

Fulvalene titanium and zirconium complexes: synthesis and NMR study of phosphanido-, alkyl-, and alkynyl-derivatives. X-ray crystal structures of $[{Ti(\eta^5-C_5H_5)(\mu-PPh_2)}_{2}(\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4))]$

of [{Ti(
$$\eta^5$$
-C₅H₅)(μ -PPh₂)}₂{ μ -(η^5 -C₅H₄- η^5 -C₅H₄)}]
and [{Zr(η^5 -C₅H₅)(μ -C\(\text{\section}CSiMe₃)}₂{ μ -(η^5 -C₅H₄- η^5 -C₅H₄)}]

Ana Cano a, Tomás Cuenca a, Mikhail Galakhov a, Gema M. Rodríguez a, Pascual Royo a, *, Christine J. Cardin b, Maire A. Convery c

Departamento de Química Inorgánica, Universidad de Alcalá de Henares, Campus Universitario, 28871-Alcalá de Henares, Spain
 Department of Chemistry, University of Reading, Whiteknights, Reading RG6, UK
 Department of Chemistry, Trinity College, The University of Dublin, Dublin 2, Ireland

Received 27 July 1994

Abstract

Reaction of $[\{M(\eta^5-C_5H_5)(\mu-Cl)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ (M = Ti, 1; Zr, 2) or $[\{M(\eta^5-C_5H_5)Cl_2\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$, (M = Ti, 5; Zr, 6) with one or two equivalents of LiPPh₂ afforded the new phosphanidometal(III) complexes $[\{M(C_5H_5)(\mu-PPh_2)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$, (M = Ti, 3; Zr, 4). Reaction of 2 with LiC\(\subseteq\CSiMe_3\) led to the diamagnetic zirconium(III) alkynyl derivative $[\{Zr(C_5H_5)(\mu-C\subseteq(CSiMe_3)\}_2(\mu-\eta^5-C_5H_4-\eta^5-C_5H_4)\}$, 7. Alkylation of 6 with LiCH₂CMe₂Ph gave $[\{Zr(\eta^5-C_5H_4-\eta^5-C_5H_4-\eta^5-C_5H_4-\eta^5-C_5H_4\}]$, 8. A detailed NMR study of complexes 3 and 4 allowed the observation of the spectral behaviour of the eight different fulvalene protons through their coupling to the ³¹P nucleus. The fluxional behaviour of complex 7 was studied by dynamic DNMR, and kinetic parameters for the $\sigma-\pi$ -conversion of the alkynyl ligand were determined. The molecular structures of complexes 3 and 7 were determined by X-ray diffraction methods.

Keywords: Titanium; Zirconium; μ-Phosphanido; Alkynyl; Fulvalene; Alkyl

1. Introduction

The chemistry of organo-homodimetallic complexes of the early transition metals, containing cyclopentadienyl-bridging ligands has received particular attention during recent years [1]. A range of different metalmetal interactions, from weak short contacts to strong bonds, have been found [2] in this type of binuclear compounds. The presence of these interactions can produce important modifications of the chemical behaviour in relation to that known for mononuclear complexes and, in some circumstances, gives rise to new reactivity patterns. The use of fulvalene $[\mu - (\eta^5 - C_5 H_4 - \eta^5 - C_5 H_4)]$ formed by reductive coupling of two cyclopentadienyl rings [3] and ansa-dimethylsilyl-di-

cyclopentadienyl [4] $[\mu$ -SiMe₂ $(\eta^5$ -C₅H₄)₂] ligands has allowed the synthesis of a variety of homo-binuclear Group IV metal complexes. These two ligands facilitate the accessibility of rare low oxidation states, providing a better knowledge of their restricted chemistry [1c,4b,5]. We were interested in studying the synthesis and reactivity of new binuclear Group IV derivatives in oxidation states (III) and (IV). Here we report the isolation and structural characterization of new titanium and zirconium(III) phosphanido complexes $[\{M(\eta^5-C_5H_5)(\mu-PPh_2)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}], (M$ = Ti, 3; Zr, 4), the alkynylzirconium complex [$\{Zr(\eta^5 - 1)\}$] $C_5H_5(\mu-C=CSiMe_3)_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}], 7,$ which shows a σ, π -C=CSiMe₃ disposition and the tetraalkylzirconium(IV) complex $[{Zr(\eta^5-C_5H_5)(CH_2-C_5H_5)(CH_5-C_5$ $CMe_2Ph)_2$ { μ - $(\eta^5$ - C_5H_4 - η^5 - C_5H_4)}], 8. A detailed NMR and DNMR study was carried out for 3, 4 and 7 and the molecular structures of 3 and 7 were studied by X-ray diffraction methods.

^{*} Corresponding author.

2. Discussion of synthetic and structural results

2.1. Phosphanido complexes

Reaction of $[\{M(\eta^5-C_5H_5)(\mu-CI)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_5-C_5H$ C_5H_4)], (M = Ti, 1; Zr, 2) with LiPPh₂ at room temperature in toluene leads to metal(III) phosphanido complexes $[\{M(\eta^5-C_5H_5)(\mu-PPh_2)\}_2\{\mu-\eta^5-C_5H_4-\eta^5-H_4-H_5-H_4-H_5-H_5-H_5-H_5-H_5-H_5-H_5-H_5-H$ C_5H_4)], (M = Ti, 3; Zr, 4), as shown in Scheme 1. The same complexes 3 and 4 may also be obtained by reaction of the fulvalene metal(IV) chlorides [{M(η^5 - $C_5H_5)Cl_2$ { μ - $(\eta^5$ - C_5H_4 - η^5 - $C_5H_4)$ }], (M = Ti, 5; Zr, 6) with four equivalents of LiPPh₂ at -78° C. The expected metal(IV) phosphanides that are probably formed in this reaction are spontaneously reduced to the titanium(III) and zirconium(III) derivatives. Similar behaviour was observed in the reaction of [ZrCp₂Cl₂] with LiPPh2, which was reported [6] to lead to the isolation of one of the first known zirconium(III) compounds, whereas the same reaction with $[Zr(\eta^5 C_5H_4SiMe_3$ ₂ Cl_2] or [ZrCpCp*Cl₂] (Cp* = C_5Me_5) led to the corresponding zirconium(IV) phosphanides [7].

However, the fulvalene titanium(IV) complex 5 reacts with two equivalents of LiPPh₂ to give the known [1c] paramagnetic titanium(III) complex 1 with elimination of tetraphenyldiphosphane.

The ¹H and ¹³C NMR data for 3 and 4 are shown in Tables 1 and 2, respectively. The ¹H NMR spectrum of 4 in benzene-d₆ shows resonances from two inequivalent phenyl rings, one singlet for the cyclopentadienyl ring protons and two multiplets from the fulvalene protons (Fig. 1).

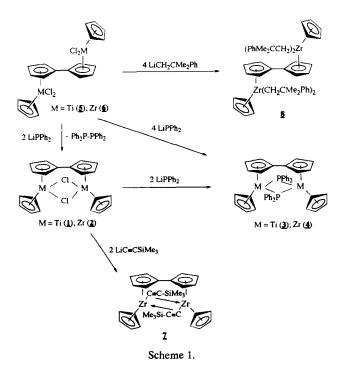


Table 1 ¹H NMR data for the titanium and zirconium phosphanido complexes 3 and 4 (C₆D₆ solution at 293 K)

Assignment		3	4	
	Cp	5.33 s (10H)	-	5.30 s (10H)
Ph:	Hortho	7.44 d,d (4H)		7.70 d,d (4H)
	0.7770	7.00 d,d (4H)		7.20 d,d (4H)
	\mathbf{H}_{meta}	7.16 t (4H)		7.15 t (4H)
		6.90 t (4H)		7.00 t (4H)
	H_{para}	7.07 t (2H)		7.10 t (2H)
	2	6.75 t (2H)		6.80 t (2H)
Fulv.:	H_{α}	4.55 br (8H) a	3.58 br (4H) b	3.85 m (4H)
	H_{β}		5.03 br (4H) b	4.70 m (4H)

 $[\]frac{1}{a}H_{\alpha}+H_{\beta}$.

The multiplet at δ 4.7 corresponding to H_{β} (Fig. 1a) shows the characteristic AA' part of a AA'BB' spin system, whereas the multiplet at δ 3.85 corresponding to H_a (Fig. 1b) contains at least one additional coupling. Eight fulvalene protons would lead to a AA'A"A"'BB'B"B" spin system [the protons AA' and A"A", BB' and B"B", belong to different fulvalene rings (Fig. 2)], and under certain circumstances it should be possible to observe coupling between H_{α} from different rings. The H_a{H_B} multiplet (Fig. 1c) represents the AA'A"A" part of a AA'A"A" XX' spin system, where X are the ³¹P nuclei. Fig. 1d shows the theoretical multiplet obtained using the following coupling constants: ${}^{4}J_{H-H} = 2.7$ Hz (calculated from the multiplet assigned to H_{β}), ${}^{3}J_{H-P} = 7.3$ Hz, ${}^{2}J_{P-P} = 40$ Hz and ${}^{5}J_{H-H} = 0$ Hz. The presence of phosphorus as a magnetically and abundant active isotope is responsible for this spectral effect. The same spectroscopic effect has been detected, although not explained, in the ¹H $(C_5H_4-\eta^5-C_5H_4)$] [8], whereas complexes containing bridging ligands other than phosphorus show two pseudo triplets corresponding to an AA'BB' spin sys-

Table 2 13 C NMR data for the titanium and zirconium phosphanido complexes 3 and 4 ($\rm C_6D_6$ solution at 293 K)

	3	4	
C _p	101.3	99.4	
-			
C_{inso}	106.9	97.8	
$C_{\alpha}^{r,p,p}$	97.5	92.3	
$C_B^{"}$	95.8	95.9	
٣			
C_{inso}	150.5	149.5	
.,,,,		144.5	
Cartha	139.0	138.9	
071710	133.2	133.0	
Cmeta	128	127.9	
<i>meta</i>	126.9	126.8	
Cnara	128	128	
puru	125.2	124.7	
		$\begin{array}{c ccccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

b THF-d₈.

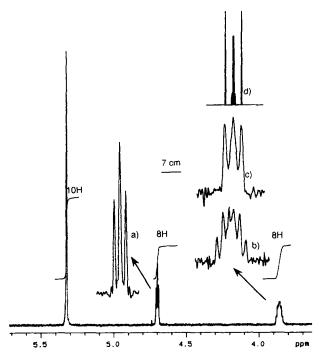
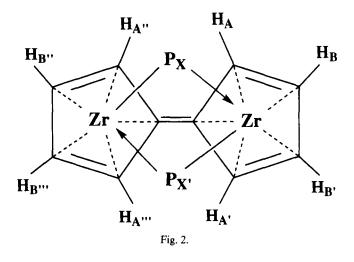



Fig. 1. ¹H NMR Spectra of 4 in C_6D_6 at 293 K. (a) H_{β} ; (b) H_{α} normal; (c) H_{α} -{ H_{β} }; (d) H_{α} theorethical.

tem [8]. Therefore, the signal at δ 3.85 corresponds to the A part of a six-spin system.

The ¹H NMR spectrum of 3 in THF-d₈ at 18°C has similar characteristics to those observed for 4, (δ 5.03 for H_{β} and 3.58 for H_{α}), but the fulvalene proton signals are broader preventing resolution of the multiplets. However, the width of the H_{α} signal is more than double that of H_{β}, consistent with the previous discussion. The ¹H spectrum of the same complex in benzene-d_{δ} shows a single signal for the eight fulvalene protons (see Table 1).

2.2. Alkynyl and alkyl complexes

When 2 is treated with LiC≡CSiMe₃ a reaction parallel to that reported [9] for LiC≡CPh takes place, leading to the related diamagnetic [9b] complex 7, as shown in Scheme 1.

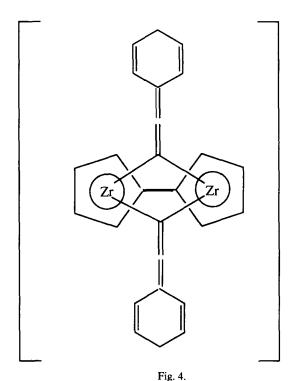
The ¹H and ¹³C NMR data for 7 at 293 K are shown in Table 3. They show that protons and carbons on each fulvalene cyclopentadienyl ring are not equivalent, although both rings are equivalent. All the fulvalene ¹H NMR signals are broad. When the temperature is increased all the ¹H NMR signals broaden and move together. Coalescence of H_{α} signals (δ 4.80 and δ 4.39) is observed at 323 K (ΔG *323 K = 15.1 kcal mol⁻¹), whereas the H_{β} signals (δ 5.43 and δ 4.69) coalesce at 333 K (ΔG *333 K = 15.0 kcal mol⁻¹). A similar behaviour has been reported[9a] for the analogous zirconium complex with μ -C\(\existsCPh. Kinetic parameters for this process were calculated (together

Table 3 ¹H and ¹³C NMR data for alkynyl- and alkyl-zirconium compounds 7 and 8 (C₆D₆ solution at 293 K)

Assignment				¹ H		¹³ C	
		7		8		7	8
	C_{p}	5.53	10 H	5.51	10 H	101.0	109.9
Fulvalene.:	r	5.43 br	2H	5.56 t	4H	107.1	106.4
		4.80 br	2H	5.67 t	4H	100.6	109.3
		4.69 br	2H			97.3	
		4.39 br	2H			95.0	
						$104.8 C_{ipso}$	
Me ₃ Si		0.26	18H			1.4	
Acetylene:	$C\alpha$					231.9	
	Сβ					138.9	
Neophyl	•			0.72 d 4H,	CH,		34.3 C-CH ₃
				J = 11.5 Hz	z		35.4 C-CH ₃
				1.08 d 4H,	CH,		43.1 <i>C</i> -CH ₃
				J = 11.7 Hz	z		74.5 CH ₂
				1.37 s 12H	,Me		$106.4 \text{C}_5 \ddot{\text{H}}_4$
				1.38 s 12H	,Me		$109.3 \text{C}_5 \text{H}_4$
				7.26, 7.37 r	n,Ph		$109.9 \text{C}_5 \text{H}_5$
				. '	•		126-130 Ph

 $\sigma.\pi$ - coordination

Fig. 3.


σ.σ - coordination

with similar data obtained for $[\{Zr(\eta^5-C_5H_5)(\mu-C=CPh)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ [9a] by using the dynamic NMR data and a complete line-shape analysis [10], as shown in Table 4.

The measured log A values indicate [10] that the process is an intramolecular transformation through a transition state characterized by C_s symmetry, instead of the C_{2v} symmetry corresponding to the ground state. Moreover, the almost zero values of $\Delta S^{\#}$ indicate that no bond breaking is required to reach the transition state. Therefore the dynamic process is related only to the mode of coordination of the alkynyl, changing from a σ - π -bonded group in the ground state to a σ - σ -bonded group in the transition state, as shown in Fig. 3.

A similar dynamic process has been observed [11] for methyl- and phenyl-alkynyl zirconium complexes [$\{ZrCpR\}_2$]. The SiMe₃ derivative, and the methyl complexes [11], require higher ΔG^* than phenyl compounds, because of the lower total energy required by the phenyl complexes to reach the transition state, which is stabilized by the phenyl π electrons (Fig. 4).

Very few fulvalene titanium and zirconium(IV) alkyls are known because of the low reactivity [1a,1c] of the insoluble starting products 5 and 6. Reaction of 6 with four equivalents of LiCH₂CMe₂Ph in toluene at -78° C gives a yellow crystalline solid characterised as [{Zr(η^{5} -C₅H₅)(CH₂CMe₂Ph)₂}₂{ μ -(η^{5} -C₅H₄- η^{5} -C₅H₄)], 8, as shown in Scheme 1. The mass spectrum confirms the formulation proposed for 8. Complex 8 is very soluble in aromatic hydrocarbons, but slightly soluble in alkanes, from which it can be crystallized on cooling. It is sensitive to air, but remains unaltered for weeks under

argon. Further studies on the reactivity of this and related species will be reported.

The ¹H spectrum for **8** in benzene-d₆ (Table 3) shows the AA'BB' spin system corresponding to the fulvalene group. This indicates the existence of a plane of symmetry containing the two metal and the two fulvalene C_{ipso} atoms. The methylene protons of the alkyl group show the expected diastereotopic [12] character because of the presence of a prochiral zirconium centre, giving rise to two doublets of doublets at δ 1.37 and 1.38.

The structures of $[{\rm TiCp}(\mu-X)]_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ (X = H, O, or Cl) were reviewed when the structure of the di-hydrido compound was determined [13]. It was found that all of the structures have the same form. The refinement of structure 3 is not very good, but is sufficient for the structure to be elucidated. Complex 3 has the same structure as earlier doubly bridged complexes, but is unusual in that there is no symmetry within the molecule itself, which is probably because of the larger bulk of the bridging group.

Table 4
Kinetic parameters of dynamic processes for alkynyl zirconium derivatives $[M(C_5H_5)(\mu-C=CR)]_2(\mu-\eta^5-\eta^5-C_{10}H_8)$

R	E _a kcal mol ⁻¹		log A	$\Delta H^{\#}$ kcal mol ⁻¹		∆ S [#] u.e	∆G *298 K
Ph	12.8 ± 0.4		13.8 ± 0.5	12.5 ± 0.4		-2.3 ± 1.8	13.7
		r = 0.998			r = 0.998		
Me ₃ Si	15.4 ± 0.4		13.4 ± 0.2	14.8 ± 0.4		$+0.8 \pm 1.2$	14.6
3		r = 0.999			r = 0.999		

Table 5
Fractional atomic coordinates for 3

		actional atomic coordinates for 5				
Atom	<i>x</i>	у	Z			
Ti(1)	0.3383(3)	0.0589(4)	0.2936(2)			
Ti(2)	0.1154(3)	-0.0049(4)	0.3591(2)			
P (1)	0.1900(4)	- 0.0529(5)	0.2551(3)			
P(2)	0.2823(4)	-0.0165(6)	0.3998(3)			
C(1)	0.2086(9)	-0.2167(11)	0.2281(9)			
C(2)	0.2264(9)	~0.2396(11)	0.1679(9)			
C(3)	0.2478(9)	~0.3599(11)	0.1494(9)			
C(4)	0.2515(9)	-0.4574(11)	0.1912(9)			
C(5)	0.2338(9)	~0.4346(11)	0.2515(9)			
C(6)	0.2123(9)	-0.3142(11)	0.2699(9)			
C(11)	0.1280(13)	-0.0025(14)	0.1847(6)			
C(12)	0.0370(13)	-0.0298(14)	0.1799(6)			
C(13)	-0.0121(13)	-0.0049(14)	0.1261(6)			
C(14)	0.0297(13)	0.0472(14)	0.0772(6)			
C(15)	0.1207(13)	0.0744(14)	0.0820(6)			
C(21)	0.3160(12)	-0.1733(14)	0.4302(11)			
C(22)	0.3375(12)	-0.2719(14)	0.3925(11)			
C(23)	0.3541(12)	-0.3903(14)	0.4168(11)			
C(24)	0.3491(12)	-0.4100(14)	0.4788(11)			
C(25)	0.3277(12)	-0.3113(14)	0.5165(11)			
C(26)	0.3111(12)	-0.1930(14)	0.4923(11)			
C(31)	0.3175(16)	0.0769(15)	0.4683(8)			
C(32)	0.4048(16)	0.1219(15)	0.4731(8)			
C(33)	0.4324(16)	0.1965(15)	0.5221(8)			
C(34)	0.3727(16)	0.2261(15)	0.5663(8)			
C(35)	0.2854(16)	0.1811(15)	0.5615(8)			
C(36)	0.2578(16)	0.1065(15)	0.5125(8)			
C(16)	0.1698(13)	0.0496(14)	0.1357(6)			
C(41)	0.4733(11)	0.0462(13)	0.2384(8)			
C(42)	0.4179(11)	- 0.0554(13)	0.2197(8)			
C(43)	0.4073(11)	-0.1340(13)	0.2705(8)			
C(44)	0.4562(11)	-0.0809(13)	0.3206(8)			
C(45)	0.4970(11)	0.0305(13)	0.3008(8)			
C(51)	0.1119(9)	-0.2166(14)	0.3917(8)			
C(52)	0.0501(9)	-0.2048(14)	0.3414(8)			
C(53)	0.0202(9)	-0.1256(14)	0.3585(8)			
C(54)	-0.0019(9)	-0.0883(14)	0.4194(8)			
C(55)	0.0797(9)	-0.1446(14)	0.4399(8)			
C(61)	0.2400(7)	0.2269(13)	0.3114(6)			
C(62)	0.2579(7)	0.2292(13)	0.2490(6)			
C(63)	0.3498(7)	0.2570(13)	0.2440(6)			
C(64)	0.3887(7)	0.2719(13)	0.3033(6)			
C(65)	0.3209(7)	0.2533(13)	0.3449(6)			
C(71)	0.1559(8)	0.2023(12)	0.3345(7)			
C(72)	0.0771(8)	0.1715(12)	0.2995(7)			
C(73)	0.0070(8)	0.1555(12)	0.3397(7)			
C(74)	0.0424(8)	0.1763(12)	0.3994(7)			
C(75)	0.1344(8)	0.2052(12)	0.3963(7)			
· · · · · · · · · · · · · · · · · · ·						

Final atomic coordinates for complex 3 are displayed in Table 5, and its molecular structure is shown in Fig. 5, together with the atomic labeling scheme. Selected bond distances and angles are given in Table 6. The structural parameters were found to depend on the Ti-Ti distance, which in 3 is 3.771 Å, closer to that observed for $[{TiCp(\mu-Cl)}_2{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)}]$, 3.638 Å [14]. Lengthening the Ti-Ti distance led to a decrease in the dihedral angle between the fulvalene ring planes, an increase in the dihedral angle between

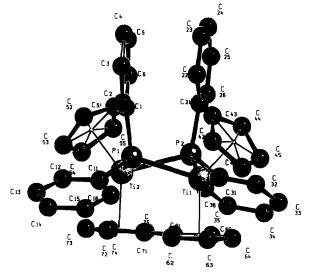


Fig. 5. View of the molecular structure of compound 3 with the atomic labeling scheme.

the C_5H_5 and C_5H_4 planes, a slight lengthening of the $Ti-C(C_5H_5)$ and a considerable lengthening of the $Ti-C(C_5H_4)$ bonds. For the slightly longer Ti-Ti distance in 3 the structural differences are not very large, but follow the previous pattern. The average distances to the five-membered rings were shown not to have changed; $Ti-C(C_5H_5)$ in 3 is 2.39 Å compared to 2.38 Å for both compounds. The dihedral angle between the two fulvalene rings in 3 is 3.0° which is slightly smaller than the 5.3° observed for the dichloro species. The dihedral angle between the C_5H_4 and C_5H_5 planes also follows this pattern, as shown by the $(C_5H_5$ centroid)Ti $(C_5H_4$ centroid) angles of 131° and 130° compared with 134.42° in the dichloro complex.

Table 6
Selected bond distances (Å, °) and bond angles (deg) for 3

Selected bond distant	Selected bond distances (A, °) and bond angles (deg) for 3					
Ti(1)-P(1)	2.633(7)	Ti(1)-P(2)	2.661(8)			
Ti(1)Ce(4)	2.07(a)	Ti(1)-Ce(6)	2.06(a)			
Ti(2)-P(1)	2.659(8)	Ti(2)-P(2)	2.624(8)			
Ti(2)-Ce(5)	2.08(a)	Ti(2)-Ce(7)	2.06(a)			
P(2)-Ti(1)-P(1)	81.4(2)					
Ce(4)-Ti(1)-P(1)	112.0(a)					
Ce(4)-Ti(1)-P(2)	111.0(a)					
Ce(6)-Ti(1)-P(1)	106.0(a)					
Ce(6)-Ti(1)-P(2)	105.0(a)					
Ce(6)-Ti(1)-Ce(4)	130.0(a)					
P(2)-Ti(2)-P(1)	81.6(2)					
Ce(5)-Ti(2)-P(1)	112.0(a)					
Ce(5)-Ti(2)-P(2)	110.0(°)					
Ce(7)-Ti(2)-P(1)	104.0(a)					
Ce(7)-Ti(2)-P(2)	106.0(a)					
Ce(7)- $Ti(2)$ - $Ce(5)$	131.0(a)					
Ti(2)-P(1)-Ti(1)	90,9(2)					
Ti(2)-P(2)-Ti(1)	91.1(3)					

^a Ce refers to the centroids of the cyclopentadienyl rings.

Complexes involving fulvalene and Zr are more unusual. The first structure to be determined was $[(ZrCpCl)_2(\mu-O)\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ [3d]. The molecular structure of complex 7 is shown in Fig. 6, together with the atomic labeling scheme. Final atomic coordinates are displayed in Table 7, and selected bond distances and angles are given in Table 8. Features of this type of structure of some interest are the nature of the Zr-C bond and the effect of the fulvalene on the structure, as compared to structures with just coordinated cyclopentadienyl groups. The Zr-C distances in 7 are 2.181 (9) Å and 2.18 (1) Å for postulated Zr-C(sp) σ -bonds and 1.25 (1) Å for both the C-C bonds. This compares with 2.280 (5) Å and 2.273 (5) Å in $[ZrCp_2(CH_3)_2]$ [15] where there is no possibility of the carbon being anything other than sp³, and 2.187 (4) Å in $[ZrCp_2(CO)_2]$ [16] where the carbon is sp-hybridised. Two structures where there is the possibility of π -donation into the Zr-C bond are $[ZrCp_2(C=C-CH_3)_2]$ [11] and $[Zr_2(C_5H_4Me)_4(C\equiv C-$ Ph)₂] [11]. The Zr-C distances in these complexes are 2.249 (3) Å and 2.188 (2) Å, respectively, and the unsaturated C-C bonds 1.206 (4) Å and 1.261 (2) Å. The values obtained for the phenyl system are remarkably similar to those obtained for 7. The Zr-C bond in 7 can best be described as a Zr-C(sp) bond. The unsaturated C-C bond has been slightly lengthened compared to the bond in ethyne, 1.21 Å [17]. This is probably because of the π -coordination of the bond to the second Zr in the structure. Zr-C bonds of approximately 2.4 Å are found in both structures.

The central portion (Zrs and Cs) of the phenyl-containing structure is planar. This is not the case in 7 where there is a dihedral angle of 13.6° between the planes containing the Zr and π -associated Cs. This twist is perhaps because of the strain imposed on the system by the coordination of the fulvalene. The fulvalene itself has become non-planar. The dihedral angle

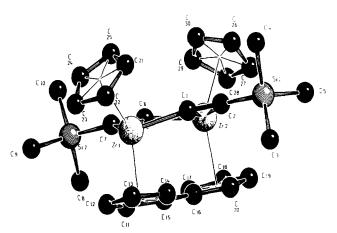


Fig. 6. View of the molecular structure of compound 7 with the atomic labeling scheme.

Table 7
Fractional atomic coordinates for 7

Atom	x	у	z
Zr(1)	0.53241(6)	0.21670(8)	0.39424(2)
Zr(2)	0.46340(5)	0.48215(7)	0.35314(2)
Si(1)	0.6662(2)	0.4260(2)	0.2831(1)
Si(2)	0.3527(2)	0.3010(3)	0.4715(1)
C(1)	0.5849(5)	0.3294(7)	0.3504(2)
C(2)	0.5994(5)	0.3977(8)	0.3242(2)
C(3)	0.6582(8)	0.2880(10)	0.2540(3)
C(4)	0.7887(6)	0.4511(11)	0.2983(3)
C(5)	0.6233(7)	0.5647(10)	0.2576(3)
C(6)	0.4389(5)	0.3982(8)	0.4052(2)
C(7)	0.4249(6)	0.3311(8)	0.4318(2)
C(8)	0.2324(7)	0.3018(16)	0.4580(3)
C(9)	0.3778(12)	0.1551(14)	0.4924(5)
C(10)	0.3717(10)	0.4213(14)	0.5049(4)
C(11)	0.3743(6)	0.1255(8)	0.3818(3)
C(12)	0.4350(8)	0.0252(9)	0.3886(3)
C(13)	0.5023(9)	0.0176(8)	0.3609(3)
C(14)	0.4853(7)	0.1123(8)	0.3371(3)
C(15)	0.4062(6)	0.1812(8)	0.3493(2)
C(17)	0.3065(5)	0.3810(9)	0.3498(3)
C(18)	0.3014(6)	0.4878(9)	0.3280(3)
C(19)	0.3598(6)	0.4725(9)	0.2987(3)
C(20)	0.4020(6)	0.3522(9)	0.3021(2)
C(16)	0.3713(5)	0.2970(8)	0.3335(2)
C(21)	0.7038(7)	0.2364(15)	0.4074(4)
C(22)	0.6834(10)	0.1123(15)	0.4090(4)
C(23)	0.6250(13)	0.1006(16)	0.4401(6)
C(24)	0.6153(10)	0.2180(25)	0.4526(4)
C(25)	0.6624(9)	0.2985(14)	0.4328(4)
C(26)	0.5782(7)	0.6617(8)	0.3528(3)
C(27)	0.4996(10)	0.7017(8)	0.3363(3)
C(28)	0.4267(8)	0.7062(9)	0.3632(5)
C(29)	0.4648(10)	0.6664(11)	0.3952(4)
C(30)	0.5557(8)	0.6389(9)	0.3891(3)

between the ring planes is 11°. The Zr-Zr vector has been decreased from 3.506 (1) Å in the phenyl-containing system to 3.405 (1) Å in 7. Both these distances are longer than 3.1 Å, which is the sum of the van der Waals radii of the zirconium atoms.

3. Experimental details

All manipulations were performed under dinitrogen or argon using Schlenk and high-vacuum line techniques or a VAC glove box Model HE 63P. Solvents were purified by distillation from an appropriate drying/deoxygenated agent (sodium/benzophenone for THF, sodium for toluene and sodium/potassium alloy for hexane). Lithium metal, Li¹Bu, HC\(\subseteq\text{CSiMe}_3\) and ClCH₂C(CH₃)₂Ph (Aldrich) were purchased and used without further purification. LiPPh₂ [18], [{M(η^5 -C₅H₃) μ -Cl}₂{ μ -(η^5 -C₅H₄- η^5 -C₅H₄)}] (M = Ti, 1 [1c]; Zr, 2 [3d]) and [{M(η^5 -C₅H₅)Cl₂}₂{ μ -(η^5 -C₅H₄- η^5 -C₅H₄)}] (M = Ti, 5 [1c]; Zr, 6 [19]) were prepared according to literature procedures. NMR spectra were

Table 8
Selected bond distances (Å, °) and bond angles (deg) for 7

Selected bond distan	ices (A,) and	bonu angles (deg	101 /
Zr(1)-Zr(2)	3.405(1)	Zr(1)-Ce(1)	2.21(a)
Zr(1)-Ce(3)	2.23(a)	Zr(1)-C(1)	2.181(9)
Zr(1)-C(6)	2.417(8)	Zr(1)-C(7)	2.433(9)
Zr(2)– $Ce(2)$	2.22(a)	Zr(2)-Ce(4)	2.24(a)
Zr(2)-C(1)	2.411(8)	Zr(2)-C(2)	2.421(8)
Zr(2)-C(6)	2.18(1)		
C(1)-C(2)	1.25(1)		
C(6)-C(7)	1.25(1)		
C(1)-Zr(1)-Zr(2)	44.8(2)		
C(6)-Zr(1)-Zr(2)	39.6(2)		
C(6)-Zr(1)-C(1)	82.4(3)		
C(7)-Zr(1)-Zr(2)	69.3(2)		
C(7)-Zr(1)-C(1)	111.9(3)		
C(7)-Zr(1)-C(6)	29.9(3)		
C(1)-Zr(2)-Zr(1)	39.6(2)		
C(2)-Zr(2)-Zr(1)	69.4(2)		
C(2)-Zr(2)-C(1)	29.9(3)		
C(6)-Zr(2)-Zr(1)	44.9(2)		
C(6)-Zr(2)-C(1)	82.6(3)		
C(6)-Zr(2)-C(2)	112.0(3)		
Zr(2)-C(1)-Zr(1)	95.6(3)		
C(2)-C(1)-Zr(1)	169.3(7)		
C(2)-C(1)-Zr(2)	75.5(5)		
C(1)-C(2)-Zr(2)	74.6(5)		
Zr(2)-C(6)-Zr(1)	95.5(3)		
C(7)-C(6)-Zr(1)	75.8(6)		
C(7)-C(6)-Zr(2)	169.1(7)		
C(6)-C(7)-Zr(1)	74.3(6)		
C(6)-C(7)-Si(2)	146.8(8)		

^a Ce refers to the centroids of the cyclopentadienyl rings.

recorded on Varian FT-80 and Varian Unity FT-300 instruments (1 H and 13 C chemical shifts were referenced to Me₄Si, $\delta = 0$ ppm). IR spectra were performed (Nujol mulls) on a 883 Perkin-Elmer spectrophotometer. Mass spectra were recorded on a Hewlett Packard 5890 spectrometer. Elemental C, H analyses were carried out on a Perkin-Elmer 240B microanalyzer.

3.1. Synthesis of
$$[\{Ti(\eta^5-C_5H_5)(\mu-PPh_2)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$$
 3

3.1.1. Method 1

A toluene solution (50 ml) of $[{\rm Ti}(\eta^5-{\rm C}_5{\rm H}_5)(\mu-{\rm Cl})]_2[\mu-(\eta^5-{\rm C}_5{\rm H}_4-\eta^5-{\rm C}_5{\rm H}_4)]$ (1 g, 2.35 mmol) was added at room temperature to a suspension of freshly prepared LiPPh₂ (0.90 g, 4.7 mmol) in hexane (10 ml). The mixture was stirred for 12 h at room temperature, the solution turning dark blue-green. After filtration and evaporation to dryness, a green solid was obtained, which was recrystallized from toluene/hexane at $-78^{\circ}{\rm C}$ giving compound 3 as brown-green crystals (Yield: 1.02 g, 60%).

3.1.2. Method 2

A toluene (30 ml) solution of LiPPh₂ (0.54 g, 2.8 mmol) was added dropwise to a toluene (40 ml) sus-

pension of $[{Ti(\eta^5-C_5H_5)Cl_2}_2{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)}]$ (0.35 g, 0.7 mmol) at -78° C. After stirring for 12 h at room temperature, the resulting solution was worked up as for Method 1 to give the same compound 3. (Yield: 0.45 g, 75%).

Anal. Calc. for $C_{44}H_{38}P_2Ti_2$: C, 72.94; H, 5.29. Found: C, 72.53; H, 5.38%.

3.2. Reaction of $[\{Ti(\eta^5-C_5H_5)Cl_2\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ (5) with two equivalents of LiPPh₂

A toluene (30 ml) solution of LiPPh₂ (0.27 g, 1.40 mmol) was added dropwise to a toluene (50 ml) suspension of 5 (0.35 g, 0.7 mmol) at -78° C and the reaction mixture was heated and stirred for 12 h at room temperature. After filtration, the resulting solution was evaporated to dryness to give a purple residue containing complex 1 and free Ph₂P-PPh₂.

3.3. Synthesis of
$$[\{Zr(\eta^5-C_5H_5)(\mu-PPh_2)\}_2\{\mu-(\eta^5-C_5H_4,\eta^5-C_5H_4)\}]$$
 4

3,3.1. Method 1

A toluene (20 ml) solution of LiPPh₂ (0.8 g, 4.2 mmol) was added at room temperature to a toluene (50 ml) solution containing $[{\rm Zr}({\rm C}_5{\rm H}_5)(\mu-{\rm Cl})]_2{\{\mu-(\eta^5-{\rm C}_5{\rm H}_4-\eta^5-{\rm C}_5{\rm H}_4)\}}]$ (1.1 g, 2.1 mmol). It changed immediately from red to purple, and the reaction mixture was stirred for 4 h at room temperature. After filtration, the resulting solution was concentrated to 15–20 ml and cooled at $-30^{\circ}{\rm C}$ for 3 d to give a purple solid. Recrystallization from toluene/hexane at $-30^{\circ}{\rm C}$ yielded purple crystals which were identified as compound 4. (Yield: 1 g, 59%).

3.3.2. Method 2

A toluene (30 ml) solution of LiPPh₂ (0.46 g, 2.4 mmol) was added dropwise at -78° C to a toluene (40 ml) suspension of $[\{Zr(\eta^5-C_5H_5)Cl_2\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ (0.35 g, 0.6 mmol). The reaction mixture was stirred for 12 h at room temperature to give a purple solution which was worked up as for Method 1, leading to compound 4 (Yield: 0.49 g, 70%).

Anal. Calc. for $C_{44}H_{38}P_2Zr_2$: C, 65.15; H, 4.72. Found: C, 64.93; H, 4.89%.

3.4. Synthesis of
$$[\{Zr(\eta^5-C_5H_5)(\mu-C\equiv CSiMe_3)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$$
 7

11 ml of a 1.6 M solution of Li^1Bu (17.6 mmol) in diethyl ether was added, at $-78^{\circ}C$, to a solution of $HC \equiv CSiMe_3$ (2.68 ml, 19.36 mmol) in hexane (50 ml). The reaction mixture was warmed to room temperature and solid white $LiC \equiv CSiMe_3$ was formed. After filtration, the solid was washed with hexane (2 × 20 ml). (Yield: 1.4 g, 76%).

A solution of LiC \equiv CSiMe₃ (0.41 g, 3.8 mmol) in THF (100 ml) was added at room temperature to solid [$\{Zr(\eta^5-C_5H_5)(\mu-Cl)\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}\}$] (1 g, 1.9 mmol). The mixture turned orange in 4–5 h and was stirred for 2–3 d at room temperature. After evaporation of the solvent to dryness, the resulting product was extracted with hexane (2 × 30 ml). The solution was concentrated to 20 ml and cooled to -30° C to give an orange microcrystalline solid, which was recrystallized from hexane at -30° C affording orange crystals of compound 7. (Yield: 1 g, 82.5%). Anal. Calc. for $C_{30}H_{36}Si_2Zr_2$: C, 56.56; H, 5.70. Found: C, 56.39; H, 5.72%. IR: $\nu_{C\equiv C}=1773$ cm⁻¹. EI-MS. (70 eV): ([M⁺]) 31.04%.

3.5. Synthesis of
$$[{Zr(\eta^5-C_5H_5)(CH_2CMe_2Ph)_2}_2{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)}]$$
 8

Lithium metal (3 g, 432 mmol) was allowed to react with $ClCH_2C(CH_3)_2Ph$ (14 ml, 86.9 mmol) in hexane (75 ml). The reaction mixture was heated under reflux for 4 d. After cooling to room temperature the suspension was filtered and the solid extracted twice with hexane. The resulting hexane solution was concentrated to 20 ml and cooled to $-30^{\circ}C$. A white crystalline solid of $LiCH_2C(CH_3)_2Ph$ was obtained (Yield: 8.5 g, 70%).

A solution containing LiCH₂CMe₂Ph (0.88 g, 6.32 mmol) in toluene (30 ml) was added at room temperature to a suspension of $[\{Zr(\eta^5-C_5H_5)Cl_2\}_2\{\mu-(\eta^5-C_5H_4-\eta^5-C_5H_4)\}]$ (0.92 g, 1.58 mmol) in toluene (100 ml). The reaction mixture was stirred for 12 h at room temperature. After filtration, the resulting solution was concentrated to 30 ml and cooled to -30° C and left for 3 d, resulting in a pale-yellow crystalline solid. Recrystallization from toluene/hexane at -30° C gave the pure compound 8. (Yield: 1 g, 65%). Anal. Calc. for $C_{60}H_{70}Zr_2$: C, 74.02; H, 7.25. Found: C, 73.73; H, 7.17%.

3.6. Crystal Structure Determinations

Crystals of 3 and 7 were mounted under argon in capillaries. An Enraf Nonius CAD4 diffractometer with graphite monochromated Mo- $K\alpha$ radiation was used to collect data at room temperature (20°C). Cell parameters for 3 were obtained by refining the setting angles of 17 reflections with 14° < θ < 17°. For 7, 25 reflections were used 16° < θ < 18°. Crystal data for both compounds are given in Table 9 together with details of the data collection and structure refinement. The data collected for 3 were found to be weak. This was thought to be because of crystal quality. Attempts to improve the quality of the crystals were unsuccessful.

Both data sets were corrected for Lorentz and po-

Table 9
Crystal data, experimental data and structure refinement procedures for complexes 3 and 7

Compound	3	7
Formula	$C_{44}H_{38}P_{2}Ti_{2}$	$C_{30}H_{36}Si_{2}Zr_{2}$
M	724.496	635.229
Crystal system	monoclinic	orthorhombic
Space group	$P2_1/c$ (no. 14)	P bca (no. 61)
a, Å	15.013(5)	10.819(1)
b, Å	10.704(1)	14.427(1)
c, Å	22.132(7)	37.451(3)
β, °	92.53(2)	
V , \mathring{A}^3	3552(2)	5845(1)
Z	4	8
$D_{\rm c}~{\rm g~cm^{-3}}$	1.353	1.44
F(000)	1504	2592
$\mu(\text{Mo-K}\alpha) \text{ cm}^{-1}$	1.19	7.71
Scan type	$\omega - 2\theta$	$\omega - 2\theta$
$2\theta_{\rm max}$, °	20	22
Total no. of reflections	3684	3886
No. of unique reflections	3319	2966
$R_{ m merg}$	0.0978	0.02
No. of refl'ns with		
$ F_{\rm obs} > 4\sigma F_{\rm obs} $	1488	2604
No. of variables	246	274
R	0.0982	0.0472
R_w	0.0960	0.0537
GOF	1.93	1.86
Residual density, e Å ⁻³	0.71	0.48

larisation effects. The intensities of three reflections were monitored over the period of both data collections, and were found not to decay significantly. Therefore a decay correction was not applied to the data.

The structures were solved by the direct method and subsequent difference Fourier synthesis [20]. These structures were then refined by full-matrix least-squares analysis. The geometry of the cyclopentadienyl and phenyl rings was constrained with the hydrogen placed in calculated positions. The non-hydrogen atoms were given anisotropic temperature factors. The hydrogen atoms in similar environments in the individual structures were given common refined temperature factors. For 3 those on the phenyl rings 0.15 and on the cyclopentadienyl type rings 0.10. For 7, methyl 0.16, on the cyclopentadienyl rings 0.22 and on fulvalene 0.10. In the structure of 7 some disorder in the cyclopentadienyl rings was observed which could not be resolved. The anisotropic temperature factors for these positions are therefore quite high. The final R value obtained for 3 was quite high, probably because of the weak intensities of the data.

Molecular representations of 3 and 7 are shown in Figs. 5 and 6 respectively. Final fractional atomic coordinates are given in Table 5 for 3, and Table 7 for 7.

Tables of fractional atomic coordinates, anisotropic and isotropic thermal parameters, bond lengths and bond angles (seven pages) for compound 3, and of

fractional atomic coordinates, anisotropic thermal parameters, bond lengths and bond angles (five pages) and a table of least-squares planes (two pages) for compound 7 are available from the Cambridge Crystallographic Data Centre.

¹H NMR spectra (variable temperature) for compounds $[Zr(C_5H_5)(\mu-C\equiv CR)]_2(\mu-\eta^5-C_5H_4-\eta^5-C_5H_4)$ {R = SiMe₃ (7); Ph [9a]} are also available from the authors.

Acknowledgements

We gratefully acknowledge financial support from DGICYT (Project 92-0178-C) for this research. A.C. acknowledges MEC for a Fellowship.

References

- (a) Y. Wielstra, R. Duchateau, S. Gambarotta, C. Bensimon and E. Gabe J. Organomet. Chem., 418 (1991) 183, and references therein; (b) L.M. Alvaro, T. Cuenca, J.C. Flores, P. Royo, M.A. Pellinghelli and A. Tiripicchio, Organometallics, 11 (1992) 3301; (c) A. Cano, T. Cuenca, G. Rodríguez, P. Royo, C. Cardin and D. Wilcock, J. Organomet. Chem., 447 (1993) 51; (d) S. Ciruelos, T. Cuenca, J.C. Flores, R. Gómez, P. Gómez-Sal and P. Royo, Organometallics, 12 (1993) 944; (e) D.A. Lemenovskii, I.E. Nifant'ev, I.F. Urazowski, E.G. Perevalova, T.V. Timofeeva, Y.L. Slovokhotov and Y.T. Struchkov, J. Organomet. Chem., 342 (1988) 31.
- [2] M.M. Rohmer and M. Benard, Organometallics, 10 (1991) 157.
- [3] (a) J. Bashkin, M.L.H. Green, M.L. Poveda and K. Prout, J. Chem. Soc., Dalton Trans., (1982) 2485; (b) P.A. Lemenovski, I.F. Urazovwski, I.E. Nifantev and E.G. Perevalova, J. Organomet. Chem., 292 (1985) 217; (c) M.D. Rausch, W.C. Spink, B.G. Conway, R.D. Rogers and J.L. Atwood, J. Organomet. Chem., 383 (1990) 227; (d) T.V. Ashworth, T. Cuenca, E. Herdtweck and W.A. Herrmann, Angew. Chem., Int. Ed. Engl, 25 (1986) 289.
- [4] (a) H. Yasuda, K. Nagasuna, M. Akita, K. Lee and A. Nakamura, Organometallics, 3 (1984) 1470; (b) C.S. Bajgur, W.R.

- Tikkanen and J.L. Petersen, *Inorg. Chem.*, 24 (1985) 2539; (c) R. Gómez, T. Cuenca, P. Royo, W.A. Herrmann and E. Herdtweck, *J. Organomet. Chem.*, 382 (1990) 103.
- [5] R. Gómez, T. Cuenca, P. Royo, M.A. Pellinghelli and A. Tiripicchio, Organometallics, 10 (1991) 1595.
- [6] K. Issleiband and H. Häckert, Z. Naturforsch., B21 (1966) 419.
- [7] A.M. Larsonneur, R. Choukroun, J.C. Daran, T. Cuenca, J.C. Flores and P. Royo, J. Organomet. Chem., 444 (1993) 83.
- [8] Y. Wielstra, S. Gambarotta, A.L. Spek and W.J.J. Smeets, Organometallics, 9 (1990) 2142.
- [9] (a) T. Cuenca, R. Gómez, P. Gómez-Sal, G.M. Rodriguez and P. Royo, Organometallics, 11 (1992) 1229; (b) U. Rosenthal, A. Ohff, W. Baumann, R. Kempe, A. Tillack and V.V. Burlakov, Organometallics, 13 (1994) 2903.
- [10] G. Binsch, Top, in Stereochem., 3 (1968) 97.
- [11] G. Erker, W. Frömberg, R. Benn, R. Mynott, K. Angermund and C. Krüger, Organometallics, 8 (1989) 911.
- [12] (a) J. March, Advanced Organic Chemistry: Reaction Mechanism and Structure, John Willey and Sons, New York, 1985; (b) J.K.M. Sanders and B.K. Hunter, Modern NMR Spectroscopy (A Guide for Chemists), Oxford University Press, Oxford, UK, 1988; (c) T. Cuenca, J.C. Flores, P. Royo, A.M. Larsonneur, R. Choukroun and F. Dahan, Organometallics, 11 (1992) 777; (d) T. Cuenca, J.C. Flores, R. Gómez, P. Gómez-Sal, M. Parra-Hake and P. Royo, Inorg. Chem., 2 (1993) 3608.
- [13] S.I. Troyanov, H. Antropiusova and K. Mach, J. Organomet. Chem., 427 (1992) 49.
- [14] G.J. Olthof, J. Organomet. Chem., 128 (1977) 367.
- [15] W.E. Hunter, D.C. Hrncir, R. Vann Bynum, R.A. Penttila and J.A. Atwood, Organometallics, 2 (1983) 750.
- [16] J.L. Atwood, R.D. Rogers, W.E. Hunter, C. Floriani, G. Fachinetti, and A. Chesi-Villa, *Inorg. Chem.*, 19 (1989) 3812.
- [17] J. Dale, Properties of acetylenic compounds, in H.G. Viehe (ed.), Chemistry of Acetylenes, Marcel Dekker, New York, 1969, p. 53.
- [18] S.R. Wade, M.G.H. Wallbridge and G.R. Willey, J. Chem. Soc., Dalton Trans., (1983) 2555.
- [19] W.A. Herrmann, T. Cuenca, B. Menjón and E. Herdtweck, Angew. Chem., Int. Edn. Engl., 26 (1987) 697.
- [20] (a) MolEN, Crystal Structure Analysis, Enraf Nonius, Delft, Holland, 1990; (b) G.M. Sheldrick, Shellx-86, Program for Crystal Structure Solution, Gottingen, FRG, 1986; (c) G.M. Sheldrick, Shellx-76, Program for Crystal Structure Determination, Cambridge, UK, 1976; (d) E. Keller, Schakal-88B, A fortran Program for the Graphic Representation of Molecular and Crystallographic Models, Freiburg, Germany, 1988.