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Abstract 

The one pot synthesis of [(C5Hs)Fe{1,2-CsH3(CHOXCH2NMez)}] (2) from [(CsHs)Fe(CsH4CH2NMe2)] (1) is described. 
The new biferrocenyl compound [{(CsHs)FeCsH4CH2ONMe(CHz)zOCH2}2] (3), whose preparation is reported, reacts succes- 
sively with 2 mole equivalents of LiBu and DMF (-78  °C) to give, among other products, the aldehyde [(CsHs)Fe{1,2- 
C5 H 3(CHO)CH 2NMe(CH 2)2OCH=CH 2}] (6). 
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We have shown recently [1] that it is possible to 
synthesize selectively and in high yield acyclic phospho- 
rus ferrocenyl compounds that show a remarkable abil- 
ity to complex copper(l) salts. This new class of com- 
pound of general formula [XP{NMeN=CHFc}nPh3_ n] 
( X = O  or S; n = 2  or 3; F c = C s H s F e C s H  4 is ob- 
tained by condensation of ferrocene carbaldehyde with 
phosphohydrazines. As an extension of this work we 
attempted the synthesis of new 1,2-disubstituted ferro- 
cenyl compounds  containing both a (Ph)P(S)- 
(NMeN=CH-) 2 moiety and a (-CH2NMe(CH2) 2- 
OCH2-) 2 moiety. This would increase the number and 
the nature of available binding sites for anions or 
cations. This new species of molecule would be well- 
suited for electrochemical molecular recognition stud- 
ies. 

An easy route to 1,2-ferrocenyl compounds was de- 
scribed by Slocum et al. [2]. In this method, the N,N' 
dimethylaminomethylferrocene 1 is a good precursor 
for the synthesis of new 1,2-disubstituted ferrocenes via 
ring metallation at the 2-position with butyllithium and 
condensation with electrophilic compounds such as 
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ketones, benzonitrile, phenylisocyanate. The use of 
lithium salt of 1 has been widely developed, for exam- 
ple to the synthesis of a series of ferrocenyl-sulfenides 
and -selenides [(CsHs)Fe(1,2-CsH3(CH2NMe2)(ER))] 
(E = S or Se; R = Pr n, Bu n, Bu t, Bz, 4-tolyl or 4-C1Ph) 
[3] and for the synthesis of the new aminoalkene com- 
plex [(CsHs)Fe{ 1,2-C5H 3(CH 2NMe2)(CH 2CH=CH 2)}] 
[4]. However, the synthesis of the aldehyde [(CsHs)- 
Fe{1,2-CsH3(CHO)(CH2NMez)}] 2 has never been re- 
ported. 

In this paper we report a simple and efficient syn- 
thesis of 2 and try to apply the Slocum methodology to 
the new biferrocenyl compound [{(CsHs)Fe(CsH 4- 
C H  2 N ( M e X C H  2 ) 2 O C H  2-} 2 ] 3. 

Successive addition of 1 equiv of LiBu at room 
temperature (24 h stirring) and of DMF at - 78 °C to a 
solution of [(CsHs)Fe(C5H4CH2NMe2)] 1 gave, after 
4 h stirring at room temperature, a brown solution 
that, after hydrolysis and extraction with ether, ap- 
peared to be a mixture of the starting material and the 
new aldehyde 2 in a 1 /2  ratio. Column chromatogra- 
phy of the solution on alumina (eluent e ther /pentane:  
1 /2)  allowed the separation of pure 2 as a red light- 
sensitive oil in 62% yield [5]. Replacement of one 
proton of the cyclopentadienyl ring by CHO induces a 
downfield shift of the signals in the ~H NMR spectrum 



C88 B. Delavaux-Nicot et al. / Journal of Organometallic Chemistry 489 (1995) C87-C89 

~ " " . N M e 2  
Fe 

' ~ / ' ~ N M e 3 +  I- ~ ' ~ " " N M e 2  
Fe Fe "CHO 

' ~  + MeI 1 + BaLi, DMF 

0.5 [H(CH3)N(CH2)20(CH2)-]2 

Fe Fe 
2 BaLi, 2 DMF 

' 

3 5, R=H 
6, R=CHO 

Scheme 1. 

compared with those of compound 1. The Cp signals 
are characteristically split into three multiplets at ~ = 
4.76 (m), 4.58 (m), 4.54 (t) ppm and one singlet is 
observed for the unsut'stituted ring at 6 = 4.21 ppm 
(relative intensities 1 / 1 / 1 / 5 ) .  In parallel, the singlet 
observed for the CH 2 protons of 1 becomes an AB 
type signal centered at ~ = 3.56 ppm and the CHO 
signal is clearly detected at 10.08 ppm. The presence of 
the CHO group is evident in 13C NMR spectra from a 
doublet 6 = 193 ppm (1Jcn = 173 Hz). Finally, micro- 
analysis and mass spectroscopy are consistent with the 
proposed formula. The only ferrocene derivative with 
both a CH2NMe z and a CHO so far described is 
1,1'-substituted [6]. 

We have also at tempted to prepare first the biferro- 
cenyl compound 3 with the diazadioxa chain and then 
to synthesize selectively using the Slocum methodology 
the dialdehyde derivative. 

[(CsHs)Fe(CsHaCH2NMe3)][I] [7] 4, obtained by 
methylation reaction of 1, is well known to undergo 
easily condensation reactions with nucleophiles [8], and 
indeed it reacts with 0.5 equiv of 1,8-bis(methylamino)- 
3,6-dioxaoctane to give an 82% yield of [{(CsHs)- 
Fe(CsH4CHzNMe(CH2)2OCH2-} 2] 3. In contrast to 
the recently described [{(CsHs)Fe(CsH4CH2NH- 
(CH2)2SCHz-)}z] [9] and [{(CsHs)Fe(CsH4CHaNH- 
CH2-)} z] [10], this compound was synthesized only in 
one step in refluxing water and was isolated as a brown 
oil after extraction with ether. This relatively stable 
compound is very soluble in common organic solvents. 
Its structure was deduced from NMR data and micro- 
analysis [11]. 

Successive treatment of a solution of 3 in ether with 
2 equiv of LiBu and DMF at - 7 8  °C did not give the 
expected aldehyde. The solution lightened and after 
hydrolysis two new products in 1 :4  ratio were ob- 

served. After purification by chromatography, (eluent 
e t h e r / p e n t a n e :  3 / 1 )  [ (CsHs)Fe{CsH4CHzNMe-  
(CHz)zOCH=CH2}] 5 and [(CsHs)Fe{1,2-CsH3(CHO)- 
CHeNMe(CHz)zOCH=CH2}] 6 were isolated as yellow 
and red oils (yield 27% and 7%) [12]. The 1H NMR 
spectra of both complexes show three doublets of dou- 
blets, centered at ~ = 3.98; 4.18 and 6.48 ppm for 5 and 
6 = 3.98; 4.16 and 6.47 ppm for 6. These shifts and the 
coupling constants are characteristic of vinyl groups 
[13]. In the 13C NMR spectra, resonances at 6 = 86.3 
and 151.8 ppm for 5 and 86.5 and 151.7 ppm for 6 
confirm the presence of the -(OCH--CH 2) group. The 
new aldehyde 6 has a 1H and 13C NMR spectra charac- 
teristic singlet and doublet at 6 = 10.08 and 193.0 ppm 
(JcH = 173 Hz) respectively for the CHO function. The 
most reasonable mechanism by which 5 and 6 are 
formed is a deprotonation reaction at the /3 position 
relative to the nitrogen atom, followed by an in- 
tramolecular rearrangement which induces organic 
chain rupture. Organic ether deprotonations are gener- 
ally difficult [14] and at - 78 °C would not normally by 
favored, but the basicity of the LiBu is certainly in- 
creased here by interaction of the lithium with the 
azaoxa chain. 

To conclude, two new 1,2 disubstituted ferrocenyl 
aldehydes 2 and 6 were obtained according to Slocum's 
methodology (Scheme 1). Complex 2 seems to be a 
good synthon for 1,2-disubstituted ferrocenyl com- 
pounds and probably for macrocycle compounds and a 
study of its reactivity is underway. 
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