

Journal of Organometallic Chemistry 490 (1995) 203-207

Photochemical reaction of W(CO)₆ with SnCl₄ II. Synthesis and X-ray structure of tetrachlorobis(triphenylphosphine oxide)tungsten(IV), [WCl₄(OPPh₃)₂]

Teresa Szymańska-Buzar *, Tadeusz Głowiak

Institute of Chemistry, University of Wrocław, 50-383 Wrocłow, Poland

Received 5 August 1994

Abstract

The crystal structure of $[WCl_4(OPPh_3)_2](1)$, formed in the photochemical reaction of $W(CO)_6$ with $SnCl_4$ in the presence of triphenylphosphine, has been determined by the single-crystal X-ray diffraction method. The compound crystallizes in the monoclinic space group C2/c, with a = 14.027(3), b = 13.163(3), c = 19.621(4) Å, $\beta = 96.36(3)^\circ$, Z = 4. The structure solved by heavy-atom methods has been refined to R = 0.0466, for 3489 observed reflections.

The $[WCl_4(OPPh_3)_2]$ molecule possesses a crystallographically imposed C_2 axis passing through the tungsten atom.

Despite steric demands, a mutually *cis* arrangement of triphenylphosphine oxide oxygens is found for $[WCl_4(OPPh_3)_2]$, while there is a slight lengthening of the W-Cl bonds *trans* to the oxygen atoms.

Keywords: Tungsten(IV); Crystal structure; Triphenylphosphine oxide; X-ray diffraction; Tin

1. Introduction

The Group 6 metal carbonyls are some of the most interesting of the transition metal complexes, in part because of the catalytic properties of these compounds in various chemical processes [1]. In continuation of our research of the catalytic activity of the Group 6 metal carbonyls in the presence of Lewis acids, we have investigated the photochemical reaction of $W(CO)_6$ with SnCl₄. Our work has led to the discovery and structural characterization of a new dinuclear tungsten(II) compound, $[(CO)_4W(\mu-Cl)_3W(SnCl_3) (CO)_{3}$ [2]. This compound provides an excellent starting material for compounds of the form [WCl(SnCl₃)- $(CO)_{3}L_{2}$] and $[WCl_{2}(CO)_{3}L_{2}]$, with L = acetonitrile, phosphine, bipyridyne, etc. [3]. During attempts to prepare $[WCl(SnCl_3)(CO)_3(PPh_3)_2]$ in the photochemical reaction of $W(CO)_6$ with $SnCl_4$ in the presence of PPh₃ [3], a compound of tungsten(IV), [WCl₄- $(OPPh_3)_2$], was discovered accidentally.

Although a number of tungsten(IV) and molybdenum(IV) complexes of the type $[MCl_4L_2]$ (M = W or Mo; L = RCN [4], py [5–7], phosphines [4,5,7–14] and sulfides [14]) are known, the only notice of the successful synthesis of an M^{1V} complex MCl₄(OPPh₃)₂ starting with MCl₄(RCN)₂ molecules has appeared [4]; however, no exact information is available.

There are no structural data on phosphine oxide halo complexes of tungsten(IV) or molybdenum(IV), although some examples of W^{VI} and W^{V} oxo halo complexes containing the OPPh₃ ligand are known [15–18]. The reason is probably that MCl₄L₂ is readily oxidized to oxo complexes.

2. Results and discussion

2.1. Synthesis of $[WCl_4(OPPh_3)_2](1)$

The photochemical reaction of $W(CO)_6$ with $SnCl_4$ and PPh₃ in cyclohexane solution following the experimental details [3] gave the tungsten(II) compounds $[WCl(SnCl_3)(CO)_3(PPh_3)_2]$ and $[WCl_2(CO)_3(PPh_3)_2]$ and a small amount of $[WCl_4(OPPh_3)_2](1)$. From this

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05164-X

mixture of compounds, only the last was obtained in crystalline form.

The reaction mechanism for the formation of compound 1 is not known. However, of the reaction which occurred, there are precedents for the formation of OPPh₃ complexes $[MOX_3(OPPh_3)_2]$ and $[MO_2X_2$ - $(OPPh_3)_2]$, where M = Mo or W, X = Cl or Br, from the action of halogens on the phosphine-substituted Group 6 metal carbonyls [15]. Tungsten(IV) complexes are formed as products of the oxidation of seven-coordinated tungsten(II) complexes, which appear in the first step of the reaction [2,3]. A similar sequence of reactions with the formation of WCl₄(PMe₂Ph)₂] was observed by Moss and Shaw [10].

It is not obvious as to how the phosphine oxide is formed. The one explanation is that triphenylphosphine can be chlorinated to form Ph_3PCl_2 , and on exposure to moist air this can rapidly hydrolyze to triphenylphosphine oxide with the evolution of hydrogen chloride. Displacement of PPh_3 in $[WCl_4(PPh_3)]$ by $OPPh_3$ can then lead to the formation of $[WCl_4 (OPPh_3)_2]$.

2.2. Structure of $[WCl_4(OPPh_3)_2](1)$

Table 1 gives a summary of the crystal data and refinement results obtained for $[WCl_4(OPPh_3)_2]$. Positional parameters and equivalent isotropic thermal parameters are given in Table 2 and 2a. Table 3 gives

Table 1		
Cravetal data	and details	of refinement

Chemical formula	$C_{36}H_{30}Cl_4O_2P_2W$
Molecular weight	882.19
Crystal system	monoclinic
Space group	C2/c
Cell constants	
a (Å)	14.027(3)
b (Å)	13.163(3)
<i>c</i> (Å)	19.621(4)
β (°)	96.36(3)
$V(Å^3)$	3600.5(13)
Ζ	4
<i>T</i> (K)	293(2)
F(000)	1736
$D_{\rm c}~({\rm mg~m^{-3}})$	1.627
Radiation λ (Mo K α) (Å)	0.71069
μ (cm ⁻¹)	3.625
Crystal size (mm)	$0.22 \times 0.25 \times 0.25$
Method of collection	$\omega/2\Theta$ scan
Refls. determining lattice	25
20 range (°)	$20.0 < 2\Theta < 28.0$
20 limit (°)	4.0-65.0
Number of reflections	
collected	6234
observed, $I \ge 4.0\sigma(I)$	3489
Residuals R_1, wR_2	0.0466, 0.1257
Final ($\Delta \rho$) (e Å ⁻³)	-0.841/0.892

Table 2	
---------	--

Final atomic coordinates with esd's $(\times 10^5)$ for W, $(\times 10^4)$ for remaining atoms, and equivalent isotropic thermal parameters with esd's $(\text{\AA}^2 \times 10^4)$ for W, $(\times 10^3)$ for remaining atoms

Atom	x	у	z	U _{eq} ^a
w	0	36127(3)	25000	367(1)
Cl(1)	1605(1)	3469(1)	3041(1)	26(1)
Cl(2)	482(1)	4885(1)	1730(1)	36(1)
Р	224(1)	1714(1)	1258(1)	15(1)
0	364(1)	2452(1)	1852(1)	22(1)
C(11)	- 344(1)	566(1)	1500(1)	21(1)
C(12)	- 1242(1)	643(1)	1749(1)	34(1)
C(13)	- 1734(1)	-226(1)	1915(1)	46(1)
C(14)	- 1368(1)	-1145(1)	1818(1)	62(1)
C(15)	- 469(1)	- 1248(1)	1550(1)	63(1)
C(16)	44(1)	- 396(1)	1414(1)	42(1)
C(21)	- 491(1)	2202(1)	515(1)	21(1)
C(22)	- 1136(1)	1575(1)	119(1)	34(1)
C(23)	- 1638(1)	1961(1)	-486(1)	51(1)
C(24)	- 1492(1)	2953(1)	-676(1)	50(1)
C(25)	- 841(1)	3607(1)	-279(1)	52(1)
C(26)	- 343(1)	3195(1)	325(1)	39(1)
C(31)	1384(1)	1417(1)	1005(1)	20(1)
C(32)	1536(1)	1255(1)	333(1)	41(1)
C(33)	2467(1)	953(1)	186(1)	57(1)
C(34)	3204(1)	898(1)	688(1)	50(1)
C(35)	3060(1)	1067(1)	1355(1)	47(1)
C(36)	2143(1)	1338(1)	1529(1)	33(1)

 $\overline{{}^{\mathbf{a}} U_{\mathbf{eq}}} = 1/3 [\Sigma_{ij} U_{ij} a_i^* a_j^* (\boldsymbol{a}_i \cdot \boldsymbol{a}_j)].$

selected bond distances and bond angles for this compound. The anisotropic displacement parameters for non-hydrogen atoms are listed in Table 4 and these, together with the coordinates and isotropic temperature factors for H atoms, were fixed and have been deposited.

The structure of a single molecule including all non-hydrogen atoms is shown in Fig. 1, which also indicates the atom-numbering scheme used. It can be

Table 2a H-atom coordinates with esd's ($\times 10^4$) and isotropic thermal parameters (Å² $\times 10^3$)

	x	у	z	$U_{\rm eq}$	
H(12)	- 1511(4)	1280(5)	1805(4)	40	
H(13)	-2319(5)	- 167(6)	2093(4)	56	
H(14)	-1702(8)	- 1722(7)	1927(5)	74	
H(15)	-230(8)	- 1890(6)	1467(6)	76	
H(16)	648(6)	- 460(5)	1266(4)	51	
H(22)	- 1234(4)	910(5)	255(3)	40	
H(23)	- 2065(5)	1550(8)	- 757(4)	61	
H(24)	- 1830(5)	3202(8)	- 1076(4)	60	
H(25)	- 747(6)	4275(7)	-411(4)	63	
H(26)	90(5)	3598(6)	598(3)	46	
H(32)	1041(5)	1340(6)	- 19(4)	50	
H(33)	2567(6)	791(8)	-262(5)	68	
H(34)	3816(5)	743(7)	578(5)	60	
H(35)	3569(5)	1003(6)	1698(5)	56	
H(36)	2045(4)	1462(5)	1983(3)	40	

seen that despite steric demands, a mutually *cis* arrangement of triphenylphosphine oxide oxygens is found for $[WCl_4(OPPh_3)_2]$, while there is a slight lengthening of the W-Cl bonds *trans* to the oxygen atoms.

The molecule is slightly distorted from octahedral geometry, with the oxygens of the triphenylphosphine oxide ligands occupying *cis* positions and two mutually *trans* Cl atoms. Deviation from ideal geometry occurs for the coordination geometry of the chlorine atoms around the tungsten atom. In the asymmetric *cis* form, the Cl atoms repel each other and give the bond angles, $Cl(1)^{i}-W-Cl(2) = Cl(1)-W-Cl(2)^{i} = 95.3(5)^{\circ}$, $Cl(1)-W-Cl(2) = Cl(1)^{i}-W-Cl(2)^{i} = 91.0(5)^{\circ}$ and $Cl(2)-W-Cl(2)^{i} = 91.6(1)^{\circ}$. The bond angle for the mutually *trans* chlorine atoms the $Cl(1)^{i}-W-Cl(1) = 170.9(7)^{\circ}$. The W-Cl bond distances are shorter for the mutually *trans* chlorines [W-Cl(1)]

Table 3

Selected bond lengths (Å) and angles (°), with esd's in parentheses ^a

= 2.387(1) Å] than for the *cis* chlorine [W--Cl(2) = 2.402(2) Å] and are comparable to those found in octahedral W^V and W^{VI} complexes $[WOCl_3(OPPh_3)_2]$ (2.369(4) Å [18]) and $[WO_2Cl_2(OPPh_3)_2]$ (2.385(3) Å and 2.366(3) Å [16]). These W--Cl distances are longer than those observed by Aslanov et al. in W^{IV} complex with mutually *trans* phosphines $[WCl_4(PMe_2Ph)_2]$ (2.339(3) Å [9]).

The lengthening of the W-Cl bond *trans* to the oxygen atom can be accounted for, at least in part, in the terms of the *trans* influence of the coordinated phosphine oxide, resulting from the $p_{\pi}-d_{\pi}$ oxygen-tungsten bonding.

The coordination geometry around the tungsten atom for the oxygen atoms also shows little deviation from a regular octahedral arrangement. The bond angle $O-W-O^i$ is 85.9(2)°. All of the O-W-Cl angles are less than 3° from the angles expected for an

Bond distances				
W—O	2.087(3)	C(14) - C(15)	1 426(14)	
WO ¹	2.087(3)	C(15) - C(16)	1.374(11)	
$W-CI(1)^{1}$	2.387(1)	C(21) - C(26)	1 381(9)	
W-Cl(1)	2.387(1)	C(21) - C(22)	1 395(8)	
W—Cl(2)	2.402(2)	C(22) - C(23)	1 407(9)	
$W-Cl(2)^1$	2.402(2)	C(23) - C(24)	1 379(14)	
P-O	1.514(4)	C(24) - C(25)	1 422(13)	
PC(21)	1.795(5)	C(25) - C(26)	1 416(9)	
PC(11)	1.796(5)	C(31) - C(32)	1 375(8)	
PC(31)	1.796(5)	C(31)-C(36)	1 400(7)	
C(11)—C(16)	1.396(9)	C(32) - C(33)	1 424(9)	
C(11)—C(12)	1.405(7)	C(33) - C(34)	1 348(13)	
C(12)—C(13)	1.393(9)	C(34)-C(35)	1 366(12)	
C(13)—C(14)	1.335(13)	C(35)—C(36)	1.413(8)	
Bond angles				
$O-W-O^1$	85.9(2)	P-C(11)-C(12)	118 2(4)	
O-W-Cl(1)	86.0(1)	C(11) - C(12) - C(13)	120 5(6)	
$O-W-Cl(1)^{1}$	87.4(1)	C(11) - C(16) - C(15)	119.8(7)	
O-W-Cl(2)	91.3(1)	C(12) - C(13) - C(14)	120 2(7)	
$O-W-Cl(2)^1$	176.8(1)	C(12) - C(11) - C(16)	118 9(5)	
O-W-Cl(1)	87.4(1)	C(13)-C(14)-C(15)	120 5(7)	
$O^{1}-W-Cl(1)^{1}$	86.0(1)	C(14)-C(15)-C(16)	119.8(8)	
$O^{I} - W - Cl(2)$	176.8(1)	P - C(21) - C(26)	118 0(4)	
$O^1 - W - Cl(2)^1$	91.3(1)	P-C(21)-C(22)	120.7(5)	
Cl(1) - W - Cl(2)	91.0(5)	C(21) - C(22) - C(23)	1193(7)	
$Cl(1) - W - Cl(2)^1$	95.3(1)	C(21) - C(26) - C(25)	120.8(7)	
Cl(1) - W - Cl(1)	170.9(7)	C(22) - C(21) - C(26)	121.2(6)	
$Cl(1)^{1} - W - Cl(2)$	95.3(5)	C(22) - C(23) - C(24)	119.7(7)	
$Cl(1)^{1}-W-Cl(2)^{1}$	91.0(5)	C(23) - C(24) - C(25)	122.0(6)	
$Cl(2) - W - Cl(2)^1$	91.6(1)	C(24) - C(25) - C(26)	1170(8)	
W—O—P	156.8(2)	P-C(31)-C(32)	122.7(4)	
O - P - C(11)	111.1(2)	P-C(31)-C(36)	116.8(4)	
O - P - C(21)	114.2(2)	C(31) - C(32) - C(33)	118.7(7)	
O - P - C(31)	107.9(2)	C(31) - C(36) - C(35)	118.7(6)	
C(11) - P - C(21)	106.9(3)	C(32) - C(31) - C(36)	120.5(5)	
C(11) - P - C(31)	109.4(2)	C(33)—C(34)—C(35)	120.6(6)	
C(21) - P - C(31)	107.2(2)	C(34)—C(33)—C(32)	120.9(7)	
PC(11)C(16)	122.8(4)	C(34)—C(35)—C(36)	120.5(7)	

Symmetry code: (i) -x, y, -z + 1/2.

Fig. 1. ORTEP [25] drawing of $[WCl_4(OPPh_3)_2]$ showing the atom numbering scheme. Hydrogen atoms have been omitted for clarity. Atoms related by the C_2 axis of symmetry are denoted by i.

ideal octahedral arrangement, with the exception of O^i --W--Cl(2)ⁱ = 91.3(1)°.

The two cis OPPh₃ ligands are bonded at the same

Table 4 Anisotropic displacement parameters with esd's $(Å^2 \times 10^3)^{a}$

distances from the metal atom, are unstrained and related by twofold symmetry. The W—O—P angles are 156.8(2)° and are smaller than those found in compounds with mutually *cis* OPPh₃ ligands, i.e. [WOCl₃(OPPh₃)₂] (159.9(7)° [18]) and [WO₂Cl₂-(OPPh₃)₂] (159.0(4)° and 165.4(5)° [16]), but close to those in HPPh₃ [WOCl₄(OPPh₃)] (155.7(11)° [17]) which has only one OPPh₃ ligand.

The W-OPPh₃ bond lengths are 2.087(3) Å and are comparable to those found in oxo compounds, i.e. HPPh₃[WOCl₄(OPPh₃)] (2.06(2) Å [17]) and [WOCl₃-(OPPh₃)₂] (2.088(11) Å [18]); these W-O distances are shorter than those observed by De Wet et al. in the dioxo tungsten(VI) complex $[WO_2Cl_2(OPPh_3)_2]$ (W-OPPh₃ = 2.175(8) Å and 2.163(7) Å [16]).

The geometry of the OPPh₃ ligand shows no unusual features. The P–O bond, 1.46(1) Å in free OPPh₃ [19], is only slightly affected by the coordination to WCl₄ in 1 (1.514(4) Å). The phosphorus atoms show tetrahedral coordination, being surrounded by the atoms C(11), C(21), C(31) and O. The tetrahedral angles vary from 106.9(2)° to 114.2(2)°. The P–O bond lengths are the same [1.796(5) Å] and the mean C–C value is 1.39 Å.

Compound 1 is a unique example of an X-ray investigated complex MCl_4L_2 (M = Mo, W; L = N, P, O, S-donor ligands) with a *cis* geometry. A *trans* geometry proposed on the basis of IR, ¹H and ³¹P NMR spectroscopy for different tertiary phosphines, C_3H_7CN and SC_4H_8 complexes of this type [12,14]. X-ray analysis has confirmed that [WCl₄(PMe₂Ph)₂] is *trans* [9].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U_{13}	<i>U</i> ₁₂	
w	33(1)	41(1)	35(1)	0	- 1(1)	0	
Cl(1)	14(1)	35(1)	28(1)	2(1)	- 10(1)	- 3(1)	
P	13(1)	21(1)	9(1)	-4(1)	1(1)	1(1)	
Cl(2)	33(1)	36(1)	39(1)	22(1)	4(1)	- 5(1)	
0	25(2)	27(2)	14(2)	-13(1)	- 1(1)	5(1)	
C(11)	21(2)	22(2)	20(3)	-6(2)	4(2)	- 6(2)	
C(12)	21(2)	37(3)	45(4)	- 1(3)	15(2)	- 5(2)	
C(13)	37(3)	52(4)	53(5)	-6(3)	14(3)	- 25(3)	
C(14)	82(7)	43(5)	63(6)	0(4)	22(5)	- 30(4)	
C(15)	79(6)	27(4)	91(8)	-6(4)	34(6)	-9(4)	
C(16)	50(4)	5(3)	55(5)	- 4(3)	19(3)	0(3)	
C(21)	18(2)	38(3)	7(2)	- 5(2)	-1(2)	3(2)	
C(22)	24(2)	51(4)	23(3)	-8(2)	-10(2)	5(2)	
C(23)	38(4)	88(6)	22(4)	-6(4)	-15(3)	16(4)	
C(24)	45(4)	87(6)	16(3)	8(3)	-10(3)	22(4)	
C(25)	64(5)	72(5)	21(4)	21(4)	1(3)	16(4)	
C(26)	50(4)	49(4)	15(3)	10(3)	-2(2)	-6(3)	
C(31)	17(2)	20(2)	24(3)	- 7(2)	5(2)	1(2)	
C(32)	29(3)	66(5)	31(4)	- 15(3)	15(2)	5(3)	
C(33)	41(4)	83(6)	50(5)	-14(4)	28(4)	6(4)	
C(34)	26(3)	62(5)	66(6)	3(4)	21(3)	12(3)	
C(35)	20(3)	50(4)	69(5)	2(4)	1(3)	16(3)	
C(36)	21(2)	41(3)	36(3)	9(3)	0(2)	11(2)	

^a Anisotropic vibrational amplitudes in the form $\exp[-2\pi^2(h^2a^{*2}U_{11} + ... 2hka^{*}b^{*}U_{12} + ...)]$

The *cis* structures were assigned only from a study of infrared spectra in the W—Cl stretching region for WCl₄L₂ (L = CH₃CN, C₂H₅CN and S(C₂H₅)₂ [14]). Exactly the same arrangement and symmetry about the metal atom as in 1 has only been observed in [UCl₄(OPPh₃)₂] [20].

3. Experimental details

All reaction and manipulation were carried out under N_2 by using Schlenk techniques. The solvents used were dried, distilled and deoxygenated.

The photochemical reaction was carried out in a glass reactor fitted with a quartz window. An HBO 200 mercury lamp was used as the light source.

3.1. Synthesis of $[WCl_4(OPPh_3)_2](1)$

We attempted to prepare $[WCl(SnCl_3) (CO)_3$ -(PPh₃)₂] from the photochemical reaction between W(CO)₆, SnCl₄ and PPh₃ following published experimental details [15]. However, we obtained this compound as a mixture with $[WCl_2(CO)_3(PPh_3)_2]$ and $[WCl_4(OPPh_3)_2]$, from which $[WCl(SnCl_3)(CO)_3$ -(PPh₃)₂] and $[WCl_4(OPPh_3)_2]$ were separated by extraction with toluene. The solvent was removed in vacuo leaving an orange solid, which was then washed with cyclohexane and pumped dry. The solid was crystallized from a mixture of dichloromethane, toluene and heptane yielding $[WCl(SnCl_3)(CO)_3(PPh_3)_2]$ as an orange powder and dark orange crystals of $[WCl_4-(OPPh_3)_2]$, which were used for the X-ray structure determination.

3.2. Crystal structure analysis of $[WCl_4(OPPh_3)_2](1)$

Crystals of 1 were grown from $CH_2Cl_2/toluene/heptane (-10^{\circ}C)$. The single crystals used for the X-ray examination were removed from the flask, rapidly coated with a light hydrocarbon oil to protect them from the atmosphere and sealed in a capillary.

Crystallographic data were obtained using a KM4 κ -axis computer-controlled [21] four-circle diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71069$ Å). Details of the crystal data intensity measurements are given in Table 1. No absorption or extinction corrections were applied. The 3489 unique data with $I \ge 4$. O $\sigma(I)$ were used to solve and refine the structure in the monoclinic space group C2/c.

The structure was solved by heavy-atom methods with the shelxs-86 program [22] and refined by a full-matrix least-squares method, using the shelxl program [23]. For non-hydrogen atoms, refinement with anisotropic temperature factors converged to $R_1 =$ 0.0466 and $wR_2 = 0.1257$. The final atomic positions are given in Table 2. Coordinates and isotropic temperature factors for H atoms were fixed and together with thermal motion parameters have been deposited with the Cambridge Crystallographic Data Centre. Neutral atomic scattering factors were taken from *International Tables for X-ray Crystallography* [24].

Acknowledgements

The authors thank KBN (Grant No. 2.0738.91.01) for financial support of this work.

References

- [1] T. Szymańska-Buzar, J. Mol. Catal., 43 (1987) 161; ibid., 48, (1988) 43; ibid., 68 (1991) 177.
- [2] T. Szymańska-Buzar and T. Glowiak, J. Organomet. Chem., 489 (1995) 207.
- [3] T. Szymańska-Buzar, manuscript in preparation.
- [4] E.A. Allen, B.J. Brisdon and G.W.A. Fowles, J. Chem. Soc., (1964) 4531.
- [5] E.A. Allen, K. Feenan and G.W.A. Fowles, J. Chem. Soc., (1965) 1636.
- [6] R.E. McCarley and T.M. Brown, Inorg. Chem., 3 (1964) 1232.
- [7] D.G. Blight and D.L. Kepert, J. Chem. Soc. A, (1968) 534.
- [8] P.M. Boorman, N.N. Greenwood and M.A. Hildon, J. Chem. Soc. A, (1968) 2466.
- [9] L. Aslanov, R. Mason, A.G. Wheeler and P.O. Whimp, Chem. Commun., (1970) 30.
- [10] J.R. Moss and B.L. Shaw, J. Chem. Soc. A, (1970) 595.
- [11] A.V. Butcher and J. Chatt, J. Chem. Soc. A, (1970) 2652.
- [12] A.V. Butcher, J. Chatt, G.J. Leigh and P.L. Richards, J. Chem. Soc., Dalton Trans., (1972) 1064.
- [13] E. Carmona, L. Sanches, M.L. Poveda, R.A. Jones and J.G. Hefner, *Polyhedron*, 2 (1983) 797.
- [14] M.A.S. King and R.E. McCarley, Inorg. Chem., 12 (1973) 1972.
- [15] J. Lewis and R. Whyman, J. Chem. Soc., (1965) 6027.
- [16] J.F. de Wet, M.R. Caira and B.J. Gellatly, Acta Crystallogr., B34 (1978) 762.
- [17] M. Kersting, C. Friebel, K. Dehnicke, M. Krestel and R. Allmann, Z. Anorg. Allg. Chem., 563 (1988) 70.
- [18] L.H. Hill, N.C. Howlader and F.E. Mabbs, J. Chem. Soc., Dalton Trans., (1980) 1475.
- [19] G. Bandoli, G. Bortolozzo, D.A. Clemente, U. Croatto and C. Panattoni, J. Chem. Soc. A, (1970) 2778.
- [20] G. Bombieri, D. Brown and R. Graziani, J. Chem. Soc., Dalton Trans., (1975) 1873.
- [21] KUMA KM4 Software, User's Guide, Version 3.1, KUMA DIFFRAC-TION, Wroclaw, Poland, 1989.
- [22] G.M. Sheldrick, Acta Crystallogr., A46 (1990) 467.
- [23] G.M. Sheldrick, J. Appl. Cryst., (1993) in preparation.
- [24] International Tables for X-ray Crystallography, Kluwer, Dordrecht, 1992, Vol. C.
- [25] C.K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.