn 276.9(1), Mo-C 228(1) pm, Sn-Mo-C 79.7(3)°) wurden durch Röntgenstrukturanalysen charakterisiert.

#### 1. Einleitung

Die anionischen Silyl- und Stannyl-Komplexe [Me- $Cp(CO)_2Mn-ER_3$ ]<sup>-</sup>, [(CO)<sub>3</sub>(PR'<sub>3</sub>)Fe-ER<sub>3</sub>]<sup>-</sup> (E = Si, Sn) und [( $\pi$ -Aromat)(CO)<sub>2</sub>Cr-SnR<sub>3</sub>]<sup>-</sup>, die durch Deprotonierung der jeweiligen Hydrido-Verbindungen  $L_nM(H)ER_3$  dargestellt werden können, zeigen ein

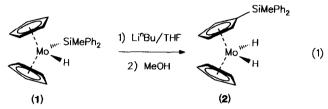
ähnliches Reaktionsverhalten wie entsprechende dianionische Komplexe  $L_nM^{2-}$ . Sie haben aber deutliche präparative Vorteile. Wie Komplexe  $L_nM^{2-}$  reagieren die Silyl- und Stannyl-Komplexe  $[L_nM-ER_3]^-$  mit bestimmten geminalen organischen Dihalogeniden  $R_2CX_2$  oder analogen kationischen Halogeniden  $[R_2-CX]Y$  unter  $R_3EX$ -Abspaltung zu Carben-Komplexen [1,2]. Durch Umsetzung von  $[L_nM-ER_3]^-$  mit Metall (komplex)-Halogeniden lassen sich zwei- und dreikernige,  $ER_3$ -substituierte heterometallische Komplexe darstellen [3,4].

Correspondence to: Dr. U. Schubert.

<sup>\*</sup> VII. Mitteilung siehe Lit. 1.

<sup>\*\*</sup> Prof. M. Lappert zum 65. Geburtstag gewidmet.

In dieser Arbeit berichten wir über erste Untersuchungen zur Übertragung dieses Synthesekonzept auf Hydrido-Silyl- und Stannyl-Komplexe des Typs  $Cp_2M(H)ER_3$  (M = Mo, W; E = Si, Sn;  $Cp = \pi - C_5H_5$ ) am Beispiel der Molybdän-Komplexe. Der erste Silyl-Komplex Cp<sub>2</sub>M(H)SiR<sub>3</sub> wurde durch thermische Umsetzung von Cp<sub>2</sub>WH<sub>2</sub> mit HSiCl<sub>3</sub> dargestellt [5]. Analoge Molybdän-Verbindungen sind nur durch photochemische Umsetzung von Cp2MoH2 mit HSiR3 zugänglich [6]. Lappert et al. erhielten die entsprechenden Hydrido-Stannyl-Komplexe Cp<sub>2</sub>M-(H)SnR<sub>3</sub> erstmals durch Amin-Eliminierung aus Cp<sub>2</sub>- $MH_2$  (M = Mo, W) und  $Me_3SnNMe_2$  [7]. In ergänzenden Arbeiten konnten Bulychev et al. zeigen, daß sie auch durch intermolekulare HCl-Eliminierung aus Cp<sub>2</sub>MH<sub>2</sub> und ClSnR<sub>3</sub> mit den unterschiedlichsten Resten am Zinn zugänglich sind [8]. Cp<sub>2</sub>W(H)SnPh<sub>3</sub> und entsprechende Germyl- und Plumbyl-Komplexe sowie der Komplex Cp2M(H)SiMe2SiMe2Cl wurden durch Umsetzung von [Cp2WHLi]4 mit entsprechenden Chlorstannanen oder -silanen unter Salz-Eliminierung dargestellt [9]. Umsetzung von Cp<sub>2</sub>W(H)Cl mit LiSi(SiMe<sub>3</sub>)<sub>3</sub> ergab Cp<sub>2</sub>W(H)Si(SiMe<sub>3</sub>)<sub>3</sub> [10] und Hydrierung von  $Cp_2W(\eta^2-CH_2=SiMe_2)$  den Komplex Cp<sub>2</sub>W(H)SiMe<sub>3</sub> [11].


#### 2. Deprotonierung von Cp2Mo(H)SiMePh2

In Anlehnung an die von Harrod et al. beschriebene Synthesemethode [6] erhält man durch photochemische Umsetzung von Cp<sub>2</sub>MoH<sub>2</sub> mit HSiMePh<sub>2</sub> den neuen, zitronengelben Komplex Cp<sub>2</sub>Mo(H)SiMePh<sub>2</sub> (1). Komplex 1 ist in allen gängigen organischen Solventien löslich, seine <sup>1</sup>H- und <sup>13</sup>C-NMR-spektroskopischen Daten liegen in den für diese Verbindungen typischen Bereichen. Die SiMoH-Kopplungskonstante von 10.8 Hz belegt eindeutig, daß Hydrid- und Silyl-Ligand auf klassische Weise ans Metall-Atom gebunden sind, daß also keine Mo,H,Si-Mehrzentrenbindung vorliegt.

Gibt man bei  $-78^{\circ}$ C 1.2 Äquivalente n-Butyllithium zu einer THF-Lösung von 1, so tritt unter Rotfärbung der Lösung schnelle Reaktion ein. Im <sup>1</sup>H-NMR-Spektrum ist das Signal des Hydrid-Liganden von 1 bei -7.73 ppm verschwunden, jedoch tritt im Hydrid-Bereich bei -8.60 ppm ein neues Signal auf. Es kann also nicht der erwartete anionische Komplex Li  $[Cp_2Mo-SiMePh_2]$  entstanden sein. Gibt man Methanol zum Reaktionsgemisch, verschwindet im <sup>1</sup>H-NMR-Spektrum die Resonanz bei -8.60 ppm und es entsteht ein neues Signal bei -9.18 ppm.

Anhand analytischer und NMR-spektroskopischer Daten kann der nach Zugabe von Methanol erhaltene Komplex eindeutig als der Dihydrid-Komplex 2 identifiziert werden (Gl. 1). In den <sup>1</sup>H- und <sup>13</sup>C-NMR-

Spektren beobachtet man für die beiden unterschiedlichen Cyclopentadienyl-Liganden unterschiedliche Signale bzw. Signalgruppen, die eine eindeutige Zuordnung erlauben. Das  $^{13}$ C-NMR-Signal des unsubstituierten Cp-Restes wird bei 77.0 ppm beobachtet, während beim silylierten Fünfring das Silyl-substituierte Kohlenstoff-Atom tieffeldverschoben bei 143.7 ppm, die dazu  $\alpha$ - und  $\beta$ -ständigen Kohlenstoff-Atome bei 82.2 und 80.8 ppm erscheinen.



Die hellbeige, kristalline Verbindung 2 ist auch in unpolaren Lösungsmitteln gut löslich. Sie ist im Unterschied zu 1 nur mäßig luftempfindlich.

Wanderungen von Silyl-Resten von einem Übergangsmetall zu einem Cp-Liganden sind für mehrere Metalle bekannt und am Beispiel der Komplexe CpFe(CO)<sub>2</sub>SiR<sub>3</sub> mechanistisch gut untersucht [12]. Der erste Reaktionsschritt besteht dabei in der Deprotonierung des Cp-Liganden, dem eine spontane intramolekulare Silyl-Wanderung vom Eisen-Atom zum metallierten Fünfring folgt. Durch Verwendung von asymmetrisch substituierten Silyl-Resten ließ sich zeigen, daß die Umlagerung unter Retention der Konfiguration am Silicium-Atom abläuft. Dieser Mechanismus trifft wahrscheinlich auch auf die Umsetzung von 1 zu.

## 3. Deprotonierung von Cp<sub>2</sub>Mo(H)SnPh<sub>3</sub> und Reaktionen von Li[Cp<sub>2</sub>MoSnPh<sub>3</sub>]

Bei der Umsetzung der Rhenium-Komplexe [Cp-(CO)(NO)Re-ER<sub>3</sub>] (E = Si, Ge, Sn) mit LiBu wurde gefunden, daß nur die SiMe<sub>3</sub>-Gruppe, nicht aber die GePh<sub>3</sub>- oder SnPh<sub>3</sub>-Gruppe wandert [13]. Nachdem es wegen des SiR<sub>3</sub>-Shifts nicht möglich war einen anionischen Silyl-Komplex [Cp<sub>2</sub>Mo-SiR<sub>3</sub>] zu erhalten, sollte versucht werden ein ER<sub>3</sub>-Derivat mit einem weniger leicht wandernden Rest darzustellen.

Der orangegelbe Stannyl-Komplex Cp<sub>2</sub>Mo(H)SnPh<sub>3</sub> (3) wurde nach der Methode von Bulychev *et al.* durch Umsetzung von Cp<sub>2</sub>MoH<sub>2</sub> mit Ph<sub>3</sub>SnCl in Gegenwart von NEt<sub>3</sub> in 69% Ausbeute erhalten. Er ist in aromatischen oder stark polaren Solventien wie Toluol oder THF gut, in aliphatischen Kohlenwasserstoffen hingegen kaum löslich. Im Gegensatz zum Dihydrido-Komplex Cp<sub>2</sub>MoH<sub>2</sub> ist 3 im kristallinen Zustand längere Zeit an Luft haltbar. Die Größe der Kopplungskonstanten <sup>2</sup>J(<sup>119</sup>SnMoH) von 155.6 zeigt ein-

deutig, daß auch in 3 keine Mo,H,Sn-Dreizentrenbindung vorliegt.

Zur Darstellung anionischer Silyl- und Stannyl-Komplexe durch Deprotonierung entsprechender Hydrido-Silyl- oder -Stannyl-Komplexe hat sich bisher die Verwendung von NaH bzw. KH sehr bewährt. Bei wenig aciden Komplexen kann durch Zusatz von 18-Krone-6 eine Deprotonierung erreicht werden [3].

Versuche zur entsprechenden Umsetzung von 3 waren jedoch erfolglos. Mit überschüssigem KH in THF konnte auch nach mehrerem Stunden bei Raumtemperatur keine merkliche Reaktion festgestellt werden. Führt man die Umsetzung von 3 mit KH in Gegenwart von 18-Krone-6 durch, wird nur unvollständige Deprotonierung von 3 erreicht.

Verwendet man hingegen n-Butyllithium als Deprotonierungs-Reagenz, so ist eine problemlose Darstellung des anionischen Stannyl-Komplexes 4 in THF möglich (Gl. 2). Beim Einsatz eines leichten Überschusses an LiBu zeigt das <sup>1</sup>H-NMR-Spektrum des Reaktionsgemisches nach 15 min keine Resonanzen im Hydrid-Bereich mehr. Bei Zugabe von Methanol schlägt die Farbe der THF-Lösung sofort von dunkelrot nach gelborange um. Man beobachtet dann im <sup>1</sup>H-NMR-Spektrum die Banden von 3, d.h. die Deprotonierung ist reversibel und es findet keine Wanderung des SnPh<sub>3</sub>-Liganden an den Cp-Ring statt.

Nach Aufarbeitung fällt 4 als oranges Pulver an. Die Verbindung ist in THF gut, in Diethylether, aromatischen und aliphatischen Kohlenwasserstoffen hingegen schlecht oder überhaupt nicht löslich. An Luft tritt spontan Zersetzung ein. Für weitere Reaktionen wird der anionische Stannyl-Komplex 4 nicht isoliert, sondern in situ als THF-Lösung eingesetzt.

Die mit der Deprotonierung verbundene Erhöhung der Elektronendichte am Molybdän-Atom äußert sich besonders deutlich im <sup>1</sup>H-NMR- und <sup>13</sup>C-NMR-Spektrum: im Vergleich zum Hydrido-Stannyl-Komplex 3 sind die Resonanzen des Cp-Liganden von 4 im <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektrum hochfeldverschoben.

Durch Umsetzungen mit Halogeniden der 4. Hauptgruppe sollten erste Aussagen bezüglich der Reaktivität von 4 erhalten werden. Umsetzungen von anionischen Metall-Silyl- und -Stannyl-Komplexen mit Zinn-Verbindungen R<sub>3</sub>SnCl erwiesen sich in der Vergangenheit als besonders geeignet sterische und elektronische Effekte zu untersuchen [3].

Komplex 4 reagiert mit Me<sub>3</sub>SnCl oder MeI zum

Bis(stannyl)-Komplex 5a bzw. dem Methyl-Stannyl-Komplex 5b (Gl. 3). Dabei üben sowohl das Lösungsmittel als auch die Reaktionsführung einen großen Einfluß auf die Produkt-Verteilung und auf die Ausbeute aus.

$$4 + R-X \longrightarrow Mo R$$
(3)

**5a**: R = SnMe<sub>3</sub>, X = Cl **5b**: R = Me, X = I

Tropft man bei  $-78^{\circ}$ C THF-Lösungen von Me<sub>3</sub>SnCl oder MeI zu einer THF-Lösung von 4, fallen neben 5a, b auch größere Mengen des Hydrido-Stannyl-Komplexes 3 an. Die Ausbeuten betragen bei dieser Herstellungsmethode lediglich 43% 5a bzw. 34% 5b. Wie an anderer Stelle [1–3] ausführlich diskutiert, bilden sich bei der Umsetzung anionischer Silyl- oder Stannyl-Komplexe mit Elektrophilen die entsprechenden Hydrido-Silyl-Komplexe durch Elektronen-Übertragung in mehr oder minder großem Ausmaß als Nebenprodukte.

Die Bildung an 3 kann nahezu vollständig unterdrückt werden, wenn man eine toluolische Lösung von Me<sub>3</sub>SnCl oder McI vorlegt und dazu eine konzentrierte THF-Lösung von 4 tropft. Nach einfacher Aufarbeitung fallen 5a, b in Ausbeuten von 84 bzw. 50% an.

Der orangegelbe Bisstannyl-Komplex 5a ist in kristalliner Form luftstabil. Er löst sich gut in THF, aber nur mäßig in schwächer polaren Solventien wie Diethylether oder Toluol.

Ein Bis(stannyl)-Komplex des Typs  $Cp_2Mo(SnR_3)_2$  ( $SnR_3 = SnMe_2Cl$ ) wurde bisher nur von Bulychev *et al.* durch Umsetzung von  $Cp_2MoH_2$  einem Überschuß an  $Me_2SnCl_2$  dargestellt [10]. Entsprechende Komplexe mit zwei unterschiedlichen Stannyl-Liganden sind nicht bekannt.

Der orangebraune Alkyl-Stannyl-Komplex 5b ist im Unterschied zu 3 und 5a gut in polaren organischen Solventien wie THF, Diethylether oder Toluol löslich, dagegen kaum in aliphatischen Kohlenwasserstoffen. Er ist als Feststoff gegenüber Luft erstaunlich stabil und zeigt auch in Lösung keine gesteigerte Zerfallstendenz.

Der anionische Stannyl-Komplex 4 geht also bereitwillig Substitutions-Reaktionen ein und besitzt eine hohe Reaktivität gegenüber Halogeniden der 4. Hauptgruppe.

Versetzt man jedoch eine Toluol-Lösung von Me<sub>3</sub>SiCl mit einer THF-Lösung von 4, so stellt man im Gegensatz zu den vorstehend beschriebenen Umsetzungen bei -78°C keine Reaktion fest. Erst nach

Erwärmen auf Raumtemperatur tritt unter langsamer Abscheidung von LiCl Umsetzung ein. Chromatographische Aufarbeitung liefert nach Abtrennen von 3 und einer weiteren, noch nicht identifizierten hydridischen Molybdän-Spezies ein orangegelbes Öl, aus dessen Petrolether-Lösung bei -25°C orange Plättchen auskristallisieren. Das Produkt ist in allen gängigen organischen Solventien löslich und gegenüber Luft nur mäßig empfindlich. Laut spektroskopischer und elementaranalytischer Daten handelt es sich dabei nicht um den erwarteten Silyl-Stannyl-Komplex Cp<sub>2</sub>Mo-(SnPh<sub>3</sub>)SiMe<sub>3</sub>, sondern um den Komplex Cp<sub>2</sub>Mo-(SnPh<sub>3</sub>)(CH<sub>2</sub>)<sub>4</sub>OSiMe<sub>3</sub> (6). Komplex 6 wird überraschenderweise auch bei der Umsetzung von 4 mit CF<sub>3</sub>SO<sub>3</sub>SiMe<sub>3</sub> in THF gebildet, obwohl der analoge Wolfram-Komplex [Cp<sub>2</sub>W-SnPh<sub>3</sub>] mit CF<sub>3</sub>SO<sub>3</sub>SiMe<sub>3</sub> glatt den Silyl-Stannyl-Komplex Cp<sub>2</sub>W(SiMe<sub>3</sub>)SnPh<sub>3</sub> ergibt [14].

Im <sup>13</sup>C-NMR-Spektrum von 6 ist mit Hilfe der DEPT-Technik eine exakte Zuordnung aller CH<sub>2</sub>-Resonanzen möglich. Die gegensätzlichen induktiven Effekte des Metallzentrums und des Sauerstoff-Atoms verursachen stark unterschiedliche chemische Verschiebungen der einzelnen CH2-Gruppen in einem Bereich von 62.2 (OCH<sub>2</sub>)-3.2 ppm (MoCH<sub>2</sub>). Die spektroskopischen Daten der beiden Alkyl-Stannyl-Komplexe 5b und 6 sind erwartungsgemäß sehr ähnlich; die <sup>1</sup>H-NMR-Resonanzen der Cp-Liganden (5a 85.0, 6 84.4 ppm) und die <sup>119</sup>Sn-NMR chemischen Verschiebungen (5b 58.2, 6 50.5 ppm) sind jeweils sehr ähnlich, unterscheiden sich aber von 3 und 5a. Die Verbindungen 3, 5 und 6 unterscheiden sich nur geringfügig in der Größe der Kopplungskonstanten <sup>3</sup>J(SnMoC<sub>Cp</sub>H) (7.1-7.9 Hz). Diese Beobachtung weist sowohl auf ähnliche σ-Donor-Eigenschaften der verschiedenen Liganden (H, SnMe<sub>3</sub>, Me, (CH<sub>2</sub>)<sub>4</sub>OSiMe<sub>3</sub>) als auch auf vergleichbare Bindungsverhältnisse in den Molybdän-Stannyl-Komplexen hin.

4 + 
$$Me_3$$
SiCl THF Mo (CH<sub>2</sub>)<sub>4</sub>O-SiMe<sub>3</sub> (4)

Umsetzungen anionischer Übergangsmetall-Verbindungen mit Halogensilanen werden oft von Komplikationen begleitet. Zahlreiche Untersuchungen zeigen, daß neben der Polarität des Lösungsmittels auch die Nukleophilie des anionischen Komplexes und die elektronischen und sterischen Verhältnisse des Silans einen Einfluß auf den Reaktionsverlauf ausüben [15]. Bei den bisherigen Umsetzungen anionischer Silyl- und Stannyl-Komplexe des Chroms, Mangans und Eisens mit Chlorsilanen werden bisher kaum Substitutions-

Produkte, statt dessen überwiegend die korrespondierenden Hydrido-Silyl- oder -Stannyl-Komplexe oder verschiedene Zersetzungsprodukte erhalten. Die analogen Umsetzungen mit Chlorstannanen oder Alkylhalogeniden lieferten hingegen stets die erwarteten stannylierten bzw. alkylierten Metallkomplexe [1,3].

Komplex 6 hat sich offensichtlich unter Ringöffnung eines THF-Moleküls und formaler Insertion der (CH<sub>2</sub>)<sub>4</sub>O-Einheit in die Molybdän-Silicium-Bindung gebildet. Bei der Bildung von 6 ist der primäre Angriff von 4 an ein nicht aktiviertes THF-Molekül, der zur Bildung der anionischen Spezies [Cp2Mo(SnPh3)-(CH<sub>2</sub>)<sub>4</sub>O]<sup>-</sup> führen würde, auszuschließen. THF-Lösungen von 4 sind längere Zeit bei Raumtemperatur stabil; nach Zugabe von Methanol ist nur der Hydrido-Stannyl-Komplex 3 nachzuweisen. THF könnte aber durch Bildung eines Donor-Akzeptor-Addukts mit dem Lewis-sauren Silan aktiviert werden. Dadurch wird der nachfolgende Angriff des anionischen Komplexes 4 an das positive polarisierte, aktivierte α-Kohlenstoff-Atom erleichtert, der zur Öffnung des THF-Moleküls und Bildung von 6 führt. So reagiert beispielsweise Me<sub>3</sub>SiI bereitwillig mit THF unter Spaltung des cyclischen Ethers zu I(CH<sub>2</sub>)<sub>4</sub>-OSiMe<sub>3</sub> [16].

#### 4. Röntgenstrukturanalysen von 5b und 6

Die beiden Alkyl-Stannyl-Komplexe **5b** (Abb. 1, Tab. 1) und **6** (Abb. 2, Tab. 2) gehören zu den strukturchemisch und theoretisch gut untersuchten Verbindungen des Typs Cp<sub>2</sub>MX<sub>2</sub> [17].

Der Kippwinkel  $\theta$  zwischen den beiden Cp-Liganden (5b 138.9, 6 134.7°) und der Winkel X-Mo-X

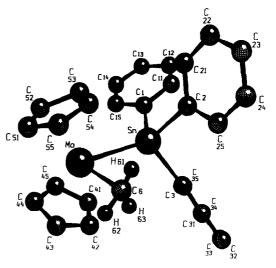



Abb. 1. Molekülstruktur von Cp<sub>2</sub>Mo(CH<sub>3</sub>)SnPh<sub>3</sub> (5b).

TABELLE 1. Ausgewählte Bindungslängen (pm) und Winkel (°) von Cp<sub>2</sub>Mo(CH<sub>3</sub>)SnPh<sub>3</sub> (5b)

| Mo-Sn          | 275.42(9) | Mo~C(44)     | 223(1)   |
|----------------|-----------|--------------|----------|
| Sn-C(1)        | 216.9(7)  | Mo-C(45)     | 228(1)   |
| Sn-C(2)        | 217.7(8)  | Mo~C(51)     | 227(1)   |
| Sn-C(3)        | 217.4(8)  | Mo~C(52)     | 228(1)   |
| Mo-C(6)        | 230(1)    | Mo~C(53)     | 229.5(8) |
| Mo-C(41)       | 232(1)    | Mo~C(54)     | 228(1)   |
| Mo-C(42)       | 227(1)    | Mo~C(55)     | 228(1)   |
| Mo-C(43)       | 222(1)    | Mo-Cp(1)     | 195.2 a  |
|                |           | Mo-Cp(2)     | 195.6 a  |
| Cp(1)-Mo-Cp(2) | 138.9 a   | Mo-Sn-C(3)   | 118.7(2) |
| Sn-Mo-C(6)     | 79.6(3)   | C(1)-Sn-C(2) | 100.5(3) |
| Mo-Sn-C(1)     | 115.9(2)  | C(1)-Sn-C(3) | 100.5(3) |
| Mo-Sn-C(2)     | 114.8(2)  | C(2)-Sn-C(3) | 103.7(3) |

<sup>&</sup>lt;sup>a</sup> Cp(1) = Schwerpunkt des Cp-Liganden C(41)-C(45); Cp(2) = Schwerpunkt des Cp-Liganden C(51)-C(55).

(Sn-Mo-C: 79.6(3) in **5b**, 79.7(3)° in **6**) hängen nicht nur von der Art der beiden Liganden X ab, sondern vor allem von der Besetzung des nichtbindenden Molekülorbitals 1a<sub>1</sub>, das in der MX<sub>2</sub>-Ebene liegt. Aus Extended-Hückel-Rechnungen (Modell: Cp<sub>2</sub>MoH<sub>2</sub>) ergibt sich bei d<sup>2</sup>-Konfiguration des Metallzentrums ein Winkel von etwa 78° zwischen den Liganden X, die dann nahezu in den Knotenebenen des Orbitals 1a<sub>1</sub> liegen. Die Winkel C-Mo-Sn in **5b** und **6** stimmen gut mit allen bisher gefundenen XMoX-Winkeln in Komplexen dieses Typs (76-82° [17]) überein. Wie in Abb. 3 und 4 gezeigt, liegen die beiden Liganden SnPh<sub>3</sub> und CH<sub>3</sub> bzw. (CH<sub>2</sub>)<sub>4</sub>OSiMe<sub>3</sub> aber nicht symmetrisch zur C<sub>2</sub>-Achse des Cp<sub>2</sub>Mo-Fragments. Wegen der Größe

TABELLE 2. Ausgewählte Bindungslängen (pm) und Winkel (°) von Cp<sub>2</sub>Mo(SnPh<sub>3</sub>)(CH<sub>2</sub>)<sub>4</sub>OSiMe<sub>3</sub> (6)

| Mo-C(01)            | 228(1)   | Mo-Sn              | 276.9(1) |
|---------------------|----------|--------------------|----------|
| Mo-C(71)            | 225(1)   | Mo-Cp(1)           | 197.2 a  |
| Mo-C(72)            | 232(1)   | Mo-Cp(2)           | 197.4 a  |
| Mo-C(73)            | 236(1)   | Sn-C(4)            | 218(1)   |
| Mo-C(74)            | 235(1)   | Sn-C(5)            | 217(1)   |
| Mo-C(75)            | 228(1)   | Sn-C(6)            | 220(1)   |
| Mo-C(81)            | 226(1)   | Si(1)-O            | 161.6(9) |
| Mo-C(82)            | 229(1)   | Si(1)-C(1)         | 187(2)   |
| Mo-C(83)            | 232(1)   | Si(1)– $C(2)$      | 184(2)   |
| Mo-C(84)            | 234(1)   | Si(1)-C(3)         | 185(2)   |
| Mo-C(85)            | 229(1)   | O-C(04)            | 141(1)   |
| Mo-Sn-C(4)          | 122.4(3) | C(1)-Si(1)-C(2)    | 111.8(9) |
| Mo-Sn-C(5)          | 112.0(3) | C(1)-Si(1)-C(3)    | 107.5(9) |
| Mo-Sn-C(6)          | 120.5(3) | C(2)-Si(1)- $C(3)$ | 111.9(9) |
| C(4)-Sn- $C(5)$     | 99.3(4)  | Si(1)-O-C(04)      | 124.0(7) |
| C(4)-Sn- $C(6)$     | 97.8(4)  | Mo-C(01)-C(02)     | 115.5(7) |
| C(5)-Sn-C(6)        | 100.9(4) | C(01)-C(02)-C(03)  | 113.7(9) |
| Cp(1)-Mo- $Cp(2)$ a | 134.7    | C(02)-C(03)-C(04)  | 115(1)   |
| Sn-Mo-C(01)         | 79.7(3)  | O-C(04)-C(03)      | 111(1)   |
|                     |          |                    |          |

<sup>&</sup>lt;sup>a</sup> Cp(1) = Schwerpunkt des Cp-Liganden C(71)-C(75); Cp(2) = Schwerpunkt des Cp-Liganden C(81)-C(85).

des SnPh<sub>3</sub>-Liganden schließt die Mo-Sn-Achse mit der C<sub>2</sub>-Achse bei 5b einen Winkel von ca. 43°, bei 6 von ca. 50° ein, die Mo-C-Achse dagegen bei 5b ca. 37° und bei 6 nur ca. 30°. In allen bisher untersuchten Komplexen Cp<sub>2</sub>Mo(H)SnR<sub>3</sub> (SnR<sub>3</sub> = SnCl<sub>3</sub>, SnMe<sub>2</sub>Cl, SnMe<sub>3</sub>) oder Cp<sub>2</sub>Mo(SnMe<sub>2</sub>Cl)<sub>2</sub> mit den sterischen weniger anspruchsvollen SnR<sub>3</sub>-Liganden [8b] beträgt der Winkel zwischen der C<sub>2</sub>-Achse des Cp<sub>2</sub>Mo-Fragments und dem Mo-Sn-Vektor nur 26-30°.

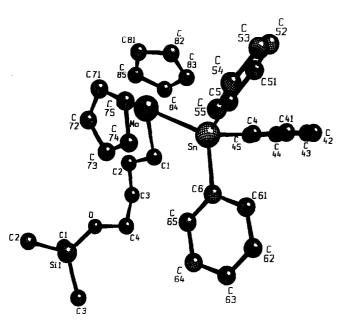



Abb. 2. Molekülstruktur von Cp<sub>2</sub>Mo(SnPh<sub>3</sub>)(CH<sub>2</sub>)<sub>4</sub>OSiMe<sub>3</sub> (6).

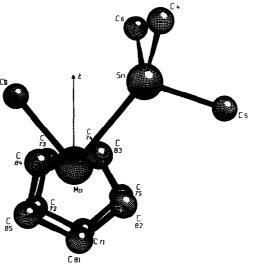



Abb. 3. Projektion der Molekülstruktur von  $Cp_2Mo(SnPh_3)$ - $(CH_2)_4OSiMe_3$  (6) auf die C,Mo,Sn-Ebene. Von den Phenyl-Gruppen am Sn-Atom und dem Liganden  $(CH_2)_4OSiMe_3$  wurden der Übersichtlichkeit halber nur die  $\alpha$ -Atome gezeichnet.

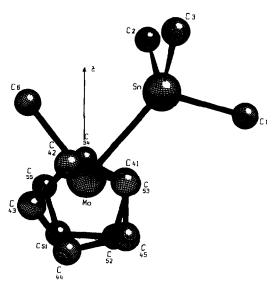



Abb. 4. Projektion der Molekülstruktur von  $Cp_2Mo(SnPh_3)CH_3$  (5b) auf die C,Mo,Sn-Ebene. Von den Phenyl-Gruppen am Sn-Atom wurden der Übersichtlichkeit halber nur die  $\alpha$ -Atome gezeichnet.

Relevante Abstände und Winkel in **5b** und **6** sind sehr ähnlich zur Alkyl-substituierten Komplexen dieses Typs, z.B. Cp<sub>2</sub>Mo(Cl)Et (Mo-C 228 pm) [18], Cp<sub>2</sub>MoCH<sub>2</sub>SiMe<sub>2</sub>CH<sub>2</sub> (Cp-Mo-Cp 140.0, C-Mo-C 72.4(2)°, Mo-C 230.1(5) pm) [19] oder Cp<sub>2</sub>-Mo(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub> (C-Mo-C 74.9°, Mo-C 227(1) pm) [20].

Als Folge der sterischen Wechselwirkung der Cp-Liganden untereinander und besonders mit dem sperrigen SnPh<sub>3</sub>-Liganden ergeben sich unterschiedliche Abstände der Kohlenstoff-Atome der Cp-Liganden zum Metallzentrum (5b 222–232, 6 225–236 pm). Eine leicht asymmetrische Koordination der Fünfringe ist für Komplexe dieses Typs nicht ungewöhnlich.

Ein verstärkter s-Charakter des an der Bindung zum Metall-Atom beteiligten Zinn-Hybridorbitals hat eine verbesserte Metall-Zinn-Orbitalüberlappung zur Folge, der M-Sn-Bindungsabstand verkürzt sich. Deswegen ist in 5b und 6 der Mo-Sn-Abstand länger als in Cp<sub>2</sub>Mo(Br)SnBr<sub>3</sub> (269.1(1) pm) [21], Cp<sub>2</sub>Mo(H)-SnMe<sub>2</sub>Cl (270.0(1) pm) [8b] oder Cp<sub>2</sub>Mo(SnMe<sub>2</sub>Cl)<sub>2</sub> (270.6(1), 271.7(1) pm) [22], aber annähernd gleich wie in Cp<sub>2</sub>Mo(H)SnMe<sub>3</sub> (275.8(1), 275.5(1) pm) [8b]. Der längere Mo-Sn-Abstand bei den SnPh<sub>3</sub>-Komplexen ist möglicherweise auch durch eine schlechtere Überlappung mit dem Metallfragment-Orbital infolge der großen Raumerfüllung des SnPh<sub>3</sub>-Liganden bedingt.

#### 5. Experimentalteil

Alle Arbeiten wurden unter trockenem und sauerstofffreiem Stickstoff unter Verwendung getrockneter und mit Stickstoff gesättigter Lösungsmittel durchgeführt. Zur Säulenchromatographie, die mit einer Säule 50 × 1 cm durchgeführt wurde, wurde Kieselgel der Firma Woelm (mesh 0.063-0.200 mm) verwendet, das vorher unter Erwärmen im Hochvakuum von Sauerstoff und anhaftender Feuchtigkeit befreit und unter Stickstoff aufbewahrt wurde. Die UV-Bestrahlungen wurden mit einer Quecksilberhochdrucklampe Heraeus TQ 150 (stärkste Resonanzlinie bei 366 nm) in einer Quarzglas-Apparatur durchgeführt. Verwendete Geräte: IR: Perkin-Elmer Modell 283 (CaF2-Küvetten, Schichtdicke 0.1 mm). <sup>1</sup>H-NMR und <sup>13</sup>C-NMR: Bruker AC 200 (H: 200.1 MHz, C: 50.3 MHz) und Bruker AMX 400 (H: 400.1 MHz, C: 100.6 MHz). Es sind nur Kopplungskonstanten zum Isotop <sup>119</sup>Sn angegeben. <sup>29</sup>Si- und <sup>119</sup>Sn-NMR: JEOL FX 90Q (17.75 bzw. 33.35 MHz). Wenn nicht anders vermerkt, erfolgten die Messungen bei 25°C. Schmelz- und Zersetzungspunkte wurden durch Differential-Thermoanalyse an einem DuPont Thermal Analyzer 9000 bestimmt. Die Metall-Analysen wurden mit Hilfe der Atomabsorptions-Spektroskopie durchgeführt.

### 5.1. Darstellung von Cp2Mo(H)SiMePh2 (1)

The photochemische Umsetzung von 0.53 g (2.32 mmol) Cp<sub>2</sub>MoH<sub>2</sub> [23] in 100 ml Petrolether mit 2.30 g (11.6 mmol) Ph<sub>2</sub>MeSiH erfolgte 5°C nach der in Lit. 6 gegebenen Vorschrift.

Zitronengelbe Nadeln, Ausb. 0.47 g (48%). Schmp. 40°C (Zers.). Gef.: C, 64.54; H, 5.83; Mo, 22.75.  $C_{23}H_{24}MoSi$  (424.5) ber.: C, 65.08; H, 5.70; Mo, 22.60%. IR (THF):  $\nu(MoH) = 1824w$ ,br cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, Aceton- $d_6$ ):  $\delta = 7.48-7.13$  (m, 10H,  $C_6H_5$ ); 4.48 (s, 10H,  $C_5H_5$ ); 0.64 (s, 3H, CH<sub>3</sub>); -7.73 (s, 1H, MoH,  $^2J(SiMoH)$  10.8 Hz). <sup>13</sup>C{<sup>1</sup>H}-NMR (100 MHz, Aceton- $d_6$ ):  $\delta = 149.7$ ; 135.5; 127.6; 127.3 ( $C_6H_5$ ); 79.5 ( $C_5H_5$ ); 6.6 (CH<sub>3</sub>). <sup>29</sup>Si{<sup>1</sup>H}-NMR (Benzol- $d_6$ );  $\delta = 33.4$ .

# 5.2. Darstellung von $(\pi - C_5H_4SiMePh_2)(\pi - C_5H_5)MoH_2$ (2)

In einem 5 mm-NMR-Rohr wird eine auf  $-78^{\circ}$ C gekühlte Lösung von 85 mg (0.20 mmol) 1 in 0.35 ml THF mit 0.20 ml (0.24 mmol) einer 1.20 M <sup>n</sup>BuLi-Lösung in Hexan zur Reaktion gebracht. Beim anschließenden Aufwärmen auf Raumtemperatur schlägt die Farbe der Lösung von gelb nach tiefrot um. Das <sup>1</sup>H-NMR-Spektrum zeigt nach 15 min vollständige Umsetzung von 1 an, das Signal von 1 im Hydrid-Bereich bei -7.73 ist verschwunden. Gleichzeitig tritt ein neues Signal in diesem Bereich bei -8.60 ppm auf. Nach Zugabe von überschüssigem MeOH färbt sich die Reaktionsmischung augenblicklich wieder gelb. Im <sup>1</sup>H-NMR-Spektrum ist das Signal bei -8.60 ppm verschwunden und man beobachtet ein neues Signal bei -9.18 ppm.

Das Gemisch wird in ein Schlenkrohr überführt und im Vak. zur Trockne eingedampft. Den gelbbraunen Rückstand nimmt man in 20 ml Petrolether auf und filtriert über Filterflocken. Die erhaltene Lösung wird bis zur beginnenden Trübung eingeengt und über Nacht bei -25°C aufbewahrt, wobei ein ockergelber Feststoff ausfällt. Die Mutterlauge wird abdekantiert und das Rohprodukt dreimal mit je 1 ml Petrolether gewaschen und aus Petrolether umkristallisiert.

Hellbeige Kristalle, Ausb. 68 mg (80%). Schmp. 83°C (Zers.). Gef.: C, 65.16; H, 5.76.  $C_{23}H_{24}MoSi$  (424.5) ber.: C, 65.08; H, 5.70%. IR (THF):  $\nu$ (MoH) = 1825w,br cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, Aceton- $d_6$ ):  $\delta$  = 7.59–7.32 (m, 10H,  $C_6H_5$ ); 4.88–4.39 (m, 9H,  $C_5H_5$  und  $C_5H_4$ ); 0.66 (s, 3H, CH<sub>3</sub>); -9.18 (s, 1H, MoH). <sup>13</sup>C{<sup>1</sup>H}-NMR (100 MHz, Aceton- $d_6$ ):  $\delta$  = 143.7 ( $C_5H_4$ - $C_{ipso}$ ); 138.6 (Ph- $C_{ipso}$ ); 135.5; 129.8; 128.3 ( $C_6H_5$ ); 82.2; 80.8 ( $C_5H_4$ ); 77.0 ( $C_5H_5$ ); -2.8 (CH<sub>3</sub>). <sup>29</sup>Si{<sup>1</sup>H}-NMR (Benzol- $d_6$ ):  $\delta$  = -12.5.

## 5.3. Darstellung von $Cp_2Mo(H)SnPh_3$ (3)

Eine Lösung von 1.46 g (6.40 mmol) Cp<sub>2</sub>MoH<sub>2</sub> [23] und 4.32 g (42.7 mmol) NEt<sub>3</sub> in 170 ml Toluol wird bei Raumtemp. tropfenweise mit 3.39 g (8.79 mmol) Ph<sub>2</sub>SnCl in 80 ml Toluol versetzt. Das Reaktionsgemisch wird 15 h bei Raumtemp. gerührt, wobei sich aus der orangegelben Lösung ein grauer Niederschlag abscheidet. Nach Filtration über Filterflocken und vollständigem Entfernen des Solvens im Vak. wird der anfallende orange gefärbte Feststoff fünfmal mit je 20 ml Petrolether und dreimal mit je 5 ml Diethylether gewaschen und aus Toluol mit Petrolether -25°C ausgefällt. Orangegelbe Kristalle, Ausb. 2.56 g (69%). Schmp. 92°C (Zers.). Gef.: C, 58.14; H, 4.31; Mo, 17.2; Sn, 21.6. C<sub>28</sub>H<sub>26</sub>MoSn (577.2) ber.: C, 58.27; H, 4.54; Mo, 16.6; Sn, 20.6%. IR (THF):  $\nu$ (MoH) = 1810w,br cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, Aceton- $d_6$ ):  $\delta = 7.57-7.20$ (m, 15H,  $C_6H_5$ ); 4.64 (s, 10H,  $C_5H_5$ ); -8.61 (s, 1H, MoH, <sup>2</sup>J(SnMoH) 155.6 Hz). <sup>13</sup>C(<sup>1</sup>H)-NMR (100 MHz, Aceton- $d_6$ ):  $\delta = 149.2$  (Ph-C<sub>ipso</sub>); 137.7 (<sup>2</sup>J(SnCC) 32.2 Hz); 128.4 (<sup>3</sup>J(SnCCC) 34.5 Hz); 127.7 (<sup>4</sup>J(SnCCCC) 8.5 Hz)  $(C_6H_5)$ ; 77.9  $(C_5H_5)$ . <sup>119</sup>Sn{<sup>1</sup>H}-NMR (Benzol $d_6$ ):  $\delta = 112.7$ .

## 5.4. Darstellung von Li[Cp<sub>2</sub>Mo-SnPh<sub>3</sub>] (4)

Zu 0.41 g (0.71 mmol) 3 in 8 ml THF werden bei -78°C unter leichtem Rühren 0.66 ml (0.85 mmol) einer 1.31 M <sup>n</sup>BuLi-Lösung in Hexan zugetropft. Die anfangs orange gefärbte Reaktionsmischung nimmt beim Aufwärmen auf Raumtemperatur einen tiefroten Farbton an. Nach 1 h Rühren wird die Lösung auf ca. 2 ml eingeengt und mit 20 ml Diethylether versetzt, woraufhin ein orangeroter Feststoff ausfällt. Die überstehende Lösung wird abdekantiert, der Nieder-

schlag dreimal mit je 5 ml Petrolether gewaschen und im Vak. getrocknet. Ausb. 0.31 g (75%).  $^{1}$ H-NMR (200 MHz, THF- $d_8$ ):  $\delta = 7.70-6.96$  (m, 15H,  $C_6H_5$ ); 3.71 (s, 10H,  $C_5H_5$ ).  $^{13}$ C{ $^{1}$ H}-NMR (50.3 MHz, THF- $d_8$ ):  $\delta = 158.5$  (Ph- $C_{ipso}$ ,  $^{1}$ J(SnC) 56.7 Hz); 138.7; 126.7; 125.2 ( $C_6H_5$ ); 63.8 ( $C_5H_5$ ).

Komplex 4 braucht für die nachfolgend beschriebenen Umsetzungen nicht isoliert zu werden. Er wird unter Verwendung eines 1.2-fachen Überschusses an BuLi in THF in situ dargestellt und sofort umgesetzt.

## 5.5. Darstellung von Cp<sub>2</sub>Mo(SnPh<sub>3</sub>)SnMe<sub>3</sub> (5a)

Eine Lösung von 1 mmol 4 in 10 ml THF wird bei -78°C zu einer Lösung von 0.26 g (1.38 mmol) Me<sub>3</sub>SnCl in 20 ml Toluol getropft und 30 min gerührt. Das Reaktionsgemisch wird während 1 h auf Raumtemp, erwärmt und 2 h bei dieser Temperatur gerührt, wobei sich die ursprünglich tiefrote Lösung orange- bis rotbraun verfärbt. Man trennt unlösliche Bestandteile über Filterflocken ab und engt das Gemisch auf ein Drittel ein. Dabei scheidet sich ein farbloser, feinkristalliner Niederschlag ab. Nach Zugabe von 20 ml Toluol und Filtrieren wird die orange- bis gelbbraune Lösung im Vak. zur Trockene eingeengt. Das orangegelbe Rohprodukt wird dreimal mit ie 10 ml Petrolether und dreimal mit je 3 ml Diethylether gewaschen und in 60 ml Toluol aufgenommen. Nach Filtration wird das Solvens im Vak. entfernt und der orangegelbe, feinkristalline Feststoff im Vak. getrocknet. Ausb. 0.62 g (84%). Schmp. 109°C (Zers.). Gef.: C, 51.08; H, 4.62; Mo, 12.91; Sn, 32.00. C<sub>31</sub>H<sub>34</sub>MoSn<sub>2</sub> (740.0) ber.: C, 50.32; H, 4.63; Mo, 12.86; Sn, 32.00%. <sup>1</sup>H-NMR (400 MHz, Aceton- $d_6$ ):  $\delta = 7.49-7.20$  (m, 15H, C<sub>6</sub>H<sub>5</sub>); 4.70 (s, 10H, C<sub>5</sub>H<sub>5</sub>, <sup>3</sup>J(HCMoSn) 7.1 Hz); -0.04 (s, 9H, Me,  ${}^{2}J(SnCH)$  36.2 Hz).  ${}^{13}C({}^{1}H)-NMR$ (50.3 MHz, Aceton- $d_6$ ):  $\delta = 149.5$  (Ph- $C_{ipso}$ ); 138.1 (<sup>2</sup>J(SnCC) 30.6 Hz); 128.4 (<sup>3</sup>J(SnCCC) 33.6 Hz); 127.8  $(C_6H_5)$ ; 78.8  $(C_5H_5)$ ; -3.3 (Me). <sup>119</sup>Sn(<sup>1</sup>H)-NMR (Benzol- $d_6$ ):  $\delta = 120.6$  (SnMe<sub>3</sub>); 90.8 (SnPh<sub>3</sub>).

### 5.6. Darstellung von Cp<sub>2</sub>Mo(SnPh<sub>3</sub>)Me (5b)

Eine Lösung von 1.14 mmol 4 in 10 ml THF wird bei  $-78^{\circ}$ C zu einer Lösung von 0.45 g (3.18 mmol) MeI in 20 ml Toluol getropft und 30 min gerührt. Weitere Umsetzung und Aufarbeitung wie bei 5a. Umkristallisation aus 20 ml Toluol/Petrolether (1/1). Die bei  $-25^{\circ}$ C ausgefallenen orangebraunen Kristalle werden dreimal mit je 3 ml Petrolether gewaschen und im Vak. getrocknet. Ausb. 0.34 g (50%). Schmp. 91°C (Zers.). Gef.: C, 59.05; H, 4.85; Mo, 16.30; Sn, 21.09. C<sub>29</sub>H<sub>28</sub>MoSn (591.2) ber.: C, 58.92; H, 4.77; Mo, 16.30; Sn, 20.00%. <sup>1</sup>H-NMR (400 MHz, Aceton- $d_6$ ):  $\delta = 7.56-7.22$  (m, 15H, C<sub>6</sub>H<sub>5</sub>); 4.70 (s, 10H, C<sub>5</sub>H<sub>5</sub>,  $^3$ J(HCMoSn) 7.6 Hz); -0.06 (s, 3H, Me,  $^3$ J(SnMoCH)

12.7 Hz).  $^{13}$ C{ $^{1}$ H}-NMR (100.6 MHz, Aceton- $d_6$ ):  $\delta$  = 149.9 (Ph-C $_{ipso}$ ); 138.2 ( $^{2}$ J(SnCC) 28.8 Hz); 128.3 ( $^{3}$ J(SnCCC) 32.1 Hz); 127.8 ( $^{4}$ J(SnCCC) 7.6 Hz) (C $_6$ H $_5$ ); 85.0 (C $_5$ H $_5$ ); -24.2 (Me).  $^{119}$ Sn{ $^{1}$ H}-NMR (Benzol- $d_6$ ):  $\delta$  = 58.2.

5.7. Darstellung von  $Cp_2Mo(SnPh_3)(CH_2)_4OSiMe_3$  (6) Eine Lösung von 1.00 mmol 4 in 10 ml THF wird zu einer Lösung von 0.16 g (1.50 mmol) Me<sub>3</sub>SiCl in 20 ml Toluol getropft und 8 h gerührt. Weitere Umsetzung und Aufarbeitung wie bei 5a. Das ölige, gelbbraune Rohprodukt wird mit 100 ml Petrolether extrahiert, die Lösung über Filterflocken filtriert und im Vak. eingedampft. Beim Chromatographieren bei 5°C über Kieselgel mit Toluol als Laufmittel liefert die erste. hellgelbe Zone nach Entfernen des Solvens im Vak. ein intensive gelbes Pulver, das <sup>1</sup>H-NMR-spektroskopisch als ein Gemisch von 3 und einer weiteren hydridischen Molybdän-Spezies identifiziert wird. Aus der zweiten Zone gewinnt man ein orangegelbes Öl, das in 20 ml Petrolether aufgenommen wird. Nach 2 d bei -25°C fällt 6 in Form orange gefärbter Kristallplättchen aus, die von der Mutterlauge befreit und im

TABELLE 3. Atomkoordinaten von 5b

| Atom | x           | у          | z          | $B(\mathring{A}^2)$ |
|------|-------------|------------|------------|---------------------|
| Sn   | 0.15067(5)  | 0.64112(4) | 0.27400(3) | 3.94(1)             |
| Mo   | -0.05364(7) | 0.77095(5) | 0.25033(4) | 4.64(2)             |
| C1   | 0.3408(8)   | 0.6801(5)  | 0.3555(4)  | 4.0(2)              |
| C2   | 0.1054(8)   | 0.5141(6)  | 0.3305(4)  | 4.5(2)              |
| C3   | 0.2246(8)   | 0.5941(5)  | 0.1706(4)  | 4.1(2)              |
| C6   | -0.173(1)   | 0.6451(9)  | 0.1891(7)  | 8.9(3)              |
| C11  | 0.4302(8)   | 0.6132(6)  | 0.3941(5)  | 5.2(2)              |
| C12  | 0.5551(8)   | 0.6352(7)  | 0.4441(5)  | 5.9(2)              |
| C13  | 0.5922(8)   | 0.7254(7)  | 0.4558(5)  | 5.7(2)              |
| C14  | 0.5064(9)   | 0.7919(6)  | 0.4196(5)  | 5.7(2)              |
| C15  | 0.3809(8)   | 0.7705(6)  | 0.3707(5)  | 5.0(2)              |
| C21  | 0.1351(9)   | 0.5076(6)  | 0.4145(5)  | 5.4(2)              |
| C22  | 0.1041(9)   | 0.4290(7)  | 0.4532(5)  | 6.1(2)              |
| C23  | 0.0453(9)   | 0.3560(7)  | 0.4097(6)  | 7.1(3)              |
| C24  | 0.018(1)    | 0.3597(7)  | 0.3274(7)  | 7.5(3)              |
| C25  | 0.0469(9)   | 0.4381(6)  | 0.2875(5)  | 6.0(2)              |
| C31  | 0.1476(9)   | 0.5397(7)  | 0.1097(5)  | 5.7(2)              |
| C32  | 0.1985(9)   | 0.5117(7)  | 0.0445(5)  | 6.0(2)              |
| C33  | 0.3215(9)   | 0.5395(7)  | 0.0371(5)  | 6.2(2)              |
| C34  | 0.400(1)    | 0.5920(7)  | 0.0947(6)  | 7.4(3)              |
| C35  | 0.3536(9)   | 0.6189(7)  | 0.1622(5)  | 6.1(2)              |
| C41  | 0.0807(9)   | 0.8190(7)  | 0.1640(6)  | 7.6(2)              |
| C42  | -0.036(1)   | 0.7896(9)  | 0.1207(5)  | 9.9(3)              |
| C43  | -0.141(1)   | 0.839(1)   | 0.1334(7)  | 14.7(4)             |
| C44  | -0.083(1)   | 0.9049(7)  | 0.1851(7)  | 13.1(3)             |
| C45  | 0.057(1)    | 0.8916(7)  | 0.2079(6)  | 9.2(3)              |
| C51  | -0.180(1)   | 0.8348(8)  | 0.3310(6)  | 9.0(3)              |
| C52  | -0.036(1)   | 0.8464(9)  | 0.3695(6)  | 11.8(4)             |
| C53  | 0.0057(9)   | 0.749(1)   | 0.3874(5)  | 10.6(3)             |
| C54  | -0.104(1)   | 0.6985(9)  | 0.3584(6)  | 11.1(3)             |
| C55  | -0.211(1)   | 0.747(1)   | 0.3252(6)  | 11.2(3)             |

TABELLE 4. Atomkoordinaten von 6

| Atom | х          | у          | z           | $B(\mathring{A}^2)$ |
|------|------------|------------|-------------|---------------------|
| Sn   | 0.70514(3) | 0.10466(8) | 0.03758(5)  | 2.91(1)             |
| Mo   | 0.76537(4) | 0.2927(1)  | -0.06227(6) | 2.88(2)             |
| Si1  | 1.0255(2)  | 0.2332(5)  | 0.0938(3)   | 5.8(1)              |
| O    | 0.9589(3)  | 0.242(1)   | 0.0875(5)   | 5.5(2)              |
| C1   | 1.0536(7)  | 0.413(2)   | 0.131(1)    | 10.7(6)             |
| C01  | 0.8106(4)  | 0.323(1)   | 0.0615(6)   | 3.5(2)              |
| C02  | 0.8603(4)  | 0.426(1)   | 0.0596(7)   | 4.3(3)              |
| C2   | 1.0497(7)  | 0.189(2)   | -0.012(1)   | 9.2(5)              |
| C3   | 1.0462(7)  | 0.092(2)   | 0.170(1)    | 10.4(5)             |
| C03  | 0.8951(5)  | 0.423(1)   | 0.1386(7)   | 4.7(3)              |
| C4   | 0.6509(4)  | 0.183(1)   | 0.1360(6)   | 3.6(2)              |
| C04  | 0.9244(5)  | 0.279(2)   | 0.1548(8)   | 5.2(3)              |
| C5   | 0.6459(4)  | -0.023(1)  | -0.0338(6)  | 3.0(2)              |
| C6   | 0.7469(4)  | -0.068(1)  | 0.1089(6)   | 3.2(2)              |
| C41  | 0.6056(4)  | 0.101(1)   | 0.1599(7)   | 4.4(3)              |
| C42  | 0.5713(4)  | 0.143(1)   | 0.2229(7)   | 4.5(3)              |
| C43  | 0.5794(5)  | 0.276(2)   | 0.2619(7)   | 5.0(3)              |
| C44  | 0.6235(5)  | 0.362(1)   | 0.2415(7)   | 4.9(3)              |
| C45  | 0.6597(4)  | 0.316(1)   | 0.1788(7)   | 3.9(3)              |
| C51  | 0.5910(4)  | 0.020(1)   | -0.0413(6)  | 3.4(2)              |
| C52  | 0.5546(5)  | -0.060(1)  | -0.0896(7)  | 4.6(3)              |
| C53  | 0.5705(5)  | -0.184(1)  | -0.1315(7)  | 4.7(3)              |
| C54  | 0.6245(5)  | -0.231(1)  | -0.1239(8)  | 4.8(3)              |
| C55  | 0.6615(5)  | -0.151(1)  | -0.0757(7)  | 4.1(3)              |
| C61  | 0.7138(5)  | -0.172(1)  | 0.1486(7)   | 4.4(3)              |
| C62  | 0.7369(5)  | -0.278(1)  | 0.1990(8)   | 4.8(3)              |
| C63  | 0.7921(5)  | -0.282(1)  | 0.2143(7)   | 5.2(3)              |
| C64  | 0.8263(5)  | -0.185(1)  | 0.1762(8)   | 5.1(3)              |
| C65  | 0.8033(4)  | -0.076(1)  | 0.1245(7)   | 4.6(3)              |
| C71  | 0.7964(5)  | 0.225(1)   | -0.1884(7)  | 4.7(3)              |
| C72  | 0.8447(5)  | 0.256(1)   | -0.1405(8)  | 5.0(3)              |
| C73  | 0.8467(4)  | 0.152(1)   | -0.0761(7)  | 4.7(3)              |
| C74  | 0.8018(5)  | 0.058(1)   | -0.0838(6)  | 4.2(3)              |
| C75  | 0.7691(5)  | 0.103(1)   | -0.1544(7)  | 4.2(3)              |
| C81  | 0.7274(7)  | 0.462(1)   | -0.1476(8)  | 7.0(4)              |
| C82  | 0.6841(5)  | 0.395(1)   | -0.1065(9)  | 6.1(3)              |
| C83  | 0.6894(5)  | 0.432(1)   | -0.0228(7)  | 4.7(3)              |
| C84  | 0.7353(5)  | 0.521(1)   | -0.0142(7)  | 5.2(3)              |
| C85  | 0.7597(5)  | 0.538(1)   | -0.0905(9)  | 6.8(3)              |
| C100 | 0.500      | 0.500      | 0.000       | 11.6(9) *           |
| C101 | 0.5543(9)  | 0.649(3)   | 0.100(1)    | 11.9(6) *           |
| C102 | 0.507(2)   | 0.606(5)   | 0.056(2)    | 10(1) *             |
| C103 | 0.545(2)   | 0.528(4)   | 0.048(2)    | 10(1) *             |

Vak. getrocknet werden. Gemäß NMR-spektroskopischen, sowie elementar- und röntgenstrukturanalytischen Untersuchungen kristallisiert 6 unter Einlagerung eines halben Äquivalents Pentan aus, das auch nach mehrstündigem Trocknen im Vak. nicht entfernt werden kann. Ausb. 0.35 g (54%). Schmp. 52°C. Gef.: C, 59.43; H, 6.75; Mo, 12.22; Sn, 16.67.  $C_{35}H_{42}MoOSiSn \cdot 0.5C_5H_{12}$  (757.5) ber.: C, 59.46; H, 6.39; Mo, 12.66; Sn, 15.67%. <sup>1</sup>H-NMR (400 MHz, Aceton- $d_6$ ):  $\delta = 7.52-7.20$  (m, 15H,  $C_6H_5$ ); 4.73 (s, 10H,  $C_5H_5$ ,  $^3J(HCMoSn)$  7.4 Hz); 3.50 (t, 2H,  $CH_2O$ ); 1.35–1.03 (m, 9H,  $(CH_2)_3Mo$  und  $CH_2$  des Solvats); 0.87 (t, 3H,  $CH_3$  Solvat); 0.05 (s, 9H, Me,  $^2J(SiCH)$  6.6

Hz).  $^{13}$ C{ $^{1}$ H}-NMR (100.6 MHz, Aceton- $d_6$ ):  $\delta = 149.0$  (Ph-C<sub>ipso</sub>); 138.3 ( $^{2}$ J(SnCC) 28.1 Hz); 128.4 ( $^{3}$ J(SnCCC) 32.8 Hz); 127.8 ( $^{4}$ J(SnCCCC) 8.7 Hz) (C<sub>6</sub>H<sub>5</sub>); 84.5 (C<sub>5</sub>H<sub>5</sub>); 62.2 (OCH<sub>2</sub>); 39.3 (OCH<sub>2</sub>CH<sub>2</sub>); 35.2 (MoCH<sub>2</sub>CH<sub>2</sub>); 34.7 (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>); 22.9 (CH<sub>3</sub>CH<sub>2</sub>); 14.2 (CH<sub>3</sub>CH<sub>2</sub>); -0.4 (SiMe); -3.2 (MoCH<sub>2</sub>).  $^{119}$ Sn( $^{1}$ H)-NMR (Benzol- $d_6$ ):  $\delta = 50.5$ .  $^{29}$ Si( $^{1}$ H)-NMR (Benzol- $d_6$ ):  $\delta = 15.7$ .

## 5.8. Röntgenstrukturanalysen

5b: Orangebraune Kristalle (ca.  $0.4 \times 0.2 \times 0.1$  mm). Zellparameter: monoklin, a 1009.0(4), b 1452.2(3), c 1703.5(6) pm,  $\beta$  103.27(3)°, V 2430 × 10<sup>6</sup> pm<sup>3</sup>; Raumgruppe  $P2_1/n$  (Z 4), d(ber.) 1.58 g/cm<sup>3</sup>. 6: Orange Kristalle (ca.  $0.2 \times 0.3 \times 0.2$  mm). Zellparameter: monoklin, a 2417.9(3), b 913.7(1), c 1606.4(4) pm,  $\beta$  90.286(2)°, V 3549 × 10<sup>6</sup> pm<sup>3</sup>; Raumgruppe  $P2_1/a$  (Z 4), d(ber.) 1.35 g/cm<sup>3</sup>.

Datensammlung: Die Zellkonstanten wurden durch Verfeinerung von je 25 Reflexen mit hohen Beugungswinkeln aus verschiedenen Bereichen des reziproken Raums bestimmt. Messung der Reflex-Intensitäten im Bereich  $3^{\circ} \le 2\theta \le 47^{\circ}$  (5b) bzw. 44° (6) erfolgte auf einem Enraf-Nonius CAD4 Diffraktometer bei Raumtemperatur mit Mo Kα-Strahlung (λ 71.069 pm, Graphit-Monochromator) nach der  $\omega/\theta$ -Scan-Methode. Nach Lorentz-, Polarisations- und einer empirischen Absorptions-Korrektur (5b:  $\mu$  15.5 cm<sup>-1</sup>, min. Transmission 97.2%; 6:  $\mu$  11.1 cm<sup>-1</sup>, min. Transmission 92.0%) wurden 3376 (5b) bzw. 4401 (6) unabhängige Strukturfaktoren erhalten.

Lösung der Struktur: SHELXS. Die Lagen der Wasserstoff-Atome wurden nach idealer Geometrie berechnet und nicht verfeinert. Alle übrigen Atome wurden mit anisotropen Temperaturparametern nach der Methode der kleinsten Quadrate mit der vollständigen Matrix verfeinert (Enraf-Nonius SDP). 5b: R 0.035,  $R_w$  0.037 für 2345 Reflexe; 6: R 0.044,  $R_w$  0.051 für 2843 Reflexe jeweils mit  $I \ge 1.5 \sigma(I)$ ; w = 1.

In Tab. 1 und 2 sind ausgewählte Abstände und Winkel, in Tab. 3 und 4 die Atomkoordinaten der Nicht-Wasserstoffatome wiedergegeben.

#### Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Förderung dieser Arbeit.

## Literatur

1 J. Schubert, S. Mock und U. Schubert, *Chem. Ber.*, 126 (1993) 657.

- U. Kirchgässner und U. Schubert, Organometallics, 7 (1988) 784;
   U. Schubert, U. Kirchgässner, J. Grönen und H. Piana, Polyhedron, 8 (1989) 1589;
   U. Kirchgässner, H. Piana und U. Schubert, J. Am. Chem. Soc., 113 (1991) 2228.
- 3 U. Schubert, E. Kunz, M. Knorr und J. Müller, Chem. Ber., 120 (1987) 1079; M. Knorr und U. Schubert, J. Organomet. Chem., 365 (1989) 151; M. Knorr, H. Piana, S. Gilbert und U. Schubert, ibid., 388 (1990) 327; U. Schubert und J. Schubert, ibid., 434 (1992) 169; U. Schubert, S. Gilbert und M. Knorr, ibid., (1993) im Druck.
- 4 U. Schubert und E. Kunz, J. Organomet. Chem., 303 (1986) C1; E. Kunz, J. Müller und U. Schubert, ibid., 320 (1987) C11; E. Kunz, M. Knorr, J. Willnecker und U. Schubert, New J. Chem., 12 (1988) 467; E. Kunz und U. Schubert, Chem. Ber., 122 (1989) 231; G. Reinhard, B. Hirle und U. Schubert, J. Organomet. Chem., 427 (1992) 173; G. Reinhard, B. Hirle, U. Schubert, M. Knorr, P. Braunstein, A. DeCian und J. Fischer, Inorg. Chem., 32 (1993) 1656; G. Reinhard, B. Hirle und U. Schubert, J. Organomet. Chem., 427 (1992) 173; P. Braunstein, M. Knorr, A. Tiripicchio und M. Tiripicchio-Camellini, Angew. Chem., 101 (1989) 1414; Angew. Chem., Int. Ed. Engl., 28 (1989) 1361; P. Braunstein, M. Knorr, E. Villarroya und J. Fischer, New J. Chem., 14 (1990) 583; P. Braunstein, M. Knorr, H. Piana und U. Schubert, Organometallics, 10 (1991) 828; P. Braunstein, M. Knorr, U. Schubert, M. Lanfranchi und A. Tiripicchio, J. Chem. Soc., Dalton Trans., (1991) 1507; P. Braunstein, M. Knorr. E. Villarroya, A. DeCian und J. Fischer, Organometallics, 10 (1991) 3714; P. Braunstein, L. Douce, M. Knorr, M. Strampfer, M. Lanfranchi und A. Tiripicchio, J. Chem. Soc., Dalton. Trans., (1992) 331.
- 5 A.M. Cardoso, R.J.H. Clark und S. Moorhouse, *J. Organomet. Chem.*, 186 (1980) 241.
- 6 C. Aitken, J.P. Barry, F. Gauvin, J.F. Harrod, A. Malek und R. Rousseau, Organometallics, 8 (1989) 1732.
- 7 D.H. Harris, S.A. Keppie und M.F. Lappert, J. Chem. Soc., Dalton Trans., (1972) 1653.
- 8 (a) A.N. Protsky, B.M. Bulychev und G.L. Soloveichik, *Inorg. Chim. Acta*, 71 (1983) 35; (b) A.N. Protsky, B.M. Bulychev, G.L. Soloveichik und V.K. Belsky, *Inorg. Chim. Acta*, 115 (1986) 121 und die dort zit. Literatur.
- 9 N.V. Perevozchikova, A.S. Smirnov, Y.A. Sorokin, R.V. Kaplina und V.A. Dadanov, *Zh. Obshch. Khim.*, 49 (1979) 945; D.H. Berry, J.H. Chey, H.S. Zipin und P.J. Carroll, *J. Am. Chem. Soc.*, 112 (1990) 452.
- 10 U. Schubert und A. Schenkel, Chem. Ber., 121 (1988) 939.
- 11 T.S. Koloski, P.J. Carroll und D.H. Berry, J. Am. Chem. Soc., 112 (1990) 6405; D.H. Berry, J. Chey, H.S. Zipin und P.J. Carroll, Polyhedron, 10 (1991) 1189.
- 12 S.R. Berryhill, G.L. Clevenger und F.Y. Burdurlu, Organometallics, 4 (1985) 1509; G. Thum, W. Ries, D. Greissinger und W. Malisch, J. Organomet. Chem., 252 (1983) C67; S.R. Berryhill und R.J.S. Corriu, J. Organomet. Chem., 370 (1989) C1; K.H. Pannell, J.M. Rozell, J. Lii und S.Y. Tien-Mayr, Organometallics, 7 (1988) 2524.
- 13 I.A. Lobanova, V.I. Zdanovich und N.E. Kolobova, Metalloorg. Khim., 1 (1988) 1176; Chem. Abstr., 111: 194987f.
- 14 S. Seebald und U. Schubert, unveröffentlichte Ergebnisse.
- 15 B.J. Aylett, Adv. Inorg. Radiochem., 25 (1982) 1.
- 16 U. Krüerke, Chem. Ber., 95 (1962) 174; M.E. Jung und M.A. Lyster, J. Org. Chem., 42 (1977) 3761.
- 17 J.W. Lauher, R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- 18 C.K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton und G.V. Rees, Acta Crystallogr., Sect. B, 30 (1974) 2290.

- 19 W.R. Tikkanen, J.W. Egan und J.L. Petersen, Organometallics, 3 (1984) 1646.
- 20 P. Diversi, G. Ingrosso, A. Lucherini, W. Porzio und M. Zocchi, J. Chem. Soc., Dalton Trans., (1983) 967.
- 21 T.S. Cameron und C.K. Prout, *J. Chem. Soc.*, *Dalton Trans.*, (1972) 1447.
- 22 V.K. Belskii, A.N. Protsky, B.M. Bulychev und G.L. Soloveichik, J. Organomet. Chem., 280 (1985) 45.
- 23 M.L.H. Green, J.A. McCleverty, L. Pratt und G. Wilkinson, J. Chem. Soc., (1961) 4854; M.L.H. Green und P.J. Knowles, J. Chem. Soc., Perkin Trans., (1973) 989.