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Abstract 

The gas-phase electron diffraction data for [Me,Cl,Ga,(p-Cl),] are consistent with a trans model of C,, symmetry and bond 
distances (r.) Ga-C = 194.9(7) pm, Ga-Cl, = 212.9(3) pm and Ga-Cl, = 233.9(3) pm. 
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1. Introduction 

The molecular structures of the chlorine-bridged 
dimers [X,Ga&-Cl),] (X = CH, or Cl) have been 
determined previously by gas-phase electron diffraction 
[1,2]. The bridging Ga-Cl bond distances are 237.8(4) 
pm when X = Me = CH,, and 230.00) pm when X = 
Cl. We report here the structure of the intermediate 
compound [Me,Cl,Ga&-Cl>,]. 

The complex [Me,Cl,Ga,&Cl),] may adopt con- 
formations with terminal Cl atoms at the same side 
(ci.r) or at opposite sides (truns) of the central Ga,(p- 
Cl), ring plane. Recent SCF MO calculations on this 
molecule [3] as well as on the H analogue [H&l,- 
Ga&-Cl),] [41 suggest that the tram conformer is the 
more stable, but that the energy of the cLr conformer is 
less than 4 kJ mol-’ higher. The ‘H NMR [5] spectrum 
at ambient temperature, however, contains only one 
sharp line, showing that only one of the two conform- 
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ers is present in detectable quantities. Moreover, 
Raman [6] and IR [61 spectra of [Me&l,Ga&-Cllz] 
contain the number of lines and exhibit the mutual 
exclusion of lines expected for the centrally symmetric 
trucks isomer. 

2. Results and discussion 

The complex [Me,Cl,Ga,(~-Cl),] was prepared 
from SiMe, and GaCl, [6] and characterized by IR 
spectra [6] and elemental analysis for Cl, C and H. 
Gas-phase electron diffraction data were recorded in 
Oslo on a Balzers Eldigraph KDG-2 171 with a nozzle 
temperature of 84 f 5°C. Structural refinements were 
based on six plates obtained with a nozzle-to-plate 
distance of 50 cm (s from 25.00 to 155.00 nm-i with 
an increment Ss = 1.25 nm-‘> and six plates obtained 
with a nozzle-to-plate distance of 25 cm (s from 37.50 
to 302.50 with an increment Ss = 2.50 mn-‘). Optical 
densities were recorded on the Snoopy densitometer 
and processed by standard procedures [8]. Atomic scat- 
tering factors were taken from Ref. 9. The resulting 
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Fig. 1. Experimental ( . . . . . .  ) and calculated ( 
molecular intensity curves for [MezCl2Ga2(~-Cl)2]. 

) modified 

modified molecular intensity curves are shown in Fig. 
1. Structural analysis was carried out at the University 
of Moscow. 

A molecular model of the trans form of 
[Me2CI2Ga2(~-C1) 2] is shown in Fig. 2. The molecular 
point group was assumed to be C2h, the GaCH 3 frag- 
ments were assumed to have C3, symmetry and methyl 
groups were fixed in the staggered conformation indi- 
cated in Fig. 2. The structure is then described by four 
bond distances: C-H,  Ga-C, Ga-CI t (t = terminal) 
and Ga-CI b (b = bridge) and the four valence angles 
,~-GaClbGa, ~ClbGaC1 t, ,~.ClbGaC and ,~.GaCH. 

These structure parameters were refined by least 
squares calculations on the intensity data under the 
constraints of a geometrically consistent r a structure. 
Vibrational amplitudes were transferred from the more 
symmetrical compounds [(CH3)4Ga2(/x-CI)2] and 
[C14GaE(/.t-Cl)2] [1,2]. The best values obtained for the 
structure parameters are listed in Table 1. The esti- 
mated standard deviations listed in the table have been 
multiplied by a factor of 2 to compensate for the added 
uncertainty due to data correlation and non-refined 

H ' ,  H .(21 
?:::iii. / \ ............. ...- , / . . o \  /Oa' 

Fig. 2. Molecular model of [Me2C12Ga2(~-CI)2], point group C2h, 

TABLE 1. Interatomic distances (ra) , root mean square vibrational 
amplitudes (l) and valence angles in [(CH3)ECI2Ga2(/,L-CI)2 ] a 

ra l 

Bond distances 
C - H  111(2) 9.0(13) 
G a - C  194.9(7) 5.5(2) b 
Ga-CI  t 212.9(3) 5.6(2) b 
Ga-Clb 233.9(3) 8.5(2) 
Non-bonded distances 
Ga.  • • Ga 329.7(15) 10.7(4) c 
Clb " "  C1 b 331.8(17) 9.1(4) c 
CI b • • • C 348(3) 12.1(6) d 
CI b " '" CI t 357.8(13) 12.3(6) d 
CI t " '" C 371(2) 14.0(6) a 
G a . . .  C 451(4) 32(2) e 
G a - -  • C1 t 458(3) 32(2) e 
Clt • - • C 500(4) 32(2) e 
C " "  C 611(6) 9(9) 
CI t " ' f l  t 634(3) 26(6) 
Valence angles 
~ClbGaClb 90.4(6) 
,~-GaClbGa 89.6(6) 
~,ClbGaClt 106.3(6) 
z~ClbGaC 108.0(13) 
~CltGaC 131(3) 
~-GaCH 109(2) 
R = [~]w(lob s -- Icalc)2/~.Wl2bs] 1/2 = 0.049 

a Distances and amplitudes in pm, angles in degrees, estimated 
standard deviations in parentheses in units of the last digit. CI t = 
terminal C1, Cl b = bridging Ci. 
b,c,d,e Sets of amplitudes which were refined with constant differ- 
ences. 
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) and calculated ( . . . . . .  ) radial distri- 
bution curve of [Me2CI2Ga2(/~-CI)2] obtained by Fourier inversion 
of experimental modified molecular intensity curves or the theoreti- 
cal counterpart calculated for the best model. Major peaks are 
indicated by bars of height approximately proportional to the areas 
under the corresponding peak. Artificial damping constant k = 20 
pm 2. 
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TABLE 2. Bond distances (pm) and valence angles (“1 in compounds of type [X,YaGa,(&I),], X, Y = Cl, H, methyl or t-butyl ’ 

Compound Ga-Cl, Ga-Cl t Ga-C &GaCl,Ga AXGaY 

163 

Me,Ga,@-Cl), b 237.8(4) 

H,Ga,(p-C1)2 ’ 234.9(3) 

Me2CI,Ga2(~-Cll, d 233.9f31 

Cl,Ga,(&l), e 230.001 

‘Bu,Cl,Ga&-Cl), f 234.2(2) 

212.9(31 

209.901 

215.1(2) 

194.6(3) 

- 

194.9(71 

197.4(S) 

8&O(9) 

87.2(81 

89.6f6) 

91.7(4) 

90.2(l) 

132(3) 

WOI 

131(31 

125(l) 

127.2(2) 

a Distances in pm, angles in degrees, estimated standard deviations in parentheses in units of the last digit. Cl, = terminal Cl, Cl, = bridging Cl. 
b Gas phase [l]. 
’ Gas phase [lo]. 
d This work. 
e Gas phase [2]. 
f Crystalline phase [ll]. 

amplitudes and expanded to include an estimated scale 
uncertainty of 0.1%. Experimental and calculated in- 
tensity curves and radial distribution curves are com- 
pared in Figs. 1 and 3 respectively. 

Similar refinements carried out on a cis model of 
C,, symmetry led to equally good agreement between 
calculated and experimental intensities, R = 0.051 as 
compared to 0.049 for the trans model (for a definition 

’ of R see Table 1). We are thus unable to confirm the 
conclusions reached on the basis of ‘H NMR [6], 
Raman [7] and IR [7] spectra. The best values obtained 
for bond distances and valence angles, however, dif- 
fered from those in Table 1 by less than a quarter of 
the quoted standard deviations. 

In Table 2 we compare bond distances and valence 
angles in compounds of type [X,Y,Ga,(p-Cl),]. The 
Ga-to-bridging-cl bond distance is seen to decrease 
monotonically with increasing electron-withdrawing 
power of the terminal substituents, from 238 pm in 
[Me,Ga,(l-Cl),], to 234 pm in [Me,Cl,Ga&Cl),] 
and 230 pm in [Cl,Ga&-Cl),]. We suggest that the 
observed variation is due to an electronic effect rather 
than to steric factors. The bridging bond may be de- 
scribed as a 1: 1 hybrid of normal and dative ClGa 
bonds, and dative bonds are known to be very sensitive 
to inductive effects on the acceptor atoms [12]. 
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