Photochemical reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with SnCl_{4} II. Synthesis and X-ray structure of tetrachlorobis(triphenylphosphine oxide) tungsten(IV), $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right.$]

Teresa Szymańska-Buzar * , Tadeusz Głowiak
Institute of Chemistry, University of Wrocław, 50-383 Wroctow, Poland

Received 5 August 1994

Abstract

The crystal structure of $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right](\mathbf{1})$, formed in the photochemical reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with SnCl_{4} in the presence of triphenylphosphine, has been determined by the single-crystal X-ray diffraction method. The compound crystallizes in the monoclinic space group $C 2 / c$, with $a=14.027(3), b=13.163(3), c=19.621(4) \AA, \beta=96.36(3)^{\circ}, Z=4$. The structure solved by heavy-atom methods has been refined to $R=0.0466$, for 3489 observed reflections.

The $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ molecule possesses a crystallographically imposed C_{2} axis passing through the tungsten atom. Despite steric demands, a mutually cis arrangement of triphenylphosphine oxide oxygens is found for $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$, while there is a slight lengthening of the $\mathrm{W}-\mathrm{Cl}$ bonds trans to the oxygen atoms.

Keywords: Tungsten(IV); Crystal structure; Triphenylphosphine oxide; X-ray diffraction; Tin

1. Introduction

The Group 6 metal carbonyls are some of the most interesting of the transition metal complexes, in part because of the catalytic properties of these compounds in various chemical processes [1]. In continuation of our research of the catalytic activity of the Group 6 metal carbonyls in the presence of Lewis acids, we have investigated the photochemical reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with SnCl_{4}. Our work has led to the discovery and structural characterization of a new dinuclear tungsten(II) compound, $\left[(\mathrm{CO})_{4} \mathrm{~W}(\mu-\mathrm{Cl})_{3} \mathrm{~W}\left(\mathrm{SnCl}_{3}\right)\right.$ $\left.(\mathrm{CO})_{3}\right][2]$. This compound provides an excellent starting material for compounds of the form $\left[\mathrm{WCl}\left(\mathrm{SnCl}_{3}\right)\right.$ $\left.(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ and $\left[\mathrm{WCl}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right.$], with $\mathrm{L}=$ acetonitrile, phosphine, bipyridyne, etc. [3]. During attempts to prepare $\left[\mathrm{WCl}\left(\mathrm{SnCl}_{3}\right)(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in the photochemical reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with SnCl_{4} in the presence of PPh_{3} [3], a compound of tungsten(IV), $\left[\mathrm{WCl}_{4}{ }^{-}\right.$ $\left(\mathrm{OPPh}_{3}\right)_{2}$, was discovered accidentally.

[^0]Although a number of tungsten(IV) and molybdenum(IV) complexes of the type $\left[\mathrm{MCl}_{4} \mathrm{~L}_{2}\right.$] ($\mathrm{M}=\mathrm{W}$ or Mo; $\mathrm{L}=\mathrm{RCN}$ [4], py [5-7], phosphines [4,5,7-14] and sulfides [14]) are known, the only notice of the successful synthesis of an $\mathrm{M}^{1 \mathrm{~V}}$ complex $\mathrm{MCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}$ starting with $\mathrm{MCl}_{4}(\mathrm{RCN})_{2}$ molecules has appeared [4]; however, no exact information is available.

There are no structural data on phosphine oxide halo complexes of tungsten(IV) or molybdenum(IV), although some examples of W^{VI} and W^{V} oxo halo complexes containing the OPPh_{3} ligand are known [15-18]. The reason is probably that $\mathrm{MCl}_{4} \mathrm{~L}_{2}$ is readily oxidized to oxo complexes.

2. Results and discussion

2.1. Synthesis of $\left[W \mathrm{Cl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2} J(1)\right.$

The photochemical reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with SnCl_{4} and PPh_{3} in cyclohexane solution following the experimental details [3] gave the tungsten(II) compounds $\left[\mathrm{WCl}\left(\mathrm{SnCl}_{3}\right)(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{WCl}_{2}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and a small amount of $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right](1)$. From this
mixture of compounds, only the last was obtained in crystalline form.

The reaction mechanism for the formation of compound $\mathbf{1}$ is not known. However, of the reaction which occurred, there are precedents for the formation of OPPh_{3} complexes $\left[\mathrm{MOX}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{MO}_{2} \mathrm{X}_{2^{-}}\right.$ $\left(\mathrm{OPPh}_{3}\right)_{2}$], where $\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W}, \mathrm{X}=\mathrm{Cl}$ or Br , from the action of halogens on the phosphine-substituted Group 6 metal carbonyls [15]. Tungsten(IV) complexes are formed as products of the oxidation of seven-coordinated tungsten(II) complexes, which appear in the first step of the reaction [2,3]. A similar sequence of reactions with the formation of $\left.\mathrm{WCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ was observed by Moss and Shaw [10].

It is not obvious as to how the phosphine oxide is formed. The one explanation is that triphenylphosphine can be chlorinated to form $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$, and on exposure to moist air this can rapidly hydrolyze to triphenylphosphine oxide with the evolution of hydrogen chloride. Displacement of PPh_{3} in [$\left.\mathrm{WCl}_{4}\left(\mathrm{PPh}_{3}\right)\right]$ by OPPh_{3} can then lead to the formation of $\left[\mathrm{WCl}_{4}{ }^{-}\right.$ $\left(\mathrm{OPPh}_{3}\right)_{2}$].

2.2. Structure of $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right](1)$

Table 1 gives a summary of the crystal data and refinement results obtained for $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$. Positional parameters and equivalent isotropic thermal parameters are given in Table 2 and 2a. Table 3 gives

Table 1
Crystal data and details of refinement

Chemical formula	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~W}$
Molecular weight	882.19
Crystal system	monoclinic
Space group	C2/c
Cell constants	
$a(\AA)$	14.027(3)
b (\AA)	13.163(3)
$c(\AA)$	19.621(4)
$\beta\left({ }^{\circ}\right)$	96.36 (3)
$V\left(\AA^{3}\right)$	3600.5(13)
Z	4
T (K)	293(2)
$F(000)$	1736
$D_{\mathrm{c}}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	1.627
Radiation $\lambda(\mathrm{MoK} \alpha)(\mathrm{A})$	0.71069
$\mu\left(\mathrm{cm}^{-1}\right)$	3.625
Crystal size (mm)	$0.22 \times 0.25 \times 0.25$
Method of collection	$\omega / 2 \Theta$ scan
Refls. determining lattice	25
2Θ range (${ }^{\circ}$)	$20.0<2 \Theta<28.0$
2Θ limit (${ }^{\circ}$)	4.0-65.0
Number of reflections	
collected	6234
observed, $I \geq 4.0 \sigma(I)$	3489
Residuals $R_{1}, w R_{2}$	0.0466, 0.1257
Final ($\Delta \rho$) ($\mathrm{E}^{\AA^{-3}}$)	-0.841/0.892

Table 2
Final atomic coordinates with esd's $\left(\times 10^{5}\right)$ for $\mathrm{W},\left(\times 10^{4}\right)$ for remaining atoms, and equivalent isotropic thermal parameters with esd's $\left(\AA^{2} \times 10^{4}\right)$ for $\mathrm{W},\left(\times 10^{3}\right)$ for remaining atoms

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
W	0	36127(3)	25000	367(1)
$\mathrm{Cl}(1)$	1605(1)	3469(1)	3041(1)	26(1)
$\mathrm{Cl}(2)$	482(1)	4885(1)	1730 (1)	36(1)
P	224(1)	1714(1)	1258(1)	15(1)
O	364(1)	2452(1)	1852(1)	22(1)
C(11)	- 344(1)	566(1)	1500(1)	21(1)
C(12)	-1242(1)	643(1)	1749(1)	34(1)
C(13)	-1734(1)	- 226(1)	1915(1)	46(1)
C(14)	-1368(1)	-1145(1)	1818(1)	$62(1)$
C(15)	-469(1)	-1248(1)	1550 (1)	63(1)
C(16)	44(1)	-396(1)	1414(1)	42(1)
C(21)	-491(1)	2202(1)	515(1)	21(1)
C(22)	-1136(1)	1575(1)	119(1)	34(1)
C(23)	- 1638(1)	1961(1)	-486(1)	51(1)
C(24)	- 1492(1)	2953(1)	-676(1)	$50(1)$
C(25)	-841(1)	3607(1)	-279(1)	52(1)
C(26)	-343(1)	3195(1)	325(1)	$39(1)$
C(31)	1384(1)	1417(1)	1005(1)	20(1)
C(32)	1536(1)	1255(1)	333(1)	41(1)
C(33)	2467(1)	953(1)	186(1)	57(1)
C(34)	3204(1)	898(1)	688(1)	$50(1)$
C(35)	3060(1)	1067(1)	1355(1)	47(1)
C(36)	2143(1)	1338(1)	1529(1)	33(1)

$\overline{{ }^{a} U_{\mathrm{eq}}=1 / 3\left[\Sigma_{i j} U_{i j} a_{i}^{*} a_{j}^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)\right] .}$
selected bond distances and bond angles for this compound. The anisotropic displacement parameters for non-hydrogen atoms are listed in Table 4 and these, together with the coordinates and isotropic temperature factors for H atoms, were fixed and have been deposited.

The structure of a single molecule including all non-hydrogen atoms is shown in Fig. 1, which also indicates the atom-numbering scheme used. It can be

Table 2a
H-atom coordinates with esd's ($\times 10^{4}$) and isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

	l l	y	z	$U_{\text {eq }}$
$\mathrm{H}(12)$	$-1511(4)$	$1280(5)$	$1805(4)$	40
$\mathrm{H}(13)$	$-2319(5)$	$-167(6)$	$2093(4)$	56
$\mathrm{H}(14)$	$-1702(8)$	$-1722(7)$	$1927(5)$	74
$\mathrm{H}(15)$	$-230(8)$	$-1890(6)$	$1467(6)$	76
$\mathrm{H}(16)$	$648(6)$	$-460(5)$	$1266(4)$	51
$\mathrm{H}(22)$	$-1234(4)$	$910(5)$	$255(3)$	40
$\mathrm{H}(23)$	$-2065(5)$	$1550(8)$	$-757(4)$	61
$\mathrm{H}(24)$	$-1830(5)$	$3202(8)$	$-1076(4)$	60
$\mathrm{H}(25)$	$-747(6)$	$4275(7)$	$-411(4)$	63
$\mathrm{H}(26)$	$90(5)$	$3598(6)$	$598(3)$	46
$\mathrm{H}(32)$	$1041(5)$	$1340(6)$	$-19(4)$	50
$\mathrm{H}(33)$	$2567(6)$	$791(8)$	$-262(5)$	68
$\mathrm{H}(34)$	$3816(5)$	$743(7)$	$578(5)$	60
$\mathrm{H}(35)$	$3569(5)$	$1003(6)$	$1698(5)$	56
$\mathrm{H}(36)$	$2045(4)$	$1462(5)$	$1983(3)$	40

seen that despite steric demands, a mutually cis arrangement of triphenylphosphine oxide oxygens is found for $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right.$], while there is a slight lengthening of the $\mathrm{W}-\mathrm{Cl}$ bonds trans to the oxygen atoms.

The molecule is slightly distorted from octahedral geometry, with the oxygens of the triphenylphosphine oxide ligands occupying cis positions and two mutually trans Cl atoms. Deviation from ideal geometry occurs for the coordination geometry of the chlorine atoms around the tungsten atom. In the asymmetric cis form, the Cl atoms repel each other and give the bond angles, $\quad \mathrm{Cl}(1)^{\mathrm{i}}-\mathrm{W}-\mathrm{Cl}(2)=\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)^{\mathrm{i}}=$ $95.3(5)^{\circ}, \quad \mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)=\mathrm{Cl}(1)^{\mathrm{i}}-\mathrm{W}-\mathrm{Cl}(2)^{\mathrm{i}}=$ $91.0(5)^{\circ}$ and $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(2)^{\mathrm{i}}=91.6(1)^{\circ}$. The bond angle for the mutually trans chlorine atoms the $\mathrm{Cl}(1)^{\mathrm{i}}$ $-\mathrm{W}-\mathrm{Cl}(1)=170.9(7)^{\circ}$. The $\mathrm{W}-\mathrm{Cl}$ bond distances are shorter for the mutually trans chlorines $[\mathrm{W}-\mathrm{Cl}(1)$
$=2.387(1) \AA$] than for the cis chlorine $[\mathrm{W}-\mathrm{Cl}(2)=$ $2.402(2) \AA]$ and are comparable to those found in octahedral W^{V} and W^{VI} complexes [$\mathrm{WOCl}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}$] (2.369(4) $\AA[18])$ and $\left[\mathrm{WO}_{2} \mathrm{Cl}_{2}\left(\mathrm{OPPh}_{3}\right)_{2}\right](2.385(3) \AA$ and 2.366(3) \AA [16]). These $\mathrm{W}-\mathrm{Cl}$ distances are longer than those observed by Aslanov et al. in $\mathrm{W}^{\text {IV }}$ complex with mutually trans phosphines [$\mathrm{WCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] (2.339(3) Å [9]).

The lengthening of the $\mathrm{W}-\mathrm{Cl}$ bond trans to the oxygen atom can be accounted for, at least in part, in the terms of the trans influence of the coordinated phosphine oxide, resulting from the $\mathrm{p}_{\pi}-\mathrm{d}_{\pi}$ oxygentungsten bonding.

The coordination geometry around the tungsten atom for the oxygen atoms also shows little deviation from a regular octahedral arrangement. The bond angle $\mathrm{O}-\mathrm{W}-\mathrm{O}^{\mathrm{i}}$ is $85.9(2)^{\circ}$. All of the $\mathrm{O}-\mathrm{W}-\mathrm{Cl}$ angles are less than 3° from the angles expected for an

Table 3
Selected bond lengths (\AA) and angles (${ }^{\circ}$), with esd's in parentheses ${ }^{\text {a }}$

Bond distances			
W-O	2.087(3)	C(14)--C(15)	1.426(14)
$\mathrm{W}-\mathrm{O}^{1}$	2.087(3)	C(15)-C(16)	1.374(11)
W--Cl(1) ${ }^{1}$	2.387(1)	$\mathrm{C}(21)-\mathrm{C}(26)$	1.381(9)
$\mathrm{W}-\mathrm{Cl}(1)$	2.387(1)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.395(8)$
$\mathrm{W}-\mathrm{Cl}(2)$	2.402(2)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.407(9)$
W-Cl(2) ${ }^{1}$	2.402(2)	C(23)--C(24)	$1.379(14)$
$\mathrm{P}-\mathrm{O}$	1.514(4)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.422(13)$
$\mathrm{P}-\mathrm{C}(21)$	$1.795(5)$	$\mathrm{C}(25)-\mathrm{C}(26)$	1.416 (9)
$\mathrm{P}-\mathrm{C}(11)$	$1.796(5)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.375(8)$
$\mathrm{P}-\mathrm{C}(31)$	$1.796(5)$	$\mathrm{C}(31)-\mathrm{C}(36)$	$1.400(7)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.396(9)$	$\mathrm{C}(32)-\mathrm{C}(33)$	1.424(9)
C(11)-C(12)	1.405(7)	C(33)-C(34)	1.348(13)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.393(9)	$\mathrm{C}(34)-\mathrm{C}(35)$	$1.366(12)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.335 (13)	C(35)-C(36)	$1.413(8)$
Bond angles			
$\mathrm{O}-\mathrm{W}-\mathrm{O}^{1}$	85.9(2)	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	118.2(4)
$\mathrm{O}-\mathrm{W}-\mathrm{Cl}(1)$	86.0 (1)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.5(6)
$\mathrm{O}-\mathrm{W}-\mathrm{Cl}(1)^{1}$	87.4(1)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	119.8(7)
$\mathrm{O}-\mathrm{W}-\mathrm{Cl}(2)$ $\mathrm{O}-\mathrm{W}-\mathrm{Cl}(2)^{1}$	$91.3(1)$ $176.8(1)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.2(7)
$\mathrm{O}-\mathrm{W}-\mathrm{Cl}(2)^{1}$	176.8(1)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	118.9(5)
$\mathrm{O}-\mathrm{W}-\mathrm{Cl}(1)$ $\mathrm{O}^{1}-\mathrm{W}-\mathrm{Cl}(1)^{1}$	87.4(1)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.5(7)
$\mathrm{O}^{1}-\mathrm{W}-\mathrm{Cl}(1)^{1}$ $\mathrm{O}^{1}-\mathrm{W}-\mathrm{Cl}(2)$	86.0(1)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.8(8)
$\mathrm{O}^{2}-\mathrm{W}-\mathrm{Cl}(2)$ $\mathrm{O}^{1}-\mathrm{W}-\mathrm{Cl}(2)^{1}$	176.8(1)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	118.0(4)
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$	91.3(1)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	120.7(5)
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)^{1}$	95.3(1)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$ $\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$119.3(7)$ $120.8(7)$
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(1)$	170.9(7)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	121.2(6)
$\mathrm{Cl}(1)^{1}-\mathrm{W}-\mathrm{Cl}(2)$ $\mathrm{Cl}(1)^{1}-\mathrm{W}-\mathrm{Cl}(2)^{1}$	95.3(5)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119.7(7)
$\mathrm{Cl}(1)^{1}-\mathrm{W}-\mathrm{Cl}(2)^{1}$ $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(2)^{1}$	$91.0(5)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	122.0(6)
$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(2)^{1}$ $\mathrm{~W}-\mathrm{O}-\mathrm{P}$	91.6(1)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	117.0(8)
$\mathrm{W}-\mathrm{O}-\mathrm{P}$ $\mathrm{O}-\mathrm{P}-\mathrm{C}(11)$	156.8(2)	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	122.7(4)
$\mathrm{O}-\mathrm{P}-\mathrm{C}(11)$ $\mathrm{O}-\mathrm{P}-\mathrm{C}(21)$	111.1(2)	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(36)$	116.8(4)
$\mathrm{O}-\mathrm{P}-\mathrm{C}(21)$ $\mathrm{O}-\mathrm{P}-\mathrm{C}(31)$	114.2(2)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	118.7(7)
$\mathrm{O}-\mathrm{P}-\mathrm{C}(31)$ $\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	107.9(2)	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	118.7(6)
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$ $\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	106.9(3)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	120.5(5)
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$ $\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	109.4(2)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	120.6(6)
$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$ $\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	107.2(2)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	120.9(7)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	122.8(4)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	120.5(7)

[^1]

Fig. 1. ortep [25] drawing of $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ showing the atom numbering scheme. Hydrogen atoms have been omitted for clarity. Atoms related by the C_{2} axis of symmetry are denoted by i.
ideal octahedral arrangement, with the exception of O^{i} $-\mathrm{W}-\mathrm{Cl}(2)^{\mathrm{i}}=91.3(1)^{\circ}$.

The two cis OPPh_{3} ligands are bonded at the same
distances from the metal atom, are unstrained and related by twofold symmetry. The $\mathrm{W}-\mathrm{O}-\mathrm{P}$ angles are $156.8(2)^{\circ}$ and are smaller than those found in compounds with mutually cis OPPh_{3} ligands, i.e. $\left[\mathrm{WOCl}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right] \quad\left(159.9(7)^{\circ}\right.$ [18]) and $\left[\mathrm{WO}_{2} \mathrm{Cl}_{2}-\right.$ $\left.\left(\mathrm{OPPh}_{3}\right)_{2}\right]\left(159.0(4)^{\circ}\right.$ and $165.4(5)^{\circ}$ [16]), but close to those in $\mathrm{HPPh}_{3}\left[\mathrm{WOCl}_{4}\left(\mathrm{OPPh}_{3}\right)\right]\left(155.7(11)^{\circ}\right.$ [17]) which has only one OPP_{3} ligand.

The W-OPPh 3 bond lengths are 2.087(3) \AA and are comparable to those found in oxo compounds, i.e. $\mathrm{HPPh}_{3}\left[\mathrm{WOCl}_{4}\left(\mathrm{OPPh}_{3}\right)\right]\left(2.06(2) \AA\right.$ [17]) and $\left[\mathrm{WOCl}_{3}-\right.$ $\left.\left(\mathrm{OPPh}_{3}\right)_{2}\right](2.088(11) \AA$ [18]); these W-O distances are shorter than those observed by De Wet et al. in the dioxo tungsten(VI) complex $\left[\mathrm{WO}_{2} \mathrm{Cl}_{2}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ (W$\mathrm{OPPh}_{3}=2.175(8) \AA$ and 2.163(7) \AA [16]).

The geometry of the OPPh_{3} ligand shows no unusual features. The P-O bond, 1.46(1) \AA in free OPPh_{3} [19], is only slightly affected by the coordination to WCl_{4} in 1 (1.514(4) \AA). The phosphorus atoms show tetrahedral coordination, being surrounded by the atoms $\mathrm{C}(11), \mathrm{C}(21), \mathrm{C}(31)$ and O . The tetrahedral angles vary from $106.9(2)^{\circ}$ to $114.2(2)^{\circ}$. The $\mathrm{P}-\mathrm{O}$ bond lengths are the same $[1.796(5) \AA]$ and the mean C - C value is $1.39 \AA$.

Compound 1 is a unique example of an X -ray investigated complex $\mathrm{MCl}_{4} \mathrm{~L}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{L}=\mathrm{N}, \mathrm{P}, \mathrm{O}$, S-donor ligands) with a cis geometry. A trans geometry proposed on the basis of IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy for different tertiary phosphines, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$ and $\mathrm{SC}_{4} \mathrm{H}_{8}$ complexes of this type [12,14]. X-ray analysis has confirmed that $\left[\mathrm{WCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ is trans [9].

Table 4
Anisotropic displacement parameters with esd's $\left(\AA^{2} \times 10^{3}\right)^{\text {a }}$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
W	33(1)	41(1)	35(1)	0	-1(1)	0
$\mathrm{Cl}(1)$	14(1)	35(1)	28(1)	2(1)	-10(1)	-3(1)
P	13(1)	21(1)	$9(1)$	-4(1)	1(1)	1(1)
$\mathrm{Cl}(2)$	33(1)	36(1)	$39(1)$	22(1)	4(1)	-5(1)
O	25(2)	27(2)	14(2)	-13(1)	-1(1)	5(1)
C(11)	21(2)	22(2)	20(3)	-6(2)	4(2)	-6(2)
C(12)	21(2)	37(3)	45(4)	-1(3)	15(2)	-5(2)
C(13)	37(3)	52(4)	53(5)	-6(3)	14(3)	$-25(3)$
C(14)	82(7)	43(5)	63(6)	O(4)	22(5)	-30(4)
C(15)	$79(6)$	27(4)	91(8)	-6(4)	34(6)	-9(4)
C(16)	50(4)	5(3)	55(5)	-4(3)	19(3)	$O(3)$
C(21)	18(2)	38(3)	7(2)	-5(2)	-1(2)	3(2)
C(22)	24(2)	51(4)	23(3)	-8(2)	-10(2)	5(2)
C(23)	38(4)	88(6)	22(4)	-6(4)	-15(3)	16(4)
C(24)	45(4)	87(6)	16(3)	8(3)	$-10(3)$	22(4)
C(25)	64(5)	72(5)	21(4)	21(4)	1(3)	16(4)
C(26)	$50(4)$	49(4)	15(3)	10(3)	-2(2)	-6(3)
C(31)	17(2)	20(2)	24(3)	-7(2)	$5(2)$	1(2)
C(32)	29(3)	66(5)	31(4)	- 15(3)	15(2)	5(3)
C(33)	41(4)	83(6)	$50(5)$	-14(4)	28(4)	6(4)
C(34)	26(3)	62(5)	66(6)	3(4)	21(3)	12(3)
C(35)	20(3)	50(4)	69(5)	2(4)	1(3)	16(3)
C(36)	21(2)	41(3)	36(3)	9(3)	0 (2)	11(2)

${ }^{a}$ Anisotropic vibrational amplitudes in the form $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+\ldots 2 h k a^{*} b^{*} U_{12}+\ldots\right)\right]$

The cis structures were assigned only from a study of infrared spectra in the $\mathrm{W}-\mathrm{Cl}$ stretching region for $\mathrm{WCl}_{4} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}\right.$ and $\mathrm{S}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ [14]). Exactly the same arrangement and symmetry about the metal atom as in 1 has only been observed in $\left[\mathrm{UCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ [20].

3. Experimental details

All reaction and manipulation were carried out under N_{2} by using Schlenk techniques. The solvents used were dried, distilled and deoxygenated.

The photochemical reaction was carried out in a glass reactor fitted with a quartz window. An HBO 200 mercury lamp was used as the light source.

3.1. Synthesis of $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right](1)$

We attempted to prepare $\left[\mathrm{WCl}\left(\mathrm{SnCl}_{3}\right)(\mathrm{CO})_{3^{-}}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] from the photochemical reaction between $\mathrm{W}(\mathrm{CO})_{6}, \mathrm{SnCl}_{4}$ and PPh_{3} following published experimental details [15]. However, we obtained this compound as a mixture with $\left[\mathrm{WCl}_{2}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$, from which $\left[\mathrm{WCl}\left(\mathrm{SnCl}_{3}\right)(\mathrm{CO})_{3}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{WCl}_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ were separated by extraction with toluene. The solvent was removed in vacuo leaving an orange solid, which was then washed with cyclohexane and pumped dry. The solid was crystallized from a mixture of dichloromethane, toluene and heptane yielding $\left[\mathrm{WCl}\left(\mathrm{SnCl}_{3}\right)(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as an orange powder and dark orange crystals of $\left[\mathrm{WCl}_{4}-\right.$ $\left(\mathrm{OPP}_{3}\right)_{2}$], which were used for the X-ray structure determination.

3.2. Crystal structure analysis of $\left[W C l_{4}\left(\mathrm{OPPh}_{3}\right)_{2}\right](1)$

Crystals of 1 were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene / heptane $\left(-10^{\circ} \mathrm{C}\right)$. The single crystals used for the X-ray examination were removed from the flask, rapidly coated with a light hydrocarbon oil to protect them from the atmosphere and sealed in a capillary.

Crystallographic data were obtained using a KM4 κ-axis computer-controlled [21] four-circle diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$). Details of the crystal data intensity measurements are given in Table 1. No absorption or extinction corrections were applied. The 3489 unique data with $I \geq 4$. $\mathrm{O} \sigma(I)$ were used to solve and refine the structure in the monoclinic space group $C 2 / c$.

The structure was solved by heavy-atom methods with the shelxs-86 program [22] and refined by a full-matrix least-squares method, using the shelxl pro-
gram [23]. For non-hydrogen atoms, refinement with anisotropic temperature factors converged to $R_{1}=$ 0.0466 and $w R_{2}=0.1257$. The final atomic positions are given in Table 2. Coordinates and isotropic temperature factors for H atoms were fixed and together with thermal motion parameters have been deposited with the Cambridge Crystallographic Data Centre. Neutral atomic scattering factors were taken from International Tables for X-ray Crystallography [24].

Acknowledgements

The authors thank KBN (Grant No. 2.0738.91.01) for financial support of this work.

References

[1] T. Szymańska-Buzar, J. Mol. Catal., 43 (1987) 161; ibid., 48 , (1988) 43; ibid., 68 (1991) 177.
[2] T. Szymańska-Buzar and T. Glowiak, J. Organomet. Chem., 489 (1995) 207.
[3] T. Szymańska-Buzar, manuscript in preparation.
[4] E.A. Allen, B.J. Brisdon and G.W.A. Fowles, J. Chem. Soc., (1964) 4531.
[5] E.A. Allen, K. Feenan and G.W.A. Fowles, J. Chem. Soc., (1965) 1636.
[6] R.E. McCarley and T.M. Brown, Inorg. Chem., 3 (1964) 1232.
[7] D.G. Blight and D.L. Kepert, J. Chem. Soc. A, (1968) 534.
[8] P.M. Boorman, N.N. Greenwood and M.A. Hildon, J. Chem. Soc. A, (1968) 2466.
[9] L. Aslanov, R. Mason, A.G. Wheeler and P.O. Whimp, Chem. Commun., (1970) 30.
[10] J.R. Moss and B.L. Shaw, J. Chem. Soc. A, (1970) 595.
[11] A.V. Butcher and J. Chatt, J. Chem. Soc. A, (1970) 2652.
[12] A.V. Butcher, J. Chatt, G.J. Leigh and P.L. Richards, J. Chem. Soc., Dalton Trans., (1972) 1064.
[13] E. Carmona, L. Sanches, M.L. Poveda, R.A. Jones and J.G. Hefner, Polyhedron, 2 (1983) 797.
[14] M.A.S. King and R.E. McCarley, Inorg. Chem., 12 (1973) 1972.
[15] J. Lewis and R. Whyman, J. Chem. Soc., (1965) 6027.
[16] J.F. de Wet, M.R. Caira and B.J. Gellatly, Acta Crystallogr., B34 (1978) 762.
[17] M. Kersting, C. Friebel, K. Dehnicke, M. Krestel and R. Allmann, Z. Anorg. Allg. Chem., 563 (1988) 70.
[18] L.H. Hill, N.C. Howlader and F.E. Mabbs, J. Chem. Soc., Dalton Trans., (1980) 1475.
[19] G. Bandoli, G. Bortolozzo, D.A. Clemente, U. Croatto and C. Panattoni, J. Chem. Soc. A, (1970) 2778.
[20] G. Bombieri, D. Brown and R. Graziani, J. Chem. Soc., Dalton Trans., (1975) 1873.
[21] Kuma Km4 Software, User's Guide, Version 3.1, kuma diffraction, Wroclaw, Poland, 1989.
[22] G.M. Sheldrick, Acta Crystallogr., A46 (1990) 467.
[23] G.M. Sheldrick, J. Appl. Cryst., (1993) in preparation.
[24] International Tables for X-ray Crystallography, Kluwer, Dordrecht, 1992, Vol. C.
[25] C.K. Johnson, ortep II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

[^0]: * Corresponding author.

[^1]: ${ }^{\mathrm{a}}$ Symmetry code: (i) $-x, y,-z+1 / 2$.

