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Abstract 

13C NMR spectroscopy has been used to determined the barriers to rotation about the B-N bonds of 1-(N-benzyl-N- 
methylaminojborepin and l-W-benzyl-N-methylaminol-4,5-dihydroborepin as 18 and 19.8 kcal mol-‘, respectively. The corre- 
sponding rotational barriers of a variety of aminoboranes have been calculated using the semi-empirical AM1 method. 
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1. Introduction 

There has been considerable interest in the nature 
of the bonding in aminoborane (1) [l-6]. Calculations 
indicate that the B-N bond should have substantial 
rr-bond character with a large barrier to rotation about 
that bond [4-61. NMR spectroscopic investigations on 
NJV-dialkylaminoboranes (2) give AG’ values in the 
range of 17-24 kcal mol-’ for rotation about the B-N 
bonds [2,3,7-lo]. These barrier heights depend upon 
both steric and electronic effects. In particular p-donor 
substituents at boron lower the barrier, apparently by 
weakening the B-N r-bond [8-101. 

H, NH 
,N-B, 

R, Ar 

H H R’ 
N-B’ 

‘X 

1 2 X = F, Cl, OCH,, SC,H,, R 

We have been interested in the heterocycle borepin 
(3) for some time [11-E]. T-Donation from C to B 
should give borepins a Hiickel 6rr-aromatic character. 
Spectroscopic and structural studies of borepins (3, 
where X = H, Cl, R) are consistent with this aromatic- 
ity [13-E]. However in 1-aminoborepin (4) ring 7~ 
donation from C to B must compete with the exocyclic 
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B-N r-bonding [15]. Thus one expects that the barrier 
to B-N rotation to be lower than normal. 

0-X O-NH* 

3a,X=H 
b,X=Cl 
c,X=R 

4 

In order to evaluate experimentally the balance be- 
tween B-C and B-N r-bonding in aminoborepins, we 
have undertaken a study of the barrier to B-N rotation 
in 5 and 6. The steric demands of borepin and 4,5-dihy- 
droborepin should be similar, therefore it can be antic- 
ipated that the difference in the rotational barriers will 
reflect only electronic differences between the two 
systems. Since r-donation from C to B should be more 
important for the aromatic borepin than the non- 
aromatic dihydroborepin, we expect that 5 should have 
a lower B-N barrier than 6. 

5 6 

The aminoboranes 5 and 6 were easily prepared by 
treating the corresponding chlorides with an excess of 
N-benzyl-N-methylamine in pentane. After separation 
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of the insoluble hydrochloride of the base, the amino- 
boranes were isolated as moisture and air sensitive oils. 

At 25°C the ‘H NMR spectrum of l-(N-benzyl-N- 
methylaminojborepin (5) in C,D, shows a multiplet at 
6 6.45 for the y-protons of the ring. The signal for the 
P-protons at 6 7.10 is rather broad due to strong 
quadrapolar interaction with the trans ‘iB. However 
the signals from each of the non-equivalent a-protons 
are doublets of doublets (6 6.75, 6.67). Thus rotation 
about the B-N bond must be slow on the NMR time 
scale. 

The 13C NMR spectrum of 5 in C,D, at 25°C shows 
a broad signal for the a-carbon atoms. However both 
the signals for the CP at (S 142.09, 141.90) and C, at (6 
131.68, 131.75) indicate non-equivalence. Because the 
spectra are simple we have chosen to evaluate the B-N 
rotational barrier using 13C NMR spectroscopy. On 
warming to 62°C the signals for C, coalesce to a 
singlet, while the Cg-signals coalesce at 73°C. The 
AG # values are 18.1 and 17.8,kcal mol-‘, respectively. 
The mean value of AG # is 18.0 f 0.5 kcal mol-‘. 

The NMR spectra of 6 are quite analogous. Al- 
though the room temperature ‘H NMR spectrum shows 
that the a-proton are non-equivalent (doublets at S 
6.18 and 6.21), we have again chosen to use the simpler 
13C NMR spectra to evaluate the B-N rotational bar- 
rier. At 25°C the 13C NMR spectrum shows two signals 
each for the non-equivalent C, atoms at (6 29.74, 
29.80) and the non-equivalent C, atoms (S 147.33, 
147.40). On warming both signals coalesce at 97°C 
given a AG # value of 19.8 + 0.5 kcal mol-‘. 

In order to obtain a better understanding of this 
process we have calculated the rotation barriers for 
model compounds 4 and 7 and related aminoboranes 1, 
8, and 9 using the semi-empirical AM1 method 
[16,17 “1 (see Table 1). The equilibrium geometry of 7 
has C&symmetry, although the B, N and the four 
attached atoms are close to coplanar. Ab initio (6-31G* 
basis set) calculations of 4,5_dihydroborepin yielded a 
similar geometry [ 181. All other aminoboranes have C,, 
symmetry. Upon rotation about the B-N bond the 
nitrogen atoms assume a pyramidal configuration as 
had previously been found for ab initio calculations on 
1 [5,19]. In all cases the B-N bond length elongates by 
about 0.09 A as the r bond is broken [20]. 

The B-N rotational barrier for H,NBH, (1) has 
previously been calculated as 29.4 kcal mol- ’ by ab 

initio (6-31G*) [5] and 23.8 kcal mol-’ by semiempiri- 
cal (MNDO) [19] methods. Agreement with our AM1 
barrier of 25.8 kcal mol-’ seems acceptable. Both ab 

* Reference number with an asterisk indicates a note in the list of 
references. 

TABLE 1. The AM1 rotation barriers about the B-N bonds 

Compound Barrier (kcal mol-‘) A(B-N) a (_&I 

H,BNH, (1) 25.8 0.090 

15.5 0.087 

19.0 0.086 

-N(CH,), (8) 12.2 0.080 

22.4 0.083 

a The bond length increase on going from the most stable conforma- 
tion to the transition state for B-N rotation. The other bond lengths 
do not change significantly. 

initio’ and semiempirical methods give a B-N bond 
distance of 1.37 A, while the experimental distance 
determined from microwave spectra is 1.391(2) A [21]. 

The barrier heights calculated for 4 and 7 seem 
fortuitously close to the experimental values found for 
5 and 6. Changing the substituents on nitrogen from H 
to CH3 (4 + 8) makes the absolute agreement poorer. 
However the difference between the calculated barrier 
height of borepin 4 and dihydroborepin 7 (A = 3.5 kcal 
mol-‘) and the observed difference between 5 and 6 
(A = 1.8 kcal mol-‘) are in reasonable agreement. As 
had been anticipated from qualitative arguments, the 
aminoborepin systems have lower B-N rotational bar- 
riers than the aminodihydroborepins. However the dif- 
ferences between the two systems are rather small. 
Apparently the C-B r-bonding of the aromatic bore- 
pin is only slightly more effective than that of the 
non-aromatic dihydroborepin in weakening the exo- 
cyclic B-N r-bond. It may be that the resonance 
stabilization of borepin is only slightly greater than that 
of dihydroborepin as had been suggested from ab initio 

calculations [ 181. 
In order to find larger electronic effects we have 

compared aminoborepin 4 with aminoborole 9. IT- 
Donation from C to B should give boroles a Hiickel 
4r-antiaromatic character [22-241. Aminoboroles are 
highly labile but form stable transition metal complexes 
[22,25]. The B-N rotational barriers of bis(dial- 
kylaminoborole) nickel are high on the NMR time 
scale [25]. The calculated B-N barrier of 9 (22.5 kcal 
mol-‘) is 7 kcal mol-’ higher than the barrier of 4. 
Therefore C to B r-donation in the borepin is signifi- 
cantly greater than in the borole. 
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2. Experimental details 

General remarks: all reactions were carried out un- 
der an atmosphere of nitrogen. Solvents were dried 
using standard procedures. The mass spectra were 
determined by using a VG-70-S spectrometer, while 
the NMR spectra were obtained using either a Brucker 
WH-360 or AM-300 spectrometer. The ‘H NMR and 
13C NMR spectra were calibrated using signals from 
solvents referenced to Me,Si while external BF, * OEt, 
was used to calibrate the iiB NMR spectra. 1-Chloro- 
borepin [ 131 and 1-chloro-4,5-dihydroborepin [261 were 
prepared by literature procedures while all other com- 
pounds were commercially available. 

2.1. I-(N-Benzyl-N-methylamino)borepin (5) 
N-Benzyl N-methylamine (300 ~1,279 mg, 2.3 mm00 

was added dropwise with stirring to a solution of 
1-chloroborepin (100 ~1, 130 mg, 1.05 mm011 in 15 ml 
of pentane at 25°C. A white precipitate formed imme- 
diately. After the reaction mixture had stirred at 25°C 
for 3 h, the suspension was filtered affording a clear 
filtrate. The solvent was removed under vacuum af- 
fording 211 mg (1.01 mrnol), 96%) of a clear, air-sensi- 
tive oil. Attempted distillation led to extensive decom- 
position. iH NMR (C,D,): 6 2.56 (s, 3H, Me); 4.15 (s, 
2H, CH,); 6.49 (m, 2H, Hy), 6.73, 6.67 (dd, dd, J= 
13.7, 2.9 Hz, 2H, Hcu). 7.06 (s, 5H, C,H,); 7.10 (br, 2H, 
HP). ‘H NMR(CDCI,): S 2.78 (s, 3H, Me); 4.15 (s, 2H, 
CH,); 6.55 (m, 2H, Hy); 6.75, 6.68 (dd, dd, J= 13.7, 
2.9 Hz, 2H, Hcx); 7.10 (br, 2H, HP); 7.20 (s, 5H, 
C,H,). “B NMR (C,D,): 6 35.5. 13C NMR (C,D,): 6 
36.5 (Me); 55.2 (CH,); 127, 127.3, 128.7, 139.9 c&H,); 
131.68, 131.75 (Cy); 139 br (Ccu); 142.09, 141.90 (CB). 
EI-MS: m/z (rel. intensity): 209 (28, M+ for 
C,,H,611BN); 130 (43, M+-C,H,); 91 (100). MS exact 
mass (ED: found 209.1371. C,,H,,“BN talc: 209.1376. 

2.2. 1-(N-Ben&N-methylamino)-4,5_dihydroborepin (6) 
In the same manner as above addition of N-benzyl- 

N-methylamine (0.4 ml, 3.1 mmol) to 1-chloro-4,5-dihy- 
droborepin (135 mg, 1.05 mmol) in 10 ml pentane gave 
product which was purified by Kugelrohr distillation at 
65°C (0.05 torr) affording 200 mg (88%) of a colorless 
oil. ‘H NMR (C,H,): 6 2.25 (m, 4H, Hy); 2.57 (s, 3H, 
Me); 4.12 (s, 2H, CH,N); 6.18, 6.21 (d, J= 12.4 Hz, 
2H, Ha); 6.66 (m, 2H, HP); 7.10 (m, 5H, C,H,). “B 
NMR (C,D,): 6 37.0. 13C NMR (C,D,): S 29.74, 29.80 
(Cy>; 36.7 (Me); 55.7 (NCH,); 127.1, 127.5, 128.7, 
139.8 (C, H,); 147.33, 147.40 (Cp). MS exact mass (ED: 
found 211.1538 C,,H,,“BN talc: 211.1532. 
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