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Abstract 

Chiral, arene-containing complexes of ruthenium(B) based on the 
phosphines chiraphos and diop are reported, as well as improved 
routes to some known analogues containing binap or the achiral 
phosphines Ph2P(CH,),PPh, (n = 2, dppe; n = 4, dppb). 

The recently reported [ll use of RuCl(C,H,XCH,- 
CN>lPF; as a precursor to the cationic species RuCl- 
(C,H,Xo-Ph,PC,H,PPh,)+PF; prompts us to de- 
scribe our work on the preparation by this route of 
analogous arene complexes containing chiral chelating 
phosphines. Arene complexes of Run have shown 
promising results in catalytic hydrogenation of olefins 
[2-41, ketones [3,5], and arenes [4,6], and have met with 
some success in the ring-opening metathesis polymer- 
ization of cycloolefins [7]. Cationic, arene complexes 
containing one chelating chiral phosphine per metal 
are particularly effective for catalytic asymmetric hy- 
drogenation, but only one such class of compounds has 
been isolated, the binap derivatives initially reported in 
1989 [3]. We now describe preparation of RuCl(C,H,)- 
(PP)+PF,- and [RuCI,(C,H,)&-PP) (where PP = 
chiraphos, diop), as well as development of more facile 
routes to some known complexes of binap and the 
achiral phosphines dppb and dppe [8-lo]. 

Existing routes to the cationic complexes [3,8], typi- 
cally based on the halide-bridged dimer [RuCl(C,H,)],- 
(p-Cl), 1 as a starting material [ll], are hampered by 
side-reactions for all but rather bulky or rigid disphos- 
phines (such as binap or, as recent work suggests [12], 
the dicyclohexylphosphine Cy,P(CH,),PCy,). Inade- 
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quate stoichiometric control results in contamination 
of the desired products (containing a single diphos- 
phine per ruthenium) by the phosphine-bridged species 
[RuCl,(C,H,)],(p-PP), as well as mononuclear bis(PP) 
species formed by loss of arene (Table 1). Side-reac- 
tions are promoted by the initially poor solubility in 
ethanol of both 1 (which, if prepared by the original 
method [13,14], we and others [11,15] find to be an 
insoluble oligomer rather than a dimer) and the phos- 
phine, and the elevated temperatures required. Selec- 
tivity problems appear to be a function of the size of 
the ring formed on chelation of the diphosphine, and 
increase with decreasing steric bulk, these are particu- 
larly severe for disphosphines forming a five-mem- 
bered chelate ring, presumably due to the high thermo- 
dynamic stability of this configuration. On treatment of 
oligomeric 1 (possibly [RuCl,],[RuCl,(C,H,)],) with 
dppe or chiraphos in refluxing ethanol, truns-RuCl, 
(PP), is obtained as the principal product. Even with 
dimeric 1, side-reactions arising from arene displace- 
ment and formation of bridged species remain of con- 
cern, the byproducts accounting’ for the bulk of the 
starting phosphine. Dppb and diiop, which like binap 
form seven-membered chelate rings, have a reduced 
tendency to form bis(diphosphint) species. These lig- 
ands cannot in fact generate the corresponding truns- 
RuCl,(PP), complexes [16,17], presumably owing to 
steric limitations (although related species in which 
one of the @ans groups is of lower steric bulk have 
been reported, e.g. truns-RuHCKdppb), [18], RuH 
(H,Xbinap)g PF; [ 191). Phosphine-bridged byproducts 
may be formed more readily, depending on the flexibil- 
ity of the phosphine backbone. Thus reaction of 
oligomeric 1 with dppb or diop gives a mixture of the 
desired cationic and the phosphine-bridged products, 
while with binap only the cationic species (and unre- 
acted starting materials) is obtained. Dimeric 1 gives 
with diop or binap solely RuClf&H,XPP)+Cl-, but 
from 15 to 25% of the less rigid phosphine dppb is lost 
as [RuCl,(C,H,)l,(~-dppb). As ,the variable product 
selectivity can be regarded as a aonsequence of carry- 
ing out the bridge-cleavage and subsequent phos- 
phine-substitution reactions in a one-pot procedure, we 
sought to alleviate the problem by use of a mononu- 
clear starting material with high1 solubility in organic 
solvents. Four species, all accessi le in high yield from 
1, were investigated: RuCl,(C, l!I elk L = CH,CH 2 
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TABLE 1. 31P(1H) NMR data for chelating and bridging phosphine complexes a 

Phosphine RuCl(C,H,XPP)+CI- 

dppe 70.4 (s) b 
dppb 30.5 (s) b 
chiraphos 66.0, 71.8 (AEIq, J = 44) b 
diop 23.9, 25.8 (ABq, J = 57) b 
binap 30.1, 37.9 (ABq, J = 64) b 

[RuCI,fC,H,IIr&PP) 

23.3 (s) b 
25.0 (s) b 
31.5 (m), 34.8 (m) ‘sd 
22.3 (s) = 

truns-RuCl,(PP), 

45.0 (s) b 

47.1 (s) b 

a 121 MHz, CDCl,, 85% HsPO, external standard; s = singlet, ABq = AB quartet, J in Hz b The complex has been isolated (sometimes as the 
PF, salt) and gives satisfactory elemental analysis. ’ In situ species, characterized by 31P(1H} and ‘H NMR. d Resolved at -SO”C, 6 31.4, 34.8 
(ABq, J = 58). 

[20*], PPh, 3 [14], dmso 4 [21], and RuCl(C,H,)- 
(CH,CN)gPF; 5 (use of which in this context was 
reported [l] during the course of this work). Of these, 
the mono-acetonitrile species 2 was ruled out immedi- 
ately on the basis of its low solubility. The remaining 
three complexes were screened in model studies with 
dppb and dppe before reactions with the chiral phos- 
phines were undertaken. 

The PPh, derivative 3 reacts slowly with dppb at 
room temperature. Only 20% free triphenylphosphine 
is evident in the in situ 31P{1H} NMR spectrum over 24 
h in CDCl,, and the expected singlet at S 30.5 for 
RuCl(C,H,Xdppb)+Cl-6 (Table 1) is not observed. 
Refluxing for up to 4 h in CH,Cl,-methanol gives a 
small amount of 6, but the principal product is a 
mixed phosphine species, possibly RuCl(CgH6XPPh3)- 
(dppb)+Cl-, in which the diphosphine is monodentate 
[22*] eqn. (1)). Longer reaction times led to side-reac- 
tions with little increase in the amount of the desired 6. 
As the PPh, ligand was not readily replaced, use of 3 
was not further investigated. 

RuCl,(C,H,)(PPh,) + dppb - 

(3) 

[RuCl(C,H,)(PPh,)(dppb)] +Cl- (1) 

On treatment with dppb in refluxing CH,Cl,- 
methanol, the dmso complex 4 gives 6 as the principal 
product, contaminated however by 10% of the bridged 
complex [RuCl,(C,H,I],&-dppb) 7, as well as varying 
amounts of disubstituted material. Lowering the reac- 
tion temperature resulted in exclusive formation of 7, 
suggesting that the cationic complex 6 is formed by 
reaction of residual phosphine with the bridged species, 
rather than by direct reaction with 4. Isolation of 6 via 
reaction of 7 with dppb in refluxing ethanol was previ- 
ously described [8]. The appearance of some biscdppb) 
material implies that the cationic species is either less 
thermally stable than the bridged, or that (owing to the 
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extreme insolubility of the latter) phosphine attacks 6 
before reaction with 7 is complete. In either case a 
mixture of products is unavoidable. Similarly, reaction 
of 4 with one equivalent of dppe gives a mixture of the 
bridged, chelated cation, and biscdppe) products at 
room temperature; at reflux truns-RuCl,(dppe), is ob- 
tained as the only phosphine-containing product. Of 
interest, the dmso complex proves an excellent precur- 
sor to the phosphine-bridged species; such complexes 
of dppe, chiraphos, dppb and diop can be prepared 
cleanly, instantaneously, and in quantitative yield by 
addition of half an equivalent of diphosphine to 4 in 
CH,Cl, at room temperature (eqn. (2a)). The CL-dppe 
and -dppb complexes were previously prepared by re- 
action of 1 with phosphine in refhtxing benzene [8]. 
Binap, owing to its bulk and rigidity, does not form the 
corresponding bridged species, giving under these con- 
ditions RuCl(C,H,Xbinap)+Cl- and unreacted start- 
ing material (eqn. (2b)). Use of one equivalent of binap 
furnishes solely the cationic complex, in a much more 
facile synthesis of this useful catalyst than that origi- 
nally reported [3]. 

2RuCl,(C,H,)(dmso) + PP - 

(4) 

[ RuCl,( C,H,)] 2( CL-PP) + 2 dmso (2a) 

(PP = dppe, chiraphos, dppb, diop) 

2(4) + binap - RuCl( C,H 6) (binap) + Cl- + dmso 

(2b) 

The less labile bis(nitrile) species 5 gives several 
side-products in addition to 6 on reaction with one 
equivalent of dppb in acetonitrile at room temperature. 
An intermediate species containing monodentate dppb, 
probably RuCl(C,H,XMeCNXdppbl+PF; as judged 
by 31P{1H) NMR data (two singlets; 6 28.4, - 18.11, 
slowly gives way to 6, accompanied however by an 
approximately equal amount of disubstituted material. 
With dppe, on the other hand, RuCl(C,H,Xdppe)+ 
PF; 8 is formed as the principal product (eqn. (3a)). 
No bis(dppe) byproduct is observed, even in the pres- 
ence of excess phosphine. The reaction of 5 with chi- 



D.E. Fogg, B.R James / Chiral phosphine complexes of Ru” arenes C23 

raphos was therefore investigated. At room tempera- 
ture, over 15 h in acetonitrile, the desired RuCl(C, 
H,Xchiraphos)+PF; 9 and the bis(chelate) complex 
rrans-RuCl(MeCNXchiraphos)lPF; 10 [23 * I form in a 
ratio of 2 : 1 (eqn. (3b)). Separation is effected by 
washing with benzene, in which 10 is preferentially 
soluble. Formation of 10 in ca. 30% yield under condi- 
tions which gave no observable amount of the corre- 
sponding dppe species suggests that the driving force 
for formation of bis(chiraphos) complexes is consider- 
ably greater than that for the dppe analogues, and 
accounts for the inability to generate significant 
amounts of the desired product 9 under the more 
forcing conditions used with 1 as a precursor. 

RuCI(C,H,)(CH,CN)lPF; + dppe - 

(5) 

RuCI(C,H,)(dppe)+PF; + 2 CH,CN (3a) 

(8) 
5 + chiraphos - 

RuCl(C,H,)(chiraphos) +PF;9 

+ RuCl( chiraphos),( CH,CN) + PF; 10 

+ unidentified Ru species (3b) 

Thus use of RuCl(C,H,XCH,CN)gPF; as a 
mononuclear starting material permits improved prod- 
uct selectivity in preparation of the cationic complexes 
of dppe and chiraphos, due in part to greater control 
over the reaction stoichiometry, and in part to obvia- 
tion of the need for elevated temperatures, which 
promote arene loss. With dppb or diop, in contrast, the 
original approach is preferable; with dppb in particu- 
lar, the high temperatures as used with precursor 1 
may assist in conversion of the readily formed bridged 
byproduct to the mono-chelate complex. Where forma- 
tion of the bridged species is blocked, however, as in 
the case of binap, the highly labile species RuCI,- 
(C,H,Xdmso) provides an excellent precursor to the 
cationic product. These distinctions follow a pattern 
long recognized in diphosphine reaction chemistry 
[16,17,241, in which phosphines with a two-carbon 
backbone have a high propensity for formation of 
bis(chelates), while those possessing a four-carbon 
backbone have an enhanced tendency toward phos- 
phine-bridging modes (providing the backbone is suffi- 
ciently flexible). 
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