Preliminary Communication

Cyclooctatetraenyl-Komplexe der frühen Übergangsmetalle und Lanthanoide

II. * Neue Cyclooctatetraenyl-Halbsandwich-Komplexe des Yttriums

Ulrike Kilimann und Frank T. Edelmann

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-37077 Göttingen (Deutschland)

(Eingegangen den 18. Oktober 1993)

Abstract

Dimeric [(COT)Y(μ -O₃SCF₃)(THF)]₂ (1) is introduced as a versatile starting material for new monocyclooctatetraenyl complexes of yttrium (COT = cyclooctatetraenyl(2-)). Treatment of 1 with pyrazolylborate anions yields the monomeric half-sandwich complexes (COT)Y(HBpz₃) (2) and (COT)Y[HB(3,5-Me₂pz)₃] (3). The yttrium benzamidinates (COT)Y[MeOC₆H₄C(NSiMe₃)₂]THF (4) and (COT)Y[CF₃C₆H₄C(NSiMe₃)₂](THF) (5) are prepared similarly. An yttrium phosphazene derivative, (COT)Y[Ph₂P(NSiMe₃)₂](THF) (6) is obtained by treating 1 with Li[Ph₂P(NSiMe₃)₂]. All new organoyttrium complexes have been fully characterized by elemental analyses and spectroscopic methods including ⁸⁹Y NMR spectroscopy.

Key words: Yttrium; Cyclooctatetraenyl; Sandwich complexes; Benzamidinate

Nicht erst seit der Entdeckung der keramischen Hochtemperatur-Supraleiter ist das Yttrium zu einem sehr populären Element geworden. Auch in wichtigen Bereichen der Homogenkatalyse leisten Organoyttrium-Komplexe erstaunliches [2]. So ist etwa die Verbindung $(C_5Me_5)_2YCH_3(THF)$ ein hochwirksamer Katalysator bei der Cyclisierung von 1,5- und 1,6-Dienen [3]. $(C_5Me_5)_2YCH_3$ reagiert mit Methan unter C-H-Aktivierung [2]. Weitere Reaktionen, die durch Organoyttrium-Komplexe (z.B. $(C_5Me_5)_2YCH(SiMe_3)_2$ und $[(C_5Me_5)_2Y(\mu-H)]_2$) effektiv katalysiert werden, sind die Hydrierung [4] und Hydroaminierung [5] von Olefinen, die Oligomerisierung terminaler Alkine [6,7] sowie der H/D-Austausch zwischen sp³-CH- und sp²-

CD-Bindungen [7]. Dabei fällt auf, daß es sich bei allen katalytisch aktiven Verbindungen um Komplexe mit Cyclopentadienyl-Liganden (meist C₅Me₅) handelt. Weit weniger ist bekannt über Yttrium-Komplexe mit Cyclooctatetraenyl-Liganden ($C_8H_8^{2-}$ = COT), obwohl auch hier mit interessanten Katalysatoreigenschaften zu rechnen ist. Zudem ist das C₈H₈²-Ion gerade für die frühen Übergangsmetalle und Lanthanoidelemente ein besonders gut geeigneter Ligand [8]. Aus früheren Arbeiten kennt man lediglich die Verbindungen $K[Y(COT)_2]$ und $[(COT)Y(\mu-Cl)(THF)]_2$ [8,9] sowie den gemischten Sandwichkomplex (COT)Y(C₅Me₅) [10]. In jüngster Zeit berichteten Schumann et al. über Komplexe des Typs $[(COT)Ln(\mu-OR)(THF)]_2$ (R = OPh, $OC_6H_3Me_2-2.6$, OC^tBu_3 , $OSiPh_3$) [11], (COT)Y(acac)₂ [11] und (COT)Y[N(SiMe₃)₂](THF) [12]. Wir beschreiben hier die Synthese und Charakterisierung einer Reihe neuer Monocyclooctatetraenyl-Yttriumkomplexe mit zwei- und dreizähnigen Liganden.

1. Ergebnisse und Diskussion

Als Ausgangsmaterial zur Darstellung von COT-Yttriumkomplexen diente bislang stets der dimere Chlorokomplex [(COT)Y(μ -Cl)(THF)]₂ [10–12]. Dieser Komplex ist jedoch selbst in THF recht schwer löslich und kann nur durch langwierige Soxhlet-Extraktion rein isoliert werden [9]. Auf der Suche nach einer geeigneteren Startverbindung fanden wir das wesentlich besser lösliche und leicht isolierbare Organoyttriumtriflat [(COT)Y(μ -O₃SCF₃)(THF)]₂ (1). Dieser Komplex entsteht in guter Ausbeute (69%) bei der Reaktion von wasserfreiem Yttriumtriflat mit K₂COT in THF:

$$2Y(O_3SCF_3)_3 + 2K_2COT \rightarrow$$

$$[(COT)Y(\mu - O_3SCF_3)(THF)]_2 + 4KO_3SCF_3$$

Der dimere Triflatkomplex 1 ist sehr oxidationsempfindlich, aber thermisch hoch belastbar (Zers. ab ca. 305°C). Im Gegensatz zu $[(COT)Y(\mu-Cl)(THF)]_2$ löst sich 1 leicht in THF. Bei Folgereaktionen erwies es sich als ein weiterer Vorteil, daß sich entstandenes Lithium- oder Natriumtriflat wesentlich leichter abtrennen läßt als feinverteilte LiCl- bzw. NaCl-Niederschläge. Über präparative Vorteile der Lanthanoidtriflate bei der Synthese von Organolanthanoidtriflate bei

Correspondence to: Dr. F.T. Edelmann.

^{*} I. Mitteilung siehe Ref. [1]

der Synthese von Organolanthanoid-Komplexen berichteten kürzlich auch Schumann et al. [13-15].

Die Umsetzung von 1 mit dem Pyrazolylboraten K[HBpz₃] und K[HB(3,5-Me₂pz)₃] führt in glatter Reaktion zu den neuen Halbsandwich-Komplexen (COT)Y[HBpz₃] (2) und (COT)Y[HB(3,5-Me₂pz)₃] (3) in Form von thermisch außerordentlich stabilen, farblosen Kristallen (Schema 1).

Die EI-Massenspektren von 2 und 3 zeigen in beiden Fällen den Molekülpeak, dessen Isotopenmuster exakt mit dem berechneten übereinstimmt. Die vollständige spektroskopische Charakterisierung gelingt problemlos mit Hilfe von IR- sowie 1 H-, 11 B-, 13 C-sowie 89 Y-NMR-Spektren. In den 13 C-NMR-Spektren beobachtet man bei den COT-Signalen eine 1 J(89 Y, 13 C)-Kopplung von 2.6 Hz (2) bzw. 2.3 Hz (3). Die 89 Y-NMR-Spektren zeigen jeweils ein Singulett bei 89 Y-NMR-Spektren zeigen jeweils ein Singulett bei 89 Y-NMR-Spektren zeigen jeweils ein Singulett bei 89 C-32.0 ppm (2) bzw. $^{-32.0}$ ppm (3).

In früheren Arbeiten konnten wir zeigen, daß raumerfüllende Heteroallyl-Liganden wie [RC6H4C-(NSiMe₃)₂] oder [Ph₂P(NSiMe₃)₂] trotz ihrer gänzlich verschiedenen Struktur in vielerlei Hinsicht den Cyclopentadienyl-Liganden ähneln [16,17]. Da der Komplex (COT)Y(C₅Me₅) [10] schon länger bekannt war, lag es nahe, vergleichbare COT-Halbsandwichkomplexe auch mit den silylierten Heteroallyl-Liganden herzustellen. Die Darstellung der Verbindungen $(COT)Y[MeOC_6H_4C(NSiMe_3)_2](THF)$ (4), (COT)Y- $[CF_3C_6H_4C(NSiMe_3)_2](THF)$ (5) und $(COT)Y[Ph_2P-$ (NSiMe₃)₂] (6) gelingt in einfacher Weise durch Umsetzung von 1 mit äquivalenten Mengen Li[RC₆H₄C- $(NSiMe_3)_2$] (R = MeO, CF₃) bzw. Li[Ph₂P(NSiMe₃)₂] (Schema 1). Die farblosen, kristallinen Verbindungen 4-6 sind sehr empfindlich gegen Feuchtigkeit und Luftsauerstoff, zeichnen sich aber durch sehr hohe Schmelz- oder Zersetzungspunkte aus. Wie schon an

 $Schema~1.~(a)~K[HBpz_3],~(b)~K[HB(3,5-Me_2pz)_3],~(c)~Li[MeOC_6H_4C(NSiMe_3)_2],~(d)~Li[CF_3C_6H_4C(NSiMe_3)_2],~(e)~Li[Ph_2P(NSiMe_3)_2].$

anderer Stelle demonstriert, sind die silylierten Heteroallyl-Anionen ungewöhnlich gute "Beobachter-Liganden" [18]. So enthält das Phosphazen-Derivat 6 nicht weniger als sechs NMR-aktive Kerne! Sowohl das ²⁹Si- als auch das ³¹P-NMR-Spektrum von 6 zeigen ein Dublett, das durch eine ²J(³¹P, ²⁹Si)-Kopplung von ca. 7.5 Hz hervorgerufen wird. Eine Besonderheit zeigt das ⁸⁹Y-NMR-Spektrum von 6, in dem erstmalig eine Yttrium-Phosphor-Kopplung nachgewiesen werden konnte. Die ²J(⁸⁹Y, ³¹P)-Kopplungskonstante beträgt 7.1 Hz. In gleicher Weise lassen sich auch die Benzamidinat-Komplexe vollständig charakterisieren.

Mit der vorliegenden Arbeit konnte gezeigt werden, daß sich das neuartige COT-Yttriumtriflat [(COT)Y(μ -O₃SCF₃)(THF)]₂ (1) hervorragend zur Synthese von Monocyclooctatetraenyl-Komplexen des Yttriums eignet. Gegenstand derzeitiger Untersuchungen ist die Frage, ob auch katalytisch aktive σ -Alkyl- oder Hydridokomplexe mit Cyclooctatetraenyl-Liganden auf ähnliche Weise zugänglich sind.

2. Experimenteller Teil

Alle Arbeiten wurden unter sorgfältigem Luftausschluß (Schutzgas: N2) in ausgeheizten Schlenk-Apparaturen durchgeführt. Die verwendeten Lösungsmittel (THF, Toluol, Hexan) wurden sorgfältig getrocknet und vor Gebrauch über Natrium/Benzophenon frisch destilliert. IR-Spektren: Perkin-Elmer-Spektrometer 180 und Bio-RAD FTS-7, Nujol-Verreibungen zwischen KBr-Platten. ¹H-NMR-Spektren: Bruker WP 80 SY und Bruker AM 250 (250 MHz, THF-d₈, TMS extern). Heterokern-NMR-Spektren: Bruker AM 250 (^{11}B : 80 MHz, THF- d_8 , BF₃·Et₂O; ^{13}C : 62.9 MHz, THF-d₈, TMS; ¹⁹F: 235.3 MHz, THF-d₈, CFCl₃; ²⁹Si: 49.7 MHz, THF-d₈, TMS; ³¹P: 162.0 MHz, THF-d₈, H_3PO_4 ; ⁸⁹Y: 19.6 MHz, THF- d_8 /Toluol- d_8 , YCl₃/ D₂O). Massenspektren: Finnigan MA 8230. Schmelzund Zersetzungspunkte: Büchi 510, in abgeschmolzenen Kapillaren unter N2. Elementaranalysen: Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. Die Synthese von $Y(O_3SCF_3)_2$ [19], K[HBpz₃] [20], K[HB(3,5-Me₂pz)₃] [21], $Li[MeOC_6H_4C(NSiMe_3)_2]$ [22], $Li[CF_3C_6H_4]$ C(NSiMe₃)₂] [22] und Li[Ph₂P(NSiMe₃)₂] [23] erfolgte nach bekannten Literaturvorschriften.

2.1. Di- μ -trifluormethansulfonato-bis [η^8 -cyclooctatetra-enyl-(tetrahydrofuran)yttrium(III)] (1)

Zur Darstellung einer THF-Lösung von K_2 COT werden 2.93 g (75 mmol) kleingeschnittenes Kalium in 50 ml THF suspendiert und bei -20° C mit 3.90 g (37 mmol) Cyclooctatetraen versetzt. Man läßt über Nacht

langsam auf Raumtemperatur erwärmen. Die so erhaltene Lösung wird bei -20°C unter Rühren zu einer Suspension von 20.0 g (37 mmol) Y(O₃SCF₃)₃ in 100 ml THF zugetropft. Man läßt zunächst 10 min bei -20°C und anschließend 24 h bei Raumtemperatur rühren. Der Ansatz wird über eine dünne Schicht Celite filtriert und das Filtrat im Vakuum zur Trockne eingeengt. Man erhält 22.9 g (69%) 1 als hellgelben Feststoff. Analyse: Gef.: C, 36.4; H, 3.7; C₂₆H₃₂F₆O₈ S_2Y_2 (828.5), ber.: C, 37.7, H, 3.9%. IR: ν 1850m, 1745m, 1604m, 1330sst, 1239sst, 1214st, 1204st, 1074m, 1028sst, 963m, 895st, 859sst, 840st, 714sst, 635sst, 581st, 519st, 370m, 321st cm⁻¹. ¹H-NMR: δ 6.47 (s, 16 H, C_8H_8), 3.61 (m, 8 H, THF), 1.76 (m, 4 H, THF) ppm. ¹⁹F-NMR: δ -78.2 (s) ppm. ⁸⁹Y-NMR: -63.4 (s, $\nu_{1/2} = 4$ Hz) ppm.

2.2. Monocyclooctatraenyl-Yttriumkomplexe 2-6 (Allgemeine Arbeitsvorschrift)

Zur Lösung von 2 mmol 1 in 50 ml THF tropft man bei 0°C eine Lösung von 4 mmol des Liganden in 20 ml THF. Man läßt zunächst 30 min bei 0°C und anschließend 12 h bei Raumtemperatur rühren. Nach Zugabe von 30 ml Toluol wird das ausgefallene Lithiumtriflat über eine dünne Schicht Celite abfiltriert und das Lösungsmittel im Vakuum vollständig abgezogen. Der Rückstand wird in 50 ml Toluol gelöst, mit 40 ml Hexan versetzt und das Produkt bei – 20°C auskristallisiert (12 h). Die farblosen Kristalle werden durch Filtration isoliert und im Vakuum getrocknet.

2.2.1. $(\eta^8$ -Cyclooctatetraenyl)[hydrotris(pyrazol-1-yl)borato]yttrium(III) (2)

Ausb. 39%, Fp.: 331°C. Gef.: C, 50.2; H, 4.5; N, 21.0; $C_{17}H_{18}BN_6Y$ (406.1) ber.: C, 50.3; H, 4.5; N, 20.7%. IR: ν 2592m, 2461m, 1504m, 1405st, 1299sst, 1209sst, 1118sst, 1095m, 1052sst, 978sst, 920m, 890st, 782m, 766st, 703st, 668st, 616st cm⁻¹. ¹H-NMR: δ 7.82 (d, $^3J=2$ Hz, 3 H, pz-H), 7.53 (d, $^3J=2$ Hz, 3 H, pz-H), 6.75 (s, 8 H, C_8H_8), 6.08 (t, $^3J=2$ Hz, 3 H, pz-H) ppm. 13 C-NMR: δ 141.3 (s, pz), 136.8 (s, pz), 104.8 (s, pz), 95.5 (d, $^1J(^{89}Y, ^{13}C) = 3$ Hz, C_8H_8) ppm. 11 B-NMR: δ -4.1 (s) ppm. ^{89}Y -NMR: 25.2 (s, $\nu_{1/2} = 4$ Hz) ppm. MS: m/z 406 [M, 100%], 301 [M - C_8H_8 , 46], 223 [Y(pz)₂, 28], 104 [C_8H_8 , 4].

2.2.2. $(\eta^8$ -Cyclooctatetraenyl)[hydrotris(3,5-dimethyl-pyrazol-1-yl)borato]yttrium(III) (3)

Ausb. 78%, Fp.: 297°C. Gef.: C, 55.8; H, 6.2; N, 16.2; $C_{23}H_{30}BN_6Y$ (490.3) ber.: C, 56.4; H, 6.2; N, 17.1%. IR: ν 3062m, 2576st, 1734m, 1577m, 1547sst, 1495m, 1413st, 1314m, 1206st, 1149m, 1118m, 1092m, 1071sst, 980st, 901m, 849m, 832m, 812st, 710sst, 696st,

648st, 463m cm⁻¹. ¹H-NMR: δ 6.68 (s, 8 H, C₈H₈), 5.66 (s, 3 H, pz-H), 2.60 (s, 9 H, pz-CH₃), 2.16 (s, 9 H, pz-CH₃) ppm. ¹³C-NMR: δ 151.0 (s, pz-CCH₃), 145.8 (s, pz-CCH₃), 107.9 (s, pz-CH), 94.9 (d, ¹J(⁸⁹Y, ¹³C) = 2 Hz, C₈H₈), 15.4 (s, CH₃), 13.3 (s, CH₃) ppm. ¹¹B-NMR: δ -9.72 (s) ppm. ⁸⁹Y-NMR: -32.0 (s, $\nu_{1/2}$ = 4 Hz) ppm. MS: m/z 490 [M, 78%], 371 [M - C₈H₈ - CH₃, 100], 279 [Y(3,5-Me₂pz)₂, 42], 193 [YC₈H₈, 28].

2.2.3. $(\eta^8$ -Cyclooctatetraenyl)[N,N'-bis(trimethylsilyl)-4-methoxybenzamidinato]tetrahydrofuran-yttrium-(III) (4)

Ausb. 10%, Fp.: 195°C. Gef.: C, 54.5; H, 7.3; N, 4.8; $C_{26}H_{41}N_2O_2Si_2Y$ (558.7) ber.: C, 55.9; H, 7.4; N, 5.0%. IR: v 1653m, 1641m, 1609st, 1560m, 1512m, 1302m, 1257sst (SiMe₃), 1170m, 1104st, 1056st, 1027st, 994m (SiMe₃), 934m, 892m, 844st (SiMe₃), 822m, 780st, 755m, 722st, 670st, 644m, 628m, 589m, 497m, 426m cm⁻¹. ¹H-NMR: δ 6.75 (m, 4 H, C₆H₄), 6.43 (s, 8 H, C₈H₈), 3.71 (s, 3 H, OMe), 3.62 (m, 4 H, THF), 1.78 (m, 4 H, THF), -0.25 (s, 18 H, SiMe₃) ppm. ¹³C-NMR: δ 184.4 (s, C-N), 160.2 (s, p-C₆H₄), 136.4 (d, ${}^{2}J(C, N) = 4$ Hz, $q-C_6H_4$), 127.8 (s, $o-C_6H_4$), 113.6 (s, $m-C_6H_4$), 94.5 (d, ${}^{1}J({}^{89}Y, {}^{13}C) = 2 \text{ Hz}, C_{8}H_{8}), 68.2 \text{ (m, THF)}, 55.3 \text{ (s,}$ OMe), 26.4 (m, THF), 2,3 (s, SiMe₃) ppm. ²⁹Si-NMR: δ -5.9 (s) ppm. ⁸⁹Y-NMR: δ 62.4 (s, $\nu_{1/2} = 2$ Hz) ppm. MS: m/z 486 [M – THF, 17%], 471 [M – CH₃ – THF, 14], 293 [MeOC₆H₄C(NSiMe₃)₂, 8], 193 [YC₈H₈, 16], 146 [Si₂Me₆, 100], 104 [C₈H₈, 10], 73 [SiMe₃, 12].

2.2.4. $(\eta^8$ -Cyclooctatetraenyl)[N,N'-bis(trimethyl-silyl)-4-trifluormethylbenzamidinato]tetrahydrofuran-yt-trium(III) (5)

Ausb. 80%, Fp.: 255°C (Zers.). Gef.: C, 51.7; H, 6.3; N, 4.6; C₂₆H₃₈F₃N₂OSi₂Y (596.7) ber.: C, 52.3; H, 6.4; N, 4.7%. IR: ν 3401m, 3361m, 3329m, 3243m, 3189m, 1688st, 1607st, 1325m, 1290m, 1221m, 1183m (CF₂), 1133st, 1115st, 1064st, 1023st, 990m (SiMe₃), 895st, 842sst (SiMe₃), 691m, 640m, 578m, 527st cm⁻¹. ¹H-NMR: δ 7.48 (m, 2 H, o-C₆H₄), 7.09 (m, 2 H, m-C₆H₄), 6.32 (s, 8 H, C₈H₈), 3.62 (m, 4 H, THF), 1.78 (m, 4 H, THF), -0.27 (s, 18 H, SiMe₃) ppm. ¹³C-NMR: δ 179.9 (s, C-N), 148.1 (s, q-C₆H₄), 129.7 (q, 2J (C, F) = 32 Hz. $p-C_6H_4$), 127.4 (s, $o-C_6H_4$), 125.3 (q, ${}^{1}J(C, F) = 272$ Hz, CF₃), 125.2 (q, ${}^{3}J(C, F) = 4$ Hz, $m - C_{6}H_{4}$), 94.0 (d, ${}^{1}J({}^{89}\text{Y}, {}^{13}\text{C}) = 2 \text{ Hz}, C_{8}H_{8}), 68.2 \text{ (m, THF)}, 26.3 \text{ (m,}$ THF), 2,3 (s, SiMe₃) ppm. ¹⁹F-NMR: δ -62.3 (s br, $\nu_{1/2}$ = 4 Hz) ppm. ²⁹Si-NMR: δ -6.6 (s) ppm. ⁸⁹Y-NMR: δ 61.8 (s) ppm. MS: m/z 331 [CF₃C₆H₄C $(NSiMe_3)_2$, 36%], 259 $[CF_3C_6H_4(N_2SiMe_3), 96]$, 245 $[CF_3C_6H_4(N_2SiMe_2), 58], 146 [Si_2Me_6, 100], 104$ [C₈H₈, 10], 73 [SiMe₃, 54].

2.2.5. $(\eta^8$ -Cyclooctatetraenyl)[P,P-diphenyl-bis(N-trimethylsilylimino)phosphinato]tetrahydrofuran-yttrium-(III) (6)

Ausb. 55%, Fp.: 194°C. Gef.: C, 56.5; H, 7.0; N, 4.0; $C_{20}H_{44}N_2OPSi_2Y$ (624.7) ber.: C. 57.7: H. 7.1: N. 4.5%. IR: v 1822m, 1590m, 1341m, 1306m, 1245st (SiMe₂), 1128st 1094sst, 1068m, 976m, 899st, 849sst (SiMe₃), 778st, 746st, 719st, 669m, 623m, 539sst, 528sst, 428m cm⁻¹. ¹H-NMR: δ 7.57 (m, 4 H, o-C₆H₅), 7.39 $(m, 6 H, m, p-C_6H_5), 6.43 (s, 8 H, C_8H_8), 3.62 (m, 4 H,$ THF), 1.77 (m, 4 H, THF), -0.22 (s, 18 H, SiMe₃) ppm. ¹³C-NMR: δ 137.8 (d, ¹J(C, P) = 101 Hz, C₆H₅), 132.4 (d, ${}^{3}J(C, P) = 11 \text{ Hz}, m-C_{6}H_{5}), 131.4$ (d, ${}^{4}J(C, P) = 11 \text{ Hz}, m-C_{6}H_{5})$ P) = 3 Hz, p-C₆H₅), 128.4 (d, ${}^{2}J(C, P)$ = 12 Hz, o- C_6H_5), 94.2 (d, ${}^{1}J({}^{89}Y, {}^{13}C) = 2$ Hz, C_8H_8), 67.5 (m, THF), 25.5 (m, THF), 3.6 (d, ${}^{2}J(C, N) = 4$ Hz, SiMe₃) ppm. ³¹P-NMR: δ 21.0 (s) ppm. ²⁹Si-NMR: δ -8.3 (d, $^{2}J(Si, P) = 8 \text{ Hz}) \text{ ppm. } ^{89}Y\text{-NMR}: \delta 55.7 \text{ (d, }^{2}J(^{89}Y, ^{1}))$ ^{31}P) = 7 Hz) ppm. MS: m/z 376 [M – THF – C_8H_8 – SiMe₃, 2%], 345 [Ph₂P(NSiMe₃)(NSiMe₂H), 100], 192 [YC₂H₂, 10], 73 [SiMe₃, 6].

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie in dankenswerter Weise finanziell unterstützt. Für eine großzügige Spende von Cyclooctatetraen sind wir der BASF Aktiengesellschaft zu besonderem Dank verpflichtet. Darüber hinaus danken wir Herrn Dr. G. Elter und Herrn W. Zolke für ihre tatkräftige Unterstützung bei den ⁸⁹Y-NMR-Untersuchungen

Literatur

- 1 U. Kilimann und F.T. Edelmann, J. Organomet. Chem., 444 (1993) C15.
- 2 P.L. Watson und G.W. Parshall, Acc. Chem. Res., 18 (1985) 51.
- 3 G.A. Molander und J.O. Hoberg, J. Am. Chem. Soc., 114 (1992) 3123
- 4 G.A. Molander und J.O. Hoberg, J. Org. Chem., 57 (1992) 3266.
- 5 M.R. Gagné, C.L. Stern und T.J. Marks, J. Am. Chem. Soc., 114 (1992) 275.
- 6 H.J. Heeres und J.H. Teuben, Organometallics, 10 (1991) 1980.
- 7 K.H. den Haan, Y. Wielstra und J.H. Teuben, Organometallics, 6 (1987) 2053.
- 8 A.J. Streitwieser, Jr. und S.A. Kinsley, in T.J. Marks und I.L. Fragalà (Hrsg.), Fundamental and Technological Aspects of Organo-f-Element Chemistry, D. Reidel, Dordrecht, 1985, S. 77.
- K.O. Hodgson, F. Mares, D.F. Starks und A. Streitwieser, Jr., J. Am. Chem. Soc., 95 (1973) 8650.
- 10 H. Schumann, R.D. Köhn, F.W. Reier, A. Dietrich und J. Pickardt, Organometallics, 8 (1989) 1388.
- 11 H. Schumann, J. Winterfeld, R.D. Köhn, L. Esser, J. Sun und A. Dietrich, Chem. Ber., 126 (1993) 907.
- 12 H. Schumann, J. Winterfeld, L. Esser und G. Kociok-Köhn, Angew. Chem., 105 (1993) 1212.

- 13 H. Schumann, J.A. Meese-Marktscheffel und A. Dietrich, J. Organomet. Chem., 377 (1989) C5.
- 14 H. Schumann, J.A. Meese-Marktscheffel, A. Dietrich und F.H. Görlitz, J. Organomet. Chem., 430 (1992) 299.
- 15 J. Stehr und R.D. Fischer, J. Organomet. Chem., 430 (1992) C1.
- 16 M. Wedler, F. Knösel, U. Pieper, D. Stalke, F.T. Edelmann und H.-D. Amberger, *Chem. Ber.*, 125 (1992) 2171.
- 17 A. Recknagel, F. Knösel, H. Gornitzka, M. Noltemeyer und F.T. Edelmann, J. Organomet. Chem., 417 (1991) 363.
- 18 F.T. Edelmann, in G. Ondrejovic und A. Sirota (Hrsg.), Contribu-
- tions to Development of Coordination Chemistry, Slovak Technical University Press, Bratislava, 1993, S. 73.
- 19 F.E. Hahn und J. Mohr, Chem. Ber., 123 (1990) 481.
- 20 S. Trofimenko, J. Am. Chem. Soc., 89 (1967) 3170.
- 21 S. Trofimenko, J. Am. Chem. Soc., 89 (1967) 6288.
- 22 M. Wedler, F. Knösel, M. Noltemeyer, F.T. Edelmann und U. Behrens, J. Organomet. Chem., 388 (1990) 21.
- 23 H. Schmidbaur, M. Schwirten und H. Pickel, Chem. Ber., 102 (1969) 564.