Die Koordinationschemie C=S-funktioneller Verbindungen

X *. Kationische Ruthenium-Thiobenzaldehyd-Komplexe: Synthese durch Hydridabstraktion aus Benzylthiolat-Komplexen, Struktur, dynamisches Verhalten und Reaktionen **

Wolfdieter A. Schenk, Thomas Stur und Eberhard Dombrowski

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg (Deutschland) (Eingegangen den 25. Oktober 1993)

Abstract

Hydride abstraction from $[Cp(R_3P)_2Ru(SCH_2C_6H_4X)]$ $[R_3P = Ph_3P, Me_3P, (MeO)_3P; (R_3P)_2 = Ph_2PCH_2PPh_2 (dppm), Ph_2PC_2H_4PMe_2 (dppm), Ph_2PC_2H_4PMe_2 (dpme), Me_2PC_2H_4PMe_2 (dmpe); X = H, Cl, OMe] using triphenylcarbenium hexafluorophosphate yields ionic thiobenzaldehyde complexes <math>[Cp(R_3P)_2Ru(S = CHC_6H_4X)]PF_6$. With bulky ligands R_3P only $\eta^1(S)$ isomers are formed, whereas a dynamic η^1/η^2 equilibrium is observed for $(R_3P)_2 = (Me_3P)_2$, dmpe. An X-ray structure determination was carried out on $[Cp(dppe)Ru(S=CHC_6H_4OMe)]PF_6 \cdot 0.5$ Et₂O (triclinic, space group $P\overline{1}$, a = 11.372(4) Å, b = 12.782(5) Å, c = 14.548(4) Å, $a = 70.33(1)^\circ$, $\beta = 80.61(2)^\circ$, $\gamma = 81.91(2)^\circ$, Z = 2): Ru-P1: 2.296(1) Å, Ru-P2: 2.301(1) Å, Ru-S: 2.314(1) Å, S-C6: 1.632(5) Å. Control experiments show that the β-hydride abstraction is initiated by single electron oxidation of the thiolate complex to give a radical cation intermediate. A fairly large kinetic isotope effect (KIE) of the H-transfer step $(k_H/k_D = 5.6$ using $[Ph_3C]^+$ and 7.4 using $[Cp_2Fe]^+$ as oxidant) demonstrates that the ruthenium atom is not involved. The thiobenzaldehyde complexes readily add nucleophiles such as H⁻, D⁻, PMe₃, OR⁻, SR⁻, and carbanions. With $(R_3P)_2 = dpme$, moderate diastereoselectivities are found in some of these reactions. [4 + 2]-Cycloadditions have been carried out with 2,3-dimethylbutadiene and cyclopentadiene. The latter are moderately diastereoselective for $(R_3P)_2 = dpme$ and highly exo-selective for $(R_3P)_2 = dppm$. An X-ray structure determination of [Cp(dppm)-Ru(SC₆H₇C₆H₄Cl)]PF₆ · MeCN (monoclinic, space group $P2_1/c$, a = 13.463(6) Å, b = 16.071(3) Å, c = 20.813(9) Å, $b = 92.30(2)^\circ$, $b = 92.30(2)^$

Zusammenfassung

Hydridabstraktion aus $[Cp(R_3P)_2Ru(SCH_2C_6H_4X)]$ $[R_3P = Ph_3P]$, Me₃P, (MeO)₃P; $(R_3P)_2 = Ph_2PCH_2PPh_2$ (dppm), $Ph_2PC_2H_4PPh_2$ (dppe), $Ph_2PC_2H_4PMe_2$ (dpme), Me₂PC₂H₄PMe₂ (dmpe); X = H, Cl, OMe] mit Triphenylcarbenium-Hexafluorophosphat ergibt ionische Thiobenzaldehyd-Komplexe $[Cp(R_3P)_2Ru(S=CHC_6H_4X)]PF_6$. Mit sperrigen Liganden R_3P werden nur $\eta^1(S)$ -Isomere gebildet, ein dynamisches η^1/η^2 -Gleichgewicht wird dagegen für $(R_3P)_2 = (Me_3P)_2$, dmpe beobachtet. Eine Röntgenstrukturbestimmung wurde ausgeführt an $[Cp(dppe)Ru(S=CHC_6H_4OMe)]PF_6 \cdot 0.5$ Et₂O (triklin, Raumgruppe $P\overline{1}$, a = 11.372(4) Å, b = 12.782(5) Å, c = 14.548(4) Å, $\alpha = 70.33(1)^\circ$, $\beta = 80.61(2)^\circ$, $\gamma = 81.91(2)^\circ$, Z = 2: Ru-P1: 2.296(1) Å, Ru-P2: 2.301(1) Å, Ru-S: 2.314 (1) Å, S-C6: 1.632(5) Å. Kontrollexperimente zeigen, daß die β -Hydridabstraktion von der ein-Elektronen-Oxidation des Thiolatkomplexes zum Radikalkation-Intermediat eingeleitet wird. Ein recht großer kinetischer Isotopen Effekt (KIE) des H-Transfer-Schritts ($k_H/k_D = 5.6$ mit $[Ph_3C]^+$ und 7.4 mit $[Cp_2Fe]^+$ als Oxidationsmittel) belegt, daß das Rutheniumatom nicht beteiligt ist. Die Thiobenzaldehyd-Komplexe addieren bereitwillig Nucleophile wie H⁻, D⁻, PMe₃, OR⁻, SR⁻ und Carbanionen. Mit (R_3P)₂ = dpme werden bei einigen dieser Reaktionen mäßige Diastereoselektivitäten erzielt. [4+2]-Cycloadditionen wurden mit 2,3-Dimethylbutadien und Cyclopentadien durchgeführt. Letztere sind für (R_3P)₂ = dpme

Correspondence to: Prof. Dr. W.A. Schenk.

^{*} IX. Mitteilung siehe Lit. 1.

^{**} Herrn Prof. Dr. H. Werner zum 60. Geburtstag am 19. 4. 1994 gewidmet.

mäßig diastereoselektiv und für $(R_3P)_2$ = dppm hoch exo = selektiv. Eine Röntgenstrukturanalyse von [Cp(dppm)Ru(S-C₆H₇C₆H₄Cl)]PF₆· MeCN (monoklin, Raumgruppe P2 ₁/c, a = 13.463(6) Å, b = 16.071(3) Å, c = 20.813(9) Å, β = 92.30(3)°, Z = 4) zeigt, daß die E-Konfiguration der C=S-Bindung im Diels-Alder-Addukt erhalten bleibt.

Key words: Ruthenium; Thiobenzaldehyde; Structure; Addition

1. Einleitung

Obwohl Alkohole und Thiole formal analoge Verbindungen sind, verhalten sie sich in Oxidationsreaktionen völlig verschieden. Aus Alkoholen entstehen unter Angriff an einer β -ständigen C-H-Funktion Aldehyde bzw. Ketone, während Thiole entweder nach

1-Elektronen-Oxidation zu Disulfiden gekuppelt oder durch Sauerstoff-Übertragung zu Sulfen-, Sulfin- oder Sulfonsäure-Derivaten oxidiert werden [2]. Die β -Hydrideliminierung aus Übergangsmetall-gebundenem Alkoxid ist der Schlüsselschritt der katalytischen Dehydrierung primärer und sekundärer Alkohole [3]. Vergleichbare Reaktionen koordinierter Thiolate wurden

TABELLE 1. Charakteristische Kernresonanzdaten der Thiobenzaldehyd-Komplexe

Verbindung	¹ H-NMR	(CDCl ₃)		¹³ C-NMR	(CDCl ₃)		³¹ P-NMR (CDCl ₃) ^a
	S=CH	Ср	weitere Signale	S=CH	Ср	weitere Signale	
1a	10.75	4.74		214.4 b	87.7		40.5
1b	10.92	4.76		212.6 °	87.9		40.3
1c	10.54	4.68	3.84 (OMe)	213.6 °	87.0	55.8 (OMe)	40.6
1d	11.23	4.85			88.0		40.4
2a	9.10	5.13		197.0 °	85.4	_ d	7.7
2b	8.80	5.09		193.5 °	84.6	_ d	7.7
2c	9.17	5.00	3.69 (OMe)	207.3 e	82.9	54.6 (OMe) ^d	9.4
3a	9.30	4.96		211.6 ^f	85.7	_ g	79.1
3b	9.22	4.98					77.9
3c	9.18	4.91	3.76 (OMc)	212.8 °	84.7	55.7 (OMe) ^g	79.3
4a	9.91	4.97	1.91 (PMe) h	205.8 °	85.5	20.7 (PMe) i	82.2 m
			1.56 (PMe) h			16.4 (PMe) k,l	53.0 ^m
4b	9.19	4.99	2.02 (PMe) n		85.6	20.6 (PMe) i	82.1 ^m
			1.57 (PMe) h			16.2 (PMe) k,l	53.0 m
5	9.83	4.87	1.27 (PMe) °				50.9 P
							0.0 ^p
6	9.75	5.03	3.49 (OMe) q	212.0 f	82.1	52.7 (OMe) h	143.8 ^r
			•				52.0 °
7a ^s	8.64 ^t	4.94	1.58 (PMe) ^u		87.9	21.1 (PMe) v	7.5
7b ^s	8.70 ^t	4.97	1.60 (PMe) u		90.9	20.7 (PMe) w	7.5
7b ×	5.15 ^y	5.27	1.80 (PMe) ^t			• •	13.4 ^z
							8.0 ^z
8a ^s	7.91 ^t	5.20	1.82 (PMe) ^q		89.3	19.5 (PMe) aa	56.2
			1.75 (PMe) h			16.5 (PMe) bb	
8a ×	5.32 [∞]	5.20	. 2.21 (PMe) h				60.7 dd
			2.11 (PMe) q				59.5 ^{dd}
			1.86 (PMe) ^t				
8b ^s	7.04 ^t	5.23	2.00 (PMe) ee		88.5	18.7 (PMe) aa	56.9
			1.89 (PMe) h			15.8 (PMe) bb	
8b ×	5.26 ff	5.26	2.22 (PMe) h				60.8 dd
			2.12 (PMe) q				59.7 ^{dd}
			1.90 (PMe) °				
			1.88 (PMe) h				

^a Zusätzliches Signal: -144.4 (sept., 708 Hz, PF₆⁻). ^b t, 7 Hz. ^c t, nicht aufgelöst. ^d 47.5, t, 26 Hz, PCH₂P. ^e t, 6 Hz. ^f t, 5 Hz. ^g 28.1, vt, N = 46 Hz. ^h d, 10 Hz. ⁱ d, 33 Hz. ^k d, 31 Hz. ¹ 29.7, dd, 33 Hz, 14 Hz, 28.6, dd, 33 Hz, 12 Hz, PC₂H₄P. ^m d, 25 Hz. ⁿ d, 9 Hz. ^o d, 9 Hz. ^o d, 9 Hz. ^o d, 9 Hz. ^o d, 11 Hz. ^r d, 63 Hz. ^s d₆-Aceton, 30°C. ^t breit. ^u vt, N = 9 Hz. ^v vt, N = 35 Hz. ^w vt, N = 37 Hz. ^x d₆-Aceton, -70°C. ^y d, 13 Hz. ^z d, 44 Hz. ^{aa} vt, N = 32 Hz. ^{bb} vt, N = 36 Hz. ^{cc} d, 12 Hz. ^{dd} d, 24 Hz. ^{ce} Teilweise verdeckt von Lösungsmittel-Signal. ^{ff} Teilweise verdeckt von Cp-Signal, ³J(P-H) nicht zu ermitteln.

erst kürzlich gefunden. Buchwald et al. berichteten über eine intramolekulare Deprotonierung, die zu η^2 -Thioaldehyd-Zirconocen-Komplexen führt [4] (Gl. (1)).

$$Cp_2Zr(CH_3)_2 \qquad R = 4-C_6H_4X$$

$$\downarrow_{\substack{HSCH_2R \\ -CH_4}} \qquad X = NMe_2, OMe, H, Cl, CF_3$$

$$Cp_{2}Zr < CH_{3} \xrightarrow{PMe_{3}} Cp_{2}Zr < \begin{cases} S \\ CH_{3} \end{cases} Cp_{2}R$$

$$Me_{3}P \qquad H$$

$$(1)$$

Diese Reaktion ist eng verwandt mit der synthetisch vielseitig nutzbaren α -Metallierung von Thioethern [2a]. Bercaw et al. fanden, daß koordinativ ungesättigte Permethyltantalocen-Thiolat-Komplexe in einem raschen β -Hydrideliminierungsgleichgewicht mit Hydrido- η^2 -Thioaldehyd-Komplexen stehen [5] (Gl. (2)).

$$Cp_2Ta$$

$$R = H, Ph, CH_2Ph, CH_2CMe_3$$

$$| HSCH_2R \\ -C_6H_6$$

$$Cp_{2}Ta - S - CH_{2}R \Longrightarrow Cp_{2}Ta \stackrel{S}{\underset{\mid}{\subset}} C - R$$

$$H \stackrel{C}{\underset{\mid}{\downarrow}} C - R$$

$$(2)$$

Wir konnten vor kurzem zeigen, daß aus elektronenreichen Ruthenium-Benzylthiolat-Komplexen mit Triphenylcarbeniumionen Hydrid abstrahiert werden kann [1]. Im folgenden berichten wir ausführlich über diesen neuartigen Zugang zu Thiobenzaldehyd-Komplexen sowie über einige typische Reaktionen der an das kationische [Cp(R₃P)₂Ru]-Fragment gebundenen C=S-Funktion.

2. Ergebnisse

2.1. Synthese und dynamisches Verhalten

Die Reaktion der aus [CpRu(PPh₃)₂Cl], Phosphan und Natriumbenzylthiolat in einer Eintopfreaktion leicht zugänglichen Benzylthiolat-Komplexe [6] mit Triphenylcarbenium-Hexafluorophosphat bei -70° C ist von einer deutlichen Farbvertiefung der Reaktionslösung begleitet. Das gebildete Triphenylmethan kann anhand seines ¹H-NMR-Signals bei 5.46 ppm nachgewiesen werden. Nach chromatographischer Aufarbeitung isoliert man die Thiobenzaldehyd-Komplexe 1–6 in mäßigen bis guten Ausbeuten als zumeist kräftig rotviolett gefärbte Kristallpulver (Gl. (3)). Die neuen Verbindungen sind im festen Zustand kaum luftempfindlich, in Lösung sind sie bei Raumtemperatur jedoch nur begrenzt haltbar.

Die Konstitution dieser Thiobenzaldehyd-Komplexe kann aus den NMR-spektroskopischen Daten (Tabelle 1) unschwer abgeleitet werden. Im ¹H-NMR findet man im Tieffeld-Bereich ein scharfes Signal, dessen genaue Lage keine systematische Abhängigkeit vom Substituenten X in der vier-Position des Thiobenzaldehydliganden erkennen läßt. Die zusätzliche Tieffeldverschiebung bei den Bis(triphenvlphosphan)-Komplexen 1 deutet auf Anisotropie-Effekte durch die Pgebundenen Phenylgruppen hin. In den ¹³C-NMR-Spektren findet man im Bereich um 210 ppm ein Triplett mit relativ kleiner, zum Teil auch nicht aufgelöster Kopplung ³J(P-C). Beide Signalsätze sind typisch für die $\eta^1(S)$ -Koordination des Thiobenzaldehyd-Liganden [7], die durch eine Röntgenstrukturanalyse von 3c bestätigt wird (s.u.).

Auch aus den besonders elektronenreichen Bis(trimethylphosphan)-bzw. dmpe-Thiolat-Komplexen erhält man durch Hydridabstraktion die entsprechenden Thiobenzaldehyd-Komplexe 7a, 7b, 8a und 8b, die sich rein äußerlich kaum von ihren Analoga 1-6 unter-

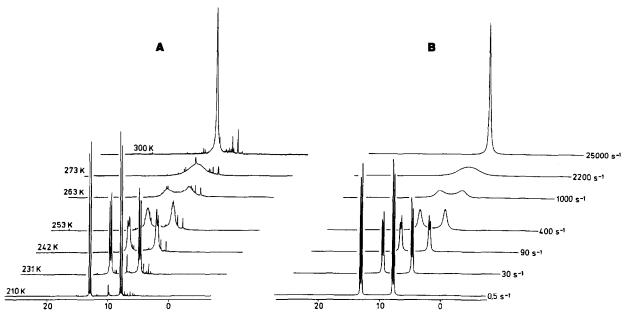


Abb. 1. Gemessene (A) und berechnete (B) 31 P-NMR-Spektren von 7b bei variabler Temperatur.

scheiden (Gl. (3)). Während die 31 P-NMR-Spektren dieser Verbindungen bei Raumtemperatur aus unverdächtigen Singuletts bestehen, fallen in den 1 H-NMR-Spektren die offenbar durch einen Austauschprozeß stark verbreiterten und in ihrer Lage variablen Signale der Thioaldehyd-Protonen auf (Tabelle 1). Diese befinden sich aber nach wie vor im für η^{1} -

Koordination typischen Bereich. Bei $ca. -70^{\circ}\text{C}$ erreicht man die Tieftemperatur-Grenzspektren, in denen sich die Resonanzen der Thioaldehydprotonen nunmehr als Dubletts $(J(P-H) \approx 13 \text{ Hz})$ bei ca. 5 ppm finden, einer für η^2 -gebundene Thioaldehyde typischen Verschiebung [8,9]. Offenbar liegt hier ein temperaturabhängiges Gleichgewicht zwischen den beiden

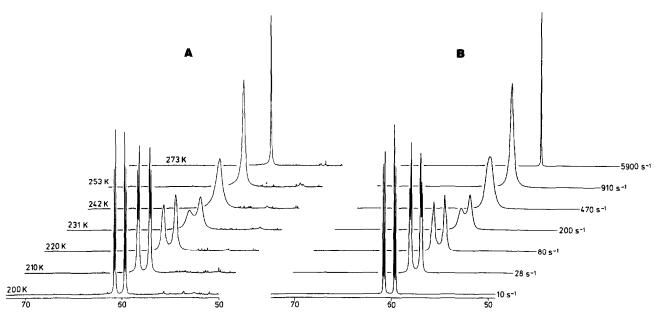


Abb. 2. Gemessene (A) und berechnete (B) ³¹P-NMR-Spektren von 8b bei variabler Temperatur.

möglichen Koordinationsformen vor, wie das auch für Thio- und Selenobenzaldehyd-Komplexe vom Typ $[M(CO)_5(E=CHR)]$ (M=Cr, W; E=S, Se) schon früher gefunden worden war [7b,10] (Gl. (4)). Rein

$$\begin{bmatrix}
R_{3}P & R_{1} \\
R_{3}P & R_{3}P
\end{bmatrix}$$

$$\begin{bmatrix}
R_{3}P & R_{1} \\
R_{3}P & R_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
R_{3}P & R_{1} \\
R_{3}P & R_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
R_{3}P & R_{1} \\
R_{3}P & R_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
R_{3}P & R_{1} \\
R_{3}P & R_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
R_{3}P & R_{1} \\
R_{2}P & R_{2}
\end{bmatrix}$$

qualitativ läßt sich aus den Spektren entnehmen, daß wie erwartet [7,11] bei den in vier-Stellung elektronenziehend substituierten Komplexen 7b und 8b der η^2 -Anteil größer ist als bei 7a und 8a. Bei der η^1 -Form können E/Z-Isomere auftreten, wobei das E-Isomer aus sterischen Gründen thermodynamisch günstiger ist. Zwei diastereomere Formen sind für das n^2 -Isomer möglich, die sich in der Stellung der Substituenten am Ru-C-S-Dreiring unterscheiden. Anti-Anordnung von Cyclopentadienylligand und dem Substituenten am Aldehyd-Kohlenstoff wurde beispielsweise in den Komplexen $[Cp(NO)(Ph_3P)Re-(\eta^2-O=CHR)]^+$ (R =Et, CH₂Ph) gefunden [12], während in der Verbindung $[Cp(i-Pr_3P)Rh(\eta^2-Se=CHCH_3)]$ Methylgruppe und Cp-Ring syn-ständig angeordnet sind [8a]. Legt man als Modellverbindungen die strukturell eng verwandten η^2 -Sulfenkomplexe $[Cp(R_3P)_2Ru(O_2S=CHR')]^+$ (R'=H, Me) zugrunde [13], dann dürfte tatsächlich die syn-Stellung von Arylgruppe und Cyclopentadienylligand bevorzugt sein. Bei dieser Anordnung tritt ein sehr kleiner Diederwinkel zwischen der C-H- und einer Ru-P-Bindung auf, was die mit 13 Hz recht große Kopplung ³J(P-H) erklärt. Zum Cp-Liganden syn-ständige H-Atome zeigen in diesen Komplexen nur kleine P-H-Kopplungen [13].

Zur Ermittlung der Aktivierungsparameter der beobachteten Austauschprozesse eignet sich am besten die ³¹P-NMR-Spektroskopie, die Abbn. 1 und 2 zeigen Gegenüberstellungen von gemessenen und berechneten Spektren der 4-Chlorthiobenzaldehyd-Komplexe 7b bzw. 8b. In beiden Fällen findet man bei tiefer Temperatur nur ein AB-System des η^2 -Isomers. Bei 8b führt Temperaturerhöhung zu einem deutlich unsymmetrischen verbreiterten Signal, das n^1 -Isomer tritt jetzt schon in nennenswerter Menge im Gleichgewicht auf. Eine ähnliche Gleichgewichtseinstellung bei tiefer Temperatur ist für 7b nur ansatzweise zu erkennen. Auch hier muß aber das η^1 -Isomer am Austauschprozeß beteiligt sein, da eine Rotation des Thioaldehydliganden allein ohne Ru-C-Bindungsspaltung und Inversion am Kohlenstoff nicht zu einem vollständigen Austausch der diastereotopen Phosphorkerne führen kann. Die Aktivierungsbarriere für diesen Prozeß ist

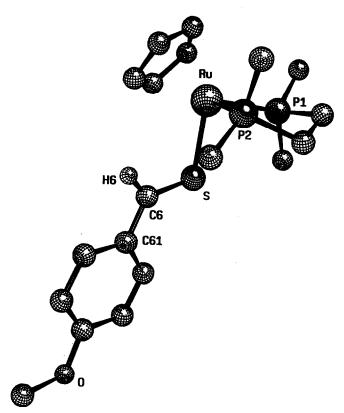


Abb. 3. Struktur des Kations der Verbindung [Cp(dppe)Ru(S = CHC_6H_4OMe)]-PF $_6\cdot 0.5$ Et $_2O$ (3c $\cdot 0.5$ Et $_2O$). Der Übersichtlichkeit halber wurde von den Arylgruppen des dppe-Liganden nur C(ipso) eingezeichnet und bis auf H6 alle Wasserstoffatome weggelassen.

bei beiden Verbindungen etwa gleich groß (7b: $\Delta G^{\ddagger} = 49 \text{ kJ mol}$; 8b: $\Delta G^{\ddagger} = 48 \text{ kJ mol}^{-1}$).

2.2. Kristallstrukturanalyse von $[Cp(dppe)Ru(S=CH-C_6H_4OMe)]-PF_6 \cdot 0.5Et_2O(3c \cdot 0.5Et_2O)$

Die Strukturbestimmung des 4-Methoxythiobenzaldehyd-Komplexes 3c bestätigt zunächst einmal die schon spektroskopisch hergeleitete η^1 -Koordination. Wie erwartet ist die E-Anordnung der sperrigen Arylbzw. Metallgruppe an der C-S-Doppelbindung energieärmer als die Z-Anordnung (Abb. 3). Bindungsabstände und -winkel (Tabelle 2) innerhalb des [Cp-(dppe)Ru]-Fragments weichen nicht signifikant von den Werten anderer Halbsandwichkomplexe dieser Art ab [14]. Der Ru-S-Abstand ist um 5.6 pm kürzer als in Thiolkomplexen [Cp(R₃P)₂Ru(HSR')]⁺ [15], was aber auf den höheren s-Anteil an der σ-Bindung (sp² statt sp³) und nicht auf eine π -Rückbindung zwischen Metallfragment und C=S-Einheit zurückzuführen ist. Die C=S-Bindung ist nur unwesentlich länger als in freiem Thioformaldehyd (161.1 pm) [16] und etwa gleich lang wie in $[W(CO)_s(S=CHPh)]$ [17] oder $[Cr(CO)_s(S=$ CMe₂)] [18]. Etwas kleiner als in diesen Beispielen ist

TABELLE 2. Wichtige Bindungsabstände (Å) und -winkel (grd) innerhalb des Kations von 3c·0.5 Et₂O

		-	
Ru-S	2.314(1)	Ru-C (Ring) a	2.234(6)
Ru-P1	2.296(1)	S6-C6	1.632(5)
Ru-P2	2.301(1)	C6-C61	1.440(7)
P1-Ru-P2	83.78(4)	Ru-S-C6	112.0(2)
P1-Ru-S	89.71(5)	S-C6-C61	126.2(4)
P2-Ru-S	89.30(4)		
Ru-S-C6-C61	- 173.7(4)		
P1-Ru-S-C6	-164.8(2)		
P2-Ru-S-C6	-81.1(2)		

a Mittelwert.

der Winkel M-S-C, was auf - sicherlich schwache sterische Abstoßungen zwischen den Arylgruppen von Thioaldehyd- und dppe-Liganden zurückzuführen sein dürfte. Auch in 3c befindet sich das Metallatom genau in der von S, C6 und C61 definierten Ebene, in Übereinstimmung mit der traditionellen Vorstellung einer sp²-Hybridisierung des Thioaldehyd-Schwefels [18]. Im Acetophenon-Komplex [Cp(NO)(Ph₃P)Re(O= CMePh)]⁺ scheint die Orientierung des Ketonliganden auf eine π -Rückbindung zwischen dem HOMO des Metallfragments und dem π^* -Orbital der Ketongruppe hinzudeuten [19]. Für 3c kann die Existenz einer solchen Wechselwirkung verneint werden: Die C=S-Funktion ist aus der Symmetrieebene des [CpL₂Ru]-Fragments — dies ist die für eine π -Rückbindung optimale Lage [20] — um 57° herausgedreht. Wahrscheinlich ist auch im oben erwähnten Rhenium-Komplex der Diederwinkel C-O-Re-N überwiegend durch sterische Wechselwirkungen bestimmt.

2.3. Überlegungen zum Mechanismus der Hydridabstraktion

Die (formale) Hydridabstraktion aus Übergangsmetall-organischen Komplexverbindungen mit Triarylcarbeniumionen verläuft gewöhnlich über eine Folge von ein-Elektronen-Oxidation (SET) und Übertragung eines H-Radikals [21,22]. Unter günstigen Umständen kann das im ersten Schritt entstandene Radikalkation spektroskopisch nachgewiesen [23] oder sogar isoliert werden [24]. So erhält man aus den elektronenreichen Thiophenolat-Komplexen $[Cp(R_3P)_2M-SPh]$ (M = Fe, Ru) mit NO+ oder Ag+ tiefblaue persistente Radikalkationen [25]. Da bei den Umsetzungen nach Gl. (3) bei -70°C gelegentlich eine vorübergehende blaue Färbung zu beobachten war, vermuteten wir auch hier einen SET-Mechanismus. Wir haben deshalb versucht, zunächst mit [Cp2Fe]PF6, dessen Redoxpotential (0.31 V in MeCN gegen SCE [26]) sich kaum von dem des Triphenvlcarbeniumsalzes (0.26 V [21]) unterscheidet, das Radikalkation A zu erzeugen, das anschließend mit einem H*-Abstraktionsreagenz, z.B. Ph₃C*, zum Thioaldehydkomplex 2a umgesetzt werden sollte (Gl. (5)). Tatsächlich erhält man nach Zu-

$$[Ru] - S - CH_{2}Ph \xrightarrow{[Cp_{2}Fe]PF_{6}}$$

$$\{[Ru] \stackrel{\cdot}{-}S - CH_{2}Ph\}PF_{6} \xrightarrow{-H^{\bullet}}$$

$$A$$

$$\{[Ru] - S = CHPh\}PF_{6} \quad (5)$$

gabe des Ferroceniumsalzes überraschenderweise als einziges isolierbares Produkt (neben Ferrocen) sofort den Thioaldehydkomplex. Auch die anderen Thioaldehydkomplexe lassen sich mit [Cp₂Fe]PF₆ als Oxidationsmittel, wenn auch in geringerer Ausbeute, darstellen. Über den Verbleib des abgespaltenen Wasserstoffs können wir in diesem Fall keine sichere Aussage treffen. Isopropanol, das durch H*-Übertragung auf Aceton entstehen sollte, wurde nicht gefunden. Da die Acidität des Benzylthiolat-Komplexes durch Oxidation sicherlich um Größenordnungen gesteigert wird [27], könnte das Radikalkation A auch durch Ferrocen oder überschüssiges Edukt deprotoniert und anschließend von weiterem Ferroceniumsalz zum Produkt oxidiert werden.

Weitere Informationen zum Reaktionsverlauf erhält man aus einer Bestimmung des kinetischen Isotopeneffekts (KIE) der H-Übertragung. Zu diesem Zweck wurde der monodeuterierte Benzylthiolat-Komplex 9 (s.u.) mit Triphenylcarbenium-bzw. Ferroceniumsalz umgesetzt (Gl. (6)) und der KIE durch Integration des

(6)

$$[Ru] - S - CHDPh \xrightarrow{-e^{-}} \xrightarrow{-H^{\bullet}}$$

$$9$$

$$\{[Ru] - S = CHPh\}^{+} + \{[Ru] - S = CDPh\}^{+}$$

$$2a \qquad 2a - d_{1}$$

Thioaldehyd-Signals im ¹H-NMR-Spektrum bestimmt. In beiden Fällen wurden ähnliche Werte für $k_{\rm H}/k_{\rm D}$ erhalten ($[Ph_3C]^+$ 5.6, $[Cp_2Fe]^+$ 7.4 bei $-70^{\circ}C$; streng genommen sind dies Superpositionen des primären Isotopeneffekts der D-Abstraktion und des sekundären Isotopeneffekts der H-Abstraktion). Aus dem KIE läßt sich naturgemäß nicht ableiten, ob das Wasserstoffatom als H+, H+ oder H- übertragen wird, Werte in dieser Größenordnung belegen aber einen linearen Übergangszustand, der im wesentlichen durch eine Lösung der C-H-Bindung zu beschreiben ist [28]. Eine direkte Beteiligung des Metallatoms an der H-Übertragung kann damit ausgeschlossen werden. Untersuchungen der Reaktionslösungen mit der Deuterium-Kernresonanz ergaben, daß bei der Oxidation mit [Ph₃C]⁺ das abgespaltene Deuterium vor allem als Ph₃CD auftritt; bei der Oxidation mit [Cp₂Fe]⁺ entstehen dagegen mehrere deuterierte Verbindungen, die noch nicht identifiziert werden konnten. Davon abgesehen können wir durch diese Versuche aber belegen, daß der erste Schritt der Hydridabstraktion nach G1. (3) aus einer Ein-Elektronen-Oxidation besteht.

2.4. Nucleophile Addition

Aufgrund der geringen Energie der S-C- π -Bindung addieren koordinierte Thioaldehyde bereitwillig eine Vielzahl von Nucleophilen [17,29-31]. Die positive Ladung der Komplexe 1-8 sollte diesen Reaktionstyp besonders begünstigen.

2.4.1. Addition von Hydrid

Bei der Addition von Hydrid erhält man die Ausgangs-Thiolatkomplexe zurück (Gl. (7)). Die Reaktion

{[Ru]—S=CHR}⁺
$$\xrightarrow{\text{LiAlH}_4}$$
 [Ru]—S—CH₂R (7)
[Ru] = Cp(dppm)Ru, Cp(dppe)Ru,
R = Ph, C₆H₄OMe

selbst verläuft recht glatt, die Abtrennung der Beiprodukte ist jedoch verlustreich, andere Hydridreagenzien (LiHBEt₃, KHB(^sBu)₃) bringen keinen nennenswerten Vorteil. Auf diesem Wege ist auch das monodeuterierte Thiolat 9 zugänglich (Gl. (8)). Die {[Ru]—S=CHPh}⁺ $\xrightarrow{\text{LiAID}_4}$ [Ru]—S—CHDPh (8)

Identität der so erhaltenen Thiolatkomplexe wurde kernresonanzspektroskopisch überprüft, 9 unterscheidet sich von der undeuterierten Verbindung erwartungsgemäß durch die Triplett-Aufspaltung des 13 C-Signals des Benzylkohlenstoffs ($^{1}J(C-D) = 20.5 \text{ Hz}$).

2.4.2. Addition von PMe₃

 η^1 -koordinierte Dithioester [32] und Thioaldehyde [17] sind genügend elektrophil, um basische Phosphane rasch zu addieren. Tatsächlich beobachtet man bei der Umsetzung von 2a, 4a und 6 mit PMe₃ einen raschen Farbumschlag nach gelb, aus dem Reaktionsgemisch kann 10a in Form eines gelben Kristallpulvers isoliert werden. Die Bildung von 10b und 10c haben wir nur NMR-spektroskopisch verfolgt, um Aufschluß über die Diastereoselektivität dieser Additionsreaktion zu erzielen (Gl. (9)).

Im ¹H-NMR-Spektrum von 10a beobachtet man neben dem Dublett der Trimethylphosphonium-Gruppe (Tabelle 3) ein weiteres Dublett mit recht großer Phosphor-Kopplung, das dem ehemaligen Thioaldehyd-Proton zuzuordnen ist. Im ³¹P-NMR-Spektrum geben die nun diastereotopen Phosphoratome des dppm-Liganden Anlaß zu einem AB-System, während der PMe₃-Phosphor in einem für Phosphoniumsalze typischen Verschiebungsbereich absorbiert. Damit ist die Konstitution dieser Phosphoniothiolat-Komplexe eindeutig belegt. Am Auftreten verdoppelter Signalsätze bei der Umsetzung der chiralen Thioaldehyd-Komplexe 4a und 6 mit PMe₃ erkennt man die Bildung diastereomerer Produkte, die Diastereoselektivität der Addition ist jedoch gering (10b/10b': 55:45, 10c/10c': 60:40 (Tabelle 3).

TABELLE 3. Charakteristische Kernresonanzdaten der Adduktkomplexe 10 und 11

Verbindung	¹ H-NMR	****		³¹ P-NMR	а		
	SCH	Ср	weitere Signale	P	P'	J(PP') (Hz)	PMe ₃
10a ^b	2.63 ^d	4.41	1.19 (PMe ₃) e	16.5	15.7	99	26.4(s)
10b ^b	2.15 ^d	4.36	1.55 (PMe ₃) °	85.1	49.2	33	26.6(s)
10b'	3.48 d	4.22	1.36 (PMe ₃) e	85.6	53.5	29	26.5(s)
10c ^c	_ f	4.33	1.82 (PMe ₃) ^g 3.47 (P(OMe) ₃) ^h	150.7	50.7	68	27.0(s)
10c'	4.13 ⁱ	4.49	1.68 (PMe ₃) ^g 3.31 (P(OMe) ₃) ^k	149.7	49.1	74	26.6(br)
11a ¹	5.06	4.93	$2.06 (C_6 H_4 C H_3)$	84.7	81.7	26	
11b ¹	3.53	4.90	1.56 (SCH ₃)	16.4	15.3	97	
11c ¹	3.76	4.97	3.31 (OCH ₃) ^m	16.3	15.2	97	
11d ¹	3.81	4.96	3.28 (OCH ₃) ⁿ	16.5	15.2	97	
11e ¹	3.30	4.50	1.64 (SMe)	85.9	50.7	31	
11e'	3.66	4.90	1.65 (SMe)	86.1	51.3	31	

^a Zusätzliches Signal: -144.4 (sept., 708 Hz, PF₆⁻). ^b CD₂Cl₂. ^c d₆-Aceton. ^d d, 15 Hz. ^e d, 13 Hz. ^f Durch P(OMe)₃-Signal verdeckt. ^g d, 14 Hz. ^h d, 10 Hz. ⁱ d, 17 Hz. ^k d, 11 Hz. ^l d₆-Benzol. ^m 3.26 (d, 13 Hz), 3.11 (d, 13 Hz) (SCH₂). ⁿ 3.31 (d, 13 Hz), 3.23 (d, 13 Hz) (SCH₂).

2.4.3. Addition von O- und S-Nucleophilen

Auch die Reaktion von 3a mit Natrium-para-Kresolat ist von einem raschen Farbwechsel nach gelb begleitet, das Produkt 11a erhält man als gelbes Kristallpulver in zufriedenstellender Ausbeute (Gl. (10)).

$(R_3P)_2$	dppe	dppm	dppm	dppm	dpme
X	Н	Cl	Cl	OMe	Н
ER'	OC ₆ H ₄ CH ₃	SMe	SCH ₂ C ₆ H ₄ OMe	SCH ₂ Ph	SMe
	11a	11b	11c	11d	11e
	·				(10

Auffällig ist die Labilität der neu geknüpften C-O-Bindung: Durch Elektrophile wie [Ph₃C]PF₆ oder CF₃-COOH, ja sogar beim Versuch einer chromatographischen Aufarbeitung an Kieselgel wird der Kresolat-Rest wieder abgespalten.

Deutlich stabiler sind die Produkte der Addition von Methylthiolat (11b), 4-Methoxybenzylthiolat (11c) und Benzylthiolat (11d) (Gl. (10)). An den NMR-Daten dieser Verbindungen fallen wieder die diastereotopen Phosphorkerne auf, das Proton der SCH-Gruppe besitzt seine Resonanz im Bereich von 3 ppm bis 4 ppm, lediglich bei 11a tritt es erwartungsgemäß stärker Tieffeld-verschoben auf (Tabelle 3). Aus dem chiralen Thioaldehyd-Komplex 4a erhält man wieder diastereomere Addukte (11e/11e') im Verhältnis 60:40.

2.4.4. Addition von C-Nucleophilen

Es liegt nahe, die Elektrophilie der kationischen Thioaldehyd-Komplexe für C-C-Verknüpfungsreaktionen zu nutzen. Lediglich Zersetzungsprodukte erhält man bei der Umsetzung mit Methyllithium oder Methylmagnesiumchlorid, wahrscheinlich die Folge unübersichtlicher Redoxreaktionen. Verhältnismäßig glatt verläuft jedoch die Umsetzung mit Butyllithium bzw. Vinylmagnesiumbromid (Gl. (11)). Die so erhaltenen

$$\begin{array}{c|c} & & & & \\ R_3P & RU & \\ R_3P & & \\ R_3P & & \\ \end{array} \\ S = C \\ \begin{array}{c|c} H \\ R_3P & RU \\ R_3P & \\ \end{array} \\ \begin{array}{c|c} H \\ S - C - R \\ Ph \end{array}$$

TABELLE 4. Charakteristische Kernresonanzdaten der Thiolatkomplexe 12 und 13

Verbindung	¹ H-NM	R a			¹³ C-NM	ſR ª			³¹ P-N	MR ^a	
	\overline{SCH}	Ср	weitere Signale	;	SCH	Ср	weitere Signal	e	P	P'	J(PP')
12a	3.30 b	4.61	1.75 (CH ₂) b	1.59 (CH ₂) b	51.4 ^d	79.4 ^e	44.3 (CH ₂)	31.9 (CH ₂)	17.9	13.7	97
12b	3.09 b	4.38	1.04 (CH ₂) ^b 2.02 (CH ₂) ^b 1.08 (CH ₂) ^b	0.74 (CH ₃) ^c 1.53 (CH ₂) ^b 0.67 (CH ₃) ^c	51.6 ^f	81.0 e	23.3 (CH ₂) 45.1 (CH ₂) 23.3 (CH ₂)	14.4 (CH ₃) 31.5 (CH ₂) 14.4 (CH ₃)	84.3	81.8	26
12c	3.13 ^g	4.61	5.93 (CH) h 4.38 (CH ₂) k	4.52 (CH ₂) i	52.3 1	78.1 ^e	145.6 (CH)	108.1 (CH ₂)	16.7	15.2	97
12d	3.01 ^m	4.57	6.01 (CH) ⁿ 4.49 (CH ₂) ^p	4.65 (CH ₂) °	52.6 ^q	79.8 ^r	145.9 (CH)	107.9 (CH ₂)	83.9	82.7	26
13a	3.20 ^s	4.37	1.53 (CH ₃) 4.33 (CH) ^s	1.89 (CH ₃)	45.8 ^u	79.7 ^r	203.2 (CO) 79.2 (CH) 27.9 (Me)	201.5 (CO) 33.8 (Me)	19.2	13.6	96
13b	3.43 ^s	4.40	1.65 (CH ₃) 4.32 (CH) ^s	1.96 (CH ₃)	44.8 ^u	80.1 ^r	201.6 (CO) 78.4 (CH) 26.6 (Me)	199.5 (CO) 32.1 (Me)	83.4	81.0	24
13c	3.41 ^t	4.33	1.57 (CH ₃) 4.37 (CH) ^t	2.17 (CH ₃)	45.4 °	79.1	201.2 (CO) 78.8 (CH) 26.8 (Me)	199.8 (CO) 31.2 (Me)	85.1	50.5	30
13d	3.46 w	4.53	2.92 (CH ₃) 4.15 (CH) ^w	3.20 (CH ₃)	44.4 ×	78.2 ^r	167.6 (CO) 62.0 (CH) 49.6 (Me)	165.7 (CO) 49.7 (Me)	18.9	14.8	96
13e	3.68 w	4.46	3.19 (CH ₃) 4.07 (CH) *	2.90 (CH ₃)	45.0 ×	80.2 ^r	167.8 (CO) 62.4 (CH) 50.4 (Me)	165.7 (CO) 50.5 (Me)	84.1	82.0	23

^a C₆D₆. ^b m, nicht aufgelöst. ^c t, 7.3 Hz. ^d d, nicht aufgelöst. ^e t, 3 Hz. ^f d, 7 Hz. ^g d, 7.7 Hz. ^h ddd, 17.0 Hz, 9.8 Hz, 7.7 Hz. ⁱ d, br, 9.8 Hz, ^k d, br, 17.0 Hz. ¹ dd, 8 Hz, 5 Hz. ^m d, 7.5 Hz. ⁿ ddd, 17.0 Hz, 10.0 Hz, 7.5 Hz. ^o d, br, 10.0 Hz. ^p d, br, 17.0 Hz. ^q d, 7 Hz. ^r t, 2 Hz. ^s d, 11.7 Hz. ¹ d, 12.0 Hz. ^u dd, 6 Hz, 2 Hz. ^v dd, 7 Hz, 3 Hz. ^w d, 11.3 Hz. ^x dd, 7 Hz, 5 Hz.

TABELLE 5. Charakteristische Kernresonanzdaten der Cyclopentadien-Addukte 14

Verhindung	1H-NMR a	fR a							I3C NM	8 C						31p.NMR a	AP a	
0										4						1	1111	
	Н2 Р	H3	H4	H2 p	9Н	Н7	H2′	ප	2	ខ	2	ಬ	93	CJ	ථ	Ы	P'	J(PP')
148	2.87	6.41 °	6.16 °	2.30	3.83	1.58 ^d	1.21 ^d	4.91	57.3 °	137.9	137.1	45.4	69.3 f	55.5	81.0	9.6	9.9	91
14b	2.86	6.44 °	6.17°	2.30	3.85	1.51 ^d	1.22 ^d	4.95	57.5 t	137.8	137.0	45.3	68.1 ^f	55.6	81.1	8.7	8.0	8
14c	2.86	6.40 °	6.13°	2.30	∞ I	1.62 ^d	1.22 d	4.91								9.6	7.1	91
exo-14d	4.05	6.52 °	6.45°	3.09	3.47	2.22 d	1.78 ^d	4.77	9.09	138.2	136.1	47.4	70.5 e	52.9	80.9	51.7		29
endo-14d	3.85	ء	5.80 °	3.41	4.38 i	2.14 k	2.00 k	4.87	67.0 e	136.3	133.0	50.3	1 9.69	53.1	81.4	52.8		29
exo-14e	2.98	6.44 ™	90.9	2.22	3.53	1.39 n	ا ۵	4.84	57.9 t	138.6	136.2	46.3	70.2 °	54.0	81.9	6.62		30
exo-14e'	4.04 4.04	E	€ I	2.85	3.52	٦	١	4.93	60.6°	139.1	136.7	45.9	e7.6°	55.3	81.7	80.7		26
endoi-14e	3.32	E	5.72 °	2.53	4.47 i	٦	٦	4.99				46.4		53.3	82.0	80.5		30
endoi-14e'								4.93							82.2	81.5	50.1	26
exoi-14f	2.93	6.41°	90.9	2.20	3.56	1.79 ^d	1.34 ^d	4.84	58.2 °	138.1	136.3	46.1	69.2 e	54.2	82.0	80.0		30

^a CDCl₃; Numerierung der Ringatome siehe Abb. 4. ^b Signale durch nicht aufgelöste Kopplungen verbreitert. ^c dd, 5 Hz, 3 Hz. ^a d, 11 Hz. ^e d, 6 Hz. ^f d, 5 Hz. ^g Verdeckt vom Signal des exo-Isomers bei 6.52 ppm. ⁱ d, 3.5 Hz. ^k d, 9 Hz. ⁱ d, 7 Hz. ^m Signale überlagert. ^a d, 12 Hz. ^a dd, 6 Hz, 3 Hz. ^p Signale verdeckt durch PMe-Gruppen.

$$\begin{aligned} M &= \text{Li}, \ R' = \text{C}_4 \text{H}_9 \\ M &= \text{MgBr}, \ R' = \text{HC} = \text{CH}_2 \end{aligned} \begin{array}{c|cccc} (R_3 P)_2 & \text{dppm} & \text{dppe} & \text{dppm} & \text{dppe} \\ \hline R' & \text{C}_4 \text{H}_9 & \text{C}_4 \text{H}_9 & \text{HC} = \text{CH}_2 & \text{HC} = \text{CH}_2 \\ \hline & \textbf{12a} & \textbf{12b} & \textbf{12c} & \textbf{12d} \\ \end{array}$$

sekundären Thiolatkomplexe 12 sind wiederum gelbe kristalline Festkörper, die in ihren Eigenschaften weitgehend den primären Thiolatkomplexen [6] entsprechen. Nach dem gleichen Muster lassen sich C-C-Verknüpfungen mit Natriumacetylacetonat bzw. Lithiumdimethylmalonat verwirklichen (Gl. (12)).

Anders als Aldehyde oder Ketone werden Thiocarbonyl-Verbindungen von C-Nucleophilen zumeist am Schwefel angegriffen (Thiophile Addition) [33,34]. Beweiskräftig für die in Gln. 11 und 12 formulierte carbophile Addition ist vor allem die im ¹H-NMR-Spektrum zu beobachtende Kopplung ³J(H-H) des ehemaligen Thioaldehyd-Protons (Tabelle 4). Durch die nucleophile Addition wird am Thiocarbonyl-Kohlenstoff ein Stereozentrum erzeugt, das sich in der Diastereotopie der Phosphoratome am Ruthenium und der Acetyl- und Estergruppen am Thiolatliganden sowie in zwei unterschiedlichen Kopplungen ${}^{3}J(P-C)$ äußert. Durch das unsymmetrische Bisphosphan dome wird am Ruthenium ein Stereozentrum erzeugt, 13c sollte daher als Diastereomerengemisch anfallen. Wegen des Auftretens mehrerer Nebenprodukte erlaubte uns die spektroskopische Analyse des Reaktionsgemisches keine sichere Aussage zur Diastereoselektivität. Nach zweimaligem Umkristallisieren aus Benzol/ Pentan war 13c jedoch diastereomerenrein.

Die hier beschriebenen Versuche zeigen, daß die kationischen Thiobenzaldehyd-Komplexe trotz der vom [Cp(R₃P)₂Ru]-Fragment ausgehenden räumlichen Abschirmung bereitwillig nucleophile Additionsreaktionen eingehen. Mit dem Einsatz chiraler Phosphanliganden sollten sich Möglichkeiten zur enantioselektiven C-C-Verknüpfung eröffnen.

2.5. [4+2]-Cycloaddition

Freie Thioaldehyde sind ausgesprochen reaktive Dienophile [34,35]. H. Fischer *et al.*. konnten in mehreren Untersuchungen zeigen, daß durch $\eta^1(S)$ -

Koordination der Thioaldehyde an ein [M(CO)₅]-Fragment (M = Cr, W) deren Reaktivität gegenüber Dienen zwar gesenkt, aber nicht vollständig unterdrückt wird [36]. Erfolglos blieben Versuche, die dppe-Komplexe 3a-3c mit Cyclopentadien oder 2,3-Dimethylbutadien umzusetzen. Offenbar wird, wie auch die Struktur von 3c zeigt, die C=S-Doppelbindung durch die Arylgruppen des Chelatphosphans so gut abgeschirmt, daß eine Annäherung des Diens unmöglich wird. Diese sterische Abschirmung kann durch zwei Maßnahmen abgebaut werden, erstens durch Verringerung des P-Ru-P-Winkels, und zweitens durch Austausch der P-gebundenen Phenylgruppen gegen CH₃-Reste. Tatsächlich erhält man schon aus den dppm-Komplexen 2a-2c mit Cyclopentadien unter milden Bedingungen die erwarteten Cycloadditionsprodukte 14a-14c in guten Ausbeuten (Gl. (13)).

$(R_3P)_2$	dppm	dppm	dppm	dmpe	dpme	dpme	
X	Н	Cl	OMe	Н	Н	Cl	(13)
	149	14h	14c	144	140	145	

NMR-spektroskopische Kontrolle zeigt, daß die Geschwindigkeit der Reaktion in der Reihenfolge X = OMe < H < Cl zunimmt. Die gleiche Abstufung, die man für eine Diels-Alder-Addition mit "normalem Elektronenbedarf" zu erwarten hat, wurde auch bei den analogen $[M(CO)_5]$ -Komplexen gefunden [37]. Die Bildung der Cycloaddukte ist reversibel: Erhitzt man 14a in Ethanol 1 h auf 70°C, so erhält man den Thioaldehyd-Komplex 2a zurück. Eine analoge Cycloreversion der unkomplexierten Bicyclen erfordert wesentlich drastischere Bedingungen [38].

Die Cycloaddukte 14a-14c sind gelbe kristalline Verbindungen, die sich in Lösung bei Raumtemperatur binnen weniger Stunden zersetzen. In den ³¹P-NMR-Spektren erweisen sich die beiden Phosphorkerne als diastereotop, da bei der Cycloaddition an C6 ein Stereozentrum erzeugt wird (Tabelle 5). Die in Gl. (13) gezeigte exo-Stellung der Arylgruppe am Thiabicyclonorbornengerüst ergibt sich aus der Hochfeldverschobenen Resonanz von H6 und vor allem aus dem Fehlen einer Kopplung ³J(H6-H5) [36,38]. Zwei der ¹³C-Signale des Bicyclus sind durch Kopplungen mit jeweils einem der beiden Phosphoratome zu Dubletts aufgespalten und damit unschwer C2 und C6 zuzuordnen. Dieses Aufspaltungsmuster entsteht durch die sehr unterschiedlichen Diederwinkel (s.u.), die jeweils eine der möglichen Kopplungen ³J(³¹P-¹³C) sehr klein werden läßt.

Deutlich bereitwilliger reagieren die sterisch weniger abgeschirmten Thioaldehyd-Komplexe 4a, 4b und 8a mit Cyclopentadien. Die Abnahme der sterischen Hinderung hat jedoch zur Folge, daß die exo-Selektivität der Cycloaddition deutlich geringer wird. So fällt 14d als Gemisch von exo- und endo-Isomer im Verhältnis 82:18 an. Die Stereochemie von endo-14d gibt sich durch das Tieffeld-verschobene Signal von H6 sowie vor allem durch dessen Kopplung mit H5 (3.5 Hz) zu erkennen (Tabelle 5). Jeweils vier Produkte können bei der Addition von Cyclopentadien an die chiralen Thioaldehyd-Komplexe 4a, 4b entstehen. Tatsächlich findet man im ¹H-NMR-Spektrum des 14e-Isomerengemisches vier Cp-Signale im Intensitätsverhältnis 55:30:10:5, denen im ³¹P-NMR-Spektrum vier AX-Systeme entsprechen. Die beiden Hauptprodukte sind wieder die exo-Isomeren, so daß sich auch hier wieder eine exo /endo-Selektivität von 85:15 sowie eine Diastereoselektivität von jeweils etwa 2:1 ergibt. Auffällig sind die bei den beiden exo-Diastereomeren sehr unterschiedlichen Verschiebungen der Brückenkopf-H-Atome H2 bzw. H5. Auch vom häufigeren der beiden endo-Diastereomere sind noch einige Signale mit Sicherheit zuzuordnen, darunter die für die endo-Geometrie beweiskräftige Resonanz von H6. Ein ähnliches Isomerengemisch (60:20:10:10) liefert schließlich die Reaktion von 4b mit Cyclopentadien. Aus dem verunreinigten Rohprodukt kann die Hauptkomponente exo-14f leicht diastereomerenrein abgetrennt werden. Deren spektroskopische Daten reihen sich zwanglos in die der übrigen bicyclischen Addukte ein (Tabelle 5).

Offenkettige Diene reagieren in der Diels-Alder-Addition wesentlich langsamer als die in der s-cis-Konformation fixierten cyclischen Diene. Dennoch war die Umsetzung von 2,3-Dimethylbutadien zumindest mit den sterisch anspruchsloseren Thioaldehydkomplexen 4a, 4b und 8a noch erfolgreich (Gl. (14)). Mit

$$R_3P$$
 R_3P R_3P

$$\frac{\text{dpme} = \text{Ph}_2 \text{PC}_2 \text{H}_4 \text{PMe}_2}{\text{X} \quad \text{H} \quad \text{H} \quad \text{Cl}}$$

$$\frac{\text{(R}_3 \text{P)}_2 \quad \text{dmpe} \quad \text{dpme}}{\text{X} \quad \text{H} \quad \text{H} \quad \text{Cl}}$$

$$\frac{\text{15a} \quad \text{15b} \quad \text{15c}}{\text{15c}}$$

8a erhält man in guter Ausbeute das thermisch erstaunlich stabile 15a in Form eines ockerfarbenen Kristallpulvers. Verbreiterte Signale in den ¹H- und ³¹P-NMR-Spektren dieser Verbindung weisen auf eine behinderte Inversion des pyramidalen Schwefels hin [36b,39], die bei -50°C vollständig eingefroren werden

TABELLE 6. Charakteristische Kernresonanzdaten der 2,3-Dimethylbutadien-Addukte 15

Verbin-	¹ H-NN	AR a				³¹ P-1	IMR a	
dung	H ₂	Н3	Н6	CH ₃	Ср	P	P'	J(P-P')
15a ^b	3.74 °	2.71 ^d	3.21 e	1.80	4.59	51.6	48.7	30 f
		2.53 ^d	2.98 e	1.68		51.3	50.8	30 f
15b	3.71 ^c	2.57 i	2.45 g	1.46	4.86	78.8	46.8	31
		2.32 i	2.24	1.40				
15b'	3.11 ^c	2.69 d	2.79 h	1.53	4.48	79.6	45.5	29
		_ i	_ i	1.49				
15c	3.91 °	2.82 d	2.40 k	1.41	4.93	79.3	46.1	31
		2.56 d	1.80 k	1.32				
15c'	2.94 °			1.66	4.59	79.1	45.8	29
				1.51				

^a CDCl₃. ^b ¹H-Signale bei Raumtemperatur etwas verbreitert; ¹³C-NMR: 53.8 (br, C2), 38.0 (C3), 125.0 (C4), 128.3 (C5), 46.8 (br, C6), 19.8 (CH₃), 19.3 (CH₃), 80.9 (Cp). ^c m, nicht aufgelöst. ^d d, 17 Hz, Kopplungen zu H2 nicht aufgelöst. ^e d, 16 Hz. ^f bei -50°C. ^g d, br, 15 Hz. ^h d, br, 18 Hz. ⁱ Restliche Signale verdeckt. ^k d, 14 Hz.

kann. Bei dieser Temperatur besteht das ³¹P-NMR-Spektrum aus zwei AB-Systemen im Intensitätsverhältnis 60:40, dem im ¹H-NMR-Spektrum zwei weit separierte Cp-Signale bei 4.09 ppm bzw. 4.82 ppm entsprechen. Die anderen ¹H- und ¹³C-Signale lassen sich in Anlehnung an die Daten des analogen W(CO)₅-Komplexes [36b] unschwer zuordnen (Tabelle 6).

Wie erwartet entstehen bei der Addition von 2,3-Dimethylbutadien an die chiralen Komplexe 4a und 4b wieder Diastereomerengemische, die Selektivitäten sind mit 70:30 (15b) bzw. 55:45 (15c) aber gering. Infolge extensiver Signalüberlagerungen konnte bei diesen Verbindungen nur noch ein Teil der ¹H-Resonanzen sicher zugeordnet werden.

Insgesamt zeigen diese Ergebnisse, daß die Reaktivität der C=S-Einheit in Cycloadditionen durch Variation der Liganden am [Cp(R₃P)₂Ru]-Fragment gut gesteuert werden kann. Künftige Untersuchungen werden vor allem eine Steigerung der Diastereoselektivität zum Ziel haben.

2.6. Kristallstrukturanalyse von $[Cp(dppm)Ru(SC_6H_{\tau}C_6H_4Cl)]PF_6 \cdot MeCN$ (14b · MeCN)

Die Strukturbestimmung des Cycloaddukts 14b bestätigt die NMR-spektroskopisch hergeleitete exo-Stellung der Arylgruppe am Thiabicyclohepten-Gerüst. Das räumlich noch anspruchsvollere [Cp(dppm)Ru]-Fragment nimmt wie erwartet die endo-Position ein (Abb. 4). Ein signifikanter Unterschied zum dppe-Komplex 3c ist der mit 71° sehr enge Bindungswinkel P1-Ru-P2, der durch den viergliedrigen Chelatring erzwungen wird (Tabelle 7). Ru-S-Abstand und Ru-S-C-Bindungswinkel entsprechen den Erwartungen, wenn man als Vergleich den Thiiran-Komplex

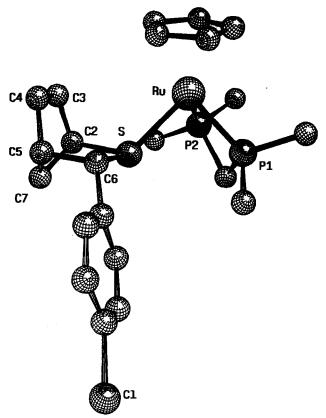


Abb. 4. Struktur des Kations der Verbindung [Cp(dppm)Ru(SC_6H_7 - C_6H_4 Cl)]-PF $_6$ ·MeCN (14b·MeCN). Der Übersichtlichkeit halber wurde von den Arylgruppen des dppm-Liganden nur C(*ipso*) eingezeichnet und alle Wasserstoffatome weggelassen.

TABELLE 7. Wichtige Bindungsabstände (Å) und -winkel (grd) innerhalb des Kations von 14b · MeCN

Ru-S	2.363(3)	Ru-C(Ring) a	2.21(2)
Ru-P1	2.284(3)	S-C2	1.89(1)
Ru-P2	2.276(3)	S-C6	1.85(1)
P1-Ru-P2	71.0(1)	C2-S-C6	90.2(5)
P1-Ru-S	87.4(1)	S-C2-C3	107.0(9)
P2-Ru-S	85.1(1)	S-C2-C7	98.8(8)
Ru-S-C2	117.5(4)	S-C6-C5	103.2(7)
Ru-S-C6	115.2(4)		
P1-Ru-S-C2	- 154.1(4)		
P1-Ru-S-C6	101.5(4)		
P2-Ru-S-C2	-82.9(4)		
P2-Ru-S-C6	172.6(4)		

a Mittelwert.

[Cp(PPh₃)₂Ru(SC₂H₄)]⁺ heranzieht [40]. Die S-C6-Bindung wurde durch die Cycloaddition wie erwartet auf den Wert einer Einfachbindung aufgeweitet, die übrigen Bindungsabstände und -winkel innerhalb des Bicyclus weisen ebenfalls keine Besonderheiten auf. Von den vier Diederwinkeln P-Ru-S-C liegen jeweils zwei nahe bei 90°, was die im ¹³C-NMR-Spektrum beobachteten Kopplungen erklärt (s.o.) und im übrigen nahelegt, daß die Geometrie des Kations von 14b im Kristall der in Lösung eingenommenen Konformation entspricht. Strukturbestimmungen an solchen Cycloaddukten können daher helfen, die durch die räumlichen Verhältnisse in Edukt und Produkt bewirkten Selektivitäten zu beurteilen.

TABELLE 8. Ausbeuten und analytische Daten der Thiobenzaldehyd-Komplexe 1-8

Verbindung	Summenformel	Ausb.	Schmp. a	%C gef.	(ber.)	% H gef.	(ber.)
1a	C ₄₈ H ₄₁ F ₆ P ₃ RuS	46	104	59.94	(60.19)	4.27	(4.31)
1b	C ₄₈ H ₄₀ ClF ₆ P ₃ RuS	49	116	58.37	(58.10)	4.10	(4.06)
1c	C ₄₉ H ₄₃ F ₆ OP ₃ RuS	46	114	58.99	(59.57)	4.23	(4.39)
1 d	$C_{48}H_{40}F_6NO_2P_3RuS$	10	118	57.81	(57.49)	4.18	(4.02) b
2a	C ₃₇ H ₃₃ F ₆ P ₃ RuS	88	96	54.41	(54.35)	4.28	(4.07)
2b	C ₃₇ H ₃₂ ClF ₆ P ₃ RuS	58	86	52.77	(52.15)	4.05	(3.79)
2c	C ₃₈ H ₃₅ F ₆ OP ₃ RuS	84	95	53.97	(53.84)	4.24	(4.16)
3a	C ₃₈ H ₃₅ F ₆ P ₃ RuS	67	97	54.31	(54.87)	4.27	(4.24)
3b	C ₃₈ H ₃₄ ClF ₆ P ₃ RuS	38	120	52.89	(52.69)	3.86	(3.96)
3c	C ₃₉ H ₃₇ F ₆ OP ₃ RuS	69	107	54.72	(54.36)	4.58	(4.33)
4a	$C_{28}H_{31}F_6P_3RuS^c$	57	172	48.46	(48.39)	4.93	(4.87)
4b	C ₂₈ H ₃₀ ClF ₆ P ₃ RuS ^c	50	106	46.51	(46.25)	4.21	(4.53)
5	C ₃₃ H ₃₅ F ₆ P ₃ RuS	39	98	51.10	(51.36)	4.54	(4.57)
6	C ₃₃ H ₃₅ F ₆ O ₃ P ₃ RuS	72	170	48.34	(48.36)	4.34	(4.30)
7a	C ₁₈ H ₂₉ F ₆ P ₃ RuS	63	186	37.14	(36.93)	5.07	(4.99)
7b	C ₁₈ H ₂₈ ClF ₆ P ₃ RuS	53	106	34.92	(34.88)	4.69	(4.55)
8a -	C ₁₈ H ₂₇ F ₆ P ₃ RuS ^c	44	113	38.69	(38.71)	5.01	(5.20)
8b	C ₁₈ H ₂₆ ClF ₆ P ₃ RuS ^c	67	136	36.44	(36.68)	4.67	(4.77)

^a Unter Zersetzung. ^b %N: 1.53 (1.40). ^c \cdot 0.5 Et₂O pro Formeleinheit.

3. Experimenteller Teil

Alle Reaktionen wurden in gereinigten Lösungsmitteln unter Inertgas durchgeführt. Kieselgel (0.06–0.20 mm) wurde im Vakuum ausgeheizt und unter Stickstoff aufbewahrt. NMR-Spektren: Bruker AMX 400 (¹H, ²H, ¹³C, ³¹P), chemische Verschiebungen in ppm gegen TMS (¹H, ²H, ¹³C) bzw. 85% H₃PO₄. Die Benzylthiolat-Komplexe wurden nach dem früher publizierten Verfahren aus [CpRu(PPh₃)₂Cl], Natriumthiolat und dem jeweiligen Phosphan erhalten [6], alle übrigen Substanzen waren handelsübliche Produkte, die ohne weitere Reinigung eingesetzt wurden.

3.1. Thiobenzaldehyd-Komplexe, allgemeine Arbeits-vorschrift

Eine Lösung von 1.00 mmol Benzylthiolat-Komplex in 20 ml Dichlormethan wird bei -70° C tropfenweise mit einer Lösung von 0.40 g Triphenylcarbenium-Hexafluorophosphat in 10 ml Dichlormethan versetzt. Man läßt langsam auf Raumtemperatur erwärmen, engt auf ca. 5 ml ein und fällt mit Diethylether. Das Rohprodukt wird mit Dichlormethan/Aceton (20:1) über eine 30 cm lange Kieselgelsäule chromatographiert. Aus der roten Zone erhält man das dunkelrote Produkt, das nochmals aus Dichlormethan/Diethylether umkristallisiert wird. 4a, 4b, 8a und 8b fallen dabei als Solvate mit 0.5 mol Et₂O pro Formeleinheit an. Ausbeuten, Schmelzpunkte und Analysendaten sind in Tabelle 8 zusammengestellt.

3.2. [Cp(dppm)Ru(SCHDPh)] (9)

Zu einer Lösung von 0.18 g 2a (0.22 mmol) in 10 ml THF gibt man bei 20°C 11 mg LiAlD₄ (0.25 mmol), dabei schlägt die Farbe der Lösung von rot nach gelb um. Überschüssiges Deuterid wird mit zwei Tropfen Wasser hydrolysiert, anschließend wird im Vakuum zur Trockne gebracht. Der Rückstand wird in 5 ml THF/Et₂O aufgenommen und rasch über Kieselgel (15 cm) mit THF/Et₂O 1:2 chromatographiert. Die gelbe

Zone wird eingeengt und das Produkt mit Pentan gefällt. Ausbeute 70 mg (47%), gelbes Kristallpulver, durch Spektrenvergleich (¹H, ¹³C, ³¹P) mit der undeuterierten Verbindung [6] identifiziert.

3.3. $[Cp(dppm)Ru\{SCH(Ph)\ (PMe_3)\}]PF_6\ (10a)$

Zu einer Lösung von 82 mg **2a** (0.10 mmol) in 4 ml Dichlormethan gibt man bei 0°C 8 mg Trimethylphosphan (0.11 mmol). Anschließend wird rasch auf 1 ml eingeengt, das Produkt mit Ether gefällt und aus Dichlormethan/Ether umkristallisiert. Ausbeute 80 mg (90%), orangefarbenes Kristallpulver, Zers.-P. 121–123°C. (Gef.: C, 54.07; H, 4.68. $C_{40}H_{42}F_6P_4RuS$ ber.: C, 53.75; H, 4.74%).

3.4. Addition von O- und S-Nucleophilen, allgemeine Arbeitsvorschrift

Zu einer Lösung von 0.25 mmol Thiobenzaldehyd-Komplex in 10 ml Aceton gibt man bei 20°C 0.40 mmol des jeweiligen Na-Salzes. Nach 15 min wird das Lösungsmittel im Vakuum entfernt und der Rückstand mit 10 ml Benzol extrahiert. Man filtriert ab, engt ein, fällt mit Pentan aus und kristallisiert aus Benzol/Pentan um.

11a: Ausbeute 97 mg (49%), gelbes Kristallpulver, Zers.-P. 68-71°C. (Gef.: C, 68.44; H, 5.38. $C_{45}H_{42}OP_2$ RuS ber.: C, 68.08; H, 5.33%).

11b: Ausbeute 62 mg (33%), gelbes Kristallpulver, Schmp. 94–96°C (Zers.). (Gef.: C, 62.28; H, 4.90. C₃₈H₃₅ClP₂RuS₂ ber.: C, 60.51; H, 4.68%).

11c: Ausbeute 73 mg (34%), gelbes Kristallpulver, Schmp. 90-92°C (Zers.). (Gef.: C, 62.80; H, 4.84. C₄₅H₄₁ClOP₂RuS₂ ber.: C, 62.82; H, 4.80%).

11d: Ausbeute 103 mg (50%), gelbes Kristallpulver, Schmp. 88–90°C (Zers.). (Gef.: C, 64.18; H, 5.15. C₄₅H₄₂OP₂RuS₂ ber.: C, 65.44; H, 5.13%).

11e: Ausbeute 25 mg (16%), gelbes Kristallpulver, Schmp. 83–86°C (Zers.). (Gef. C, 56.87; H, 5.48. $C_{29}H_{34}P_2RuS_2$ ber.: C, 57.13; H, 5.62%).

TABELLE 9. Ausbeuten und analytische Daten der Diels-Alder-Addukte 14 und 15

Verbindung	Summenformel	Ausb.	Schmp. a	%C	(ber.)	% H	(ber.)
		%	$^{\circ}\mathrm{C}$	gef.		gef.	
14a	C ₄₂ H ₃₉ F ₆ P ₃ RuS	71	105	57.30	(57.08)	4.63	(4.45)
14b	C ₄₂ H ₃₈ ClF ₆ P ₃ RuS	73	123	55.30	(54.94)	4.43	(4.17)
14c	C ₄₃ H ₄₁ F ₆ OP ₃ RuS	58	89	56.64	(56.52)	4.46	(4.52) b
14d	$C_{23}H_{33}F_6P_3RuS$	68	100	42.53	(42.53)	5.08	(5.12)
14e	$C_{33}H_{37}F_6P_3RuS^c$	84	104	52.10	(51.85)	5.08	(5.22)
14f	$C_{33}H_{36}ClF_6P_3RuS$	72	110	49.38	(49.05)	4.18	(4.49)
15a	$C_{24}H_{37}F_6P_3RuS$	79	200	43.14	(43.31)	5.64	(5.60)
15b	$C_{34}H_{41}F_6P_3RuS$	71	139	52.03	(51.71)	4.89	(5.23)
15c	C ₃₄ H ₄₀ ClF ₆ P ₃ RuS	- 51	135	50.29	(49.55)	4.73	(4.89)

^a Unter Zersetzung. ^b %S: 3.78 (3.51). ^c · 0.5 Et₂O pro Formeleinheit.

3.5. Addition von Butyllithium und Vinylmagnesiumbromid, allgemeine Arbeitsvorschrift

Eine Lösung von 0.20 mmol Thioaldehyd-Komplex in 5 ml THF wird bei -70° C tropfenweise mit einer äquivalenten Menge Butyllithium in Hexan bzw. Vinylmagnesiumbromid in Ether versetzt, dabei schlägt die Farbe der Lösung von rot nach gelb um. Anschließend läßt man auf Raumtemperatur erwärmen und entfernt die Lösungsmittel im Vakuum. Der Rückstand wird mit wenig Toluol extrahiert, die Lösung abfiltriert und eingeengt und das Produkt bei -70° C mit Pentan gefällt.

12a: Ausbeute 80 mg (55%), gelbes Kristallpulver, Zers.-P. 132–134°C. (Gef.: C, 66.94; H, 5.73. $C_{41}H_{42}$ P_2 RuS ber.: C, 67.47; H, 5.80%).

12b: Ausbeute 70 mg (47%), gelbes Kristallpulver, Zers.-P. 157-159°C. (Gef.: C, 66.61; H, 5.82. C₄₂H₄₄ P₂RuS ber.: C, 67.81; H, 5.96%).

12c: Ausbeute 90 mg (64%), gelbes Kristallpulver, Schmp. 83-86°C (Zers.). (Gef.: C, 68.37; H, 5.52. C₃₉H₃₆P₂RuS ber.: C, 66.94; H, 5.19%).

12d: Ausbeute 85 mg (59%), gelbes Kristallpulver, Schmp. 78–81°C (Zers.). (Gef.: C, 68.25; H, 5.70. $C_{40}H_{38}P_2RuS$ ber.: C, 67.30; H, 5.37%).

TABELLE 10. Details der Strukturbestimmung von 3c·0.5 Et₂O und 14b·MeCN

	3 c ⋅0.5 Et ₂ O	14b·MeCN
Summenformel	C ₃₉ H ₃₇ F ₆ OP ₃ RuS ·0.5 C ₄ H ₁₀ O	C ₄₂ H ₃₈ ClF ₆ P ₃ RuS ·C ₂ H ₃ N
Formelgewicht	898.82	959.31
Kristallfarbe	tiefrot	gelb
Kristallgröße (mm)	$0.4 \times 0.2 \times 0.2$	$0.25\times0.3\times0.2$
Temperatur (K)	293	200
Wellenlange (Å)	0.7093	0.7093
Raumgruppe	P1 (Nr. 2)	$P2_{1}/C$ (Nr. 14)
Zellparameter		-
a (Å)	11.372(4)	13.463(6)
b (Å)	12.782(5)	16.071(3)
c (Å)	14.548(4)	20.813(10)
α (grd)	70.33(1)	
β (grd)	80.61(2)	92.30(2)
γ (grd)	81.91(2)	
$V(\mathring{A}^3)$	1956.2	4499.6
Z	2	4
$D_{\rm ber}$ (mg mm ⁻³)	1.526	1.416
$\mu(\text{Mo-K}\alpha) (\text{cm}^{-1})$	6.3	6.0
Ausgew. Reflexe	6033	5817
Unabhäng. Reflexe	5503	5455
Beobacht. Reflexe a	5126	3713
Parameter	507	514
R	0.042	0.054
$R_{\mathbf{w}}$	0.044	0.073

 $I_0 > 3\sigma(I_0)$.

TABELLE 11. Lageparameter der Atome der Verbindung 3c·0.5 Et₂O, Standardabweichungen in Klammern

Et ₂ O, Standardabweichungen in Klammern							
Atom	x	у	z	B (Å ²)			
Ru	0.03885(3)	0.12324(3)	0.20183(3)	2.891(7)			
S	0.1479(1)	0.0928(1)	0.33099(9)	3.76(3)			
Pi	-0.0258(1)	0.29937(9)	0.20829(8)	3.15(2)			
P2	0.1946(1)	0.21042(9)	0.09458(8)	3.19(3)			
P3	0.2878(1)	0.6706(1)	0.1995(1)	4.77(3)			
F1	0.1739(4)	0.6585(4)	0.2782(3)	8.8(1)			
F2	-0.3487(5)	0.4256(6)	-0.2701(5)	18.5(2)			
F3	0.3996(3)	0.6838(4)	0.1184(3)	9.3(1)			
F4	0.2233(5)	0.7651(6)	0.1261(4)	16.4(2)			
F5	-0.2443(6)	0.4096(4)	-0.1599(4)	19.2(2)			
F6	-0.3279(6)	0.2484(4)	-0.2388(4)	17.6(2)			
0	0.5450(4)	-0.2029(4)	0.6361(3)	7.7(1)			
O2	0,3073(9)	0.4661(6)	0.5419(6)	6.8(2)			
C1	0.0677(4)	0.3998(4)	0.1151(3)	3.7(1)			
C2	0.1972(4)	0.3477(4)	0.1086(3)	3.7(1)			
C6	0.2461(4)	-0.0155(4)	0.3424(3)	4.1(1)			
C7	0.6362(6)	-0.0155(4) -0.2857(6)	0.6303(5)	9.5(2)			
C8	0.0302(0)	0.5188(8)	0.5146(8)	9.3(2) 17.2(4)			
C9	0.377(1)	0.4835(6)	0.5364(5)	23.2(6)			
C11	-0.0171(4)	0.3202(4)	0.3248(3) 0.3337(4)	3.4(1)			
C12	0.0513(5)	0.3965(4)		4.5(1)			
C13	0.0589(5)	0.4028(5)	0.4257(4)	5.9(1)			
C14	-0.0032(6)	0.3362(5)	0.5083(4)	6.1(2)			
C15	-0.0712(6)	0.2606(5)	0.5010(4)	5.7(2)			
C16	-0.0778(5)	0.2516(4)	0.4096(4)	4.6(1)			
C21	-0.1777(4)	0.3571(4)	0.1810(3)	3.7(1)			
C22	-0.2139(4)	0.3570(4)	0.0945(4)	4.2(1)			
C23	-0.3282(5)	0.3996(4)	0.0719(4)	4.9(1)			
C24	-0.4067(5)	0.4432(5)	0.1335(5)	5.7(2)			
C25	-0.3721(5)	0.4452(6)	0.2194(5)	7.3(2)			
C26	-0.2577(5)	0.4019(5)	0.2435(4)	5.9(1)			
C31	0.1950(4)	0.2443(4)	-0.0380(3)	3.6(1)			
C32	0.3016(5)	0.2609(5)	-0.1004(4)	5.0(1)			
C33	0.3024(6)	0.2879(6)	-0.2005(4)	6.7(2)			
C34	0.1969(6)	0.3001(6)	-0.2395(4)	6.7(2)			
C35	0.0901(5)	0.2870(6)	-0.1789(4)	6.0(2)			
C36	0.0894(4)	0.2578(5)	-0.0788(4)	4.9(1)			
C41	0.3436(4)	0.1402(4)	0.1122(3)	3.6(1)			
C42	0.4355(5)	0.1889(5)	0.1292(5)	5.5(1)			
C43	0.5467(5)	0.1292(5)	0.1437(5)	6.6(2)			
C44	0.5666(5)	0.0227(5)	0.1421(5)	5.9(2)			
C45	0.4760(5)	-0.0264(5)	0.1250(5)	5.5(2)			
C46	0.3647(4)	0.0327(4)	0.1098(4)	4.4(1)			
C51	0.0268(4)	-0.0566(4)	0.2210(4)	4.5(1)			
C52	-0.0681(5)	-0.0221(4)	0.2829(4)	4.8(1)			
C53	-0.0928(4)	0.0828(4)	0.1237(4)	4.9(1)			
C54	-0.1420(4)	0.0647(4)	0.2212(4)	4.9(1)			
C55	0.0142(5)	0.0047(4)	0.1240(4)	4.8(1)			
C61	0.3203(4)	- 0.0637(4)	0.4205(4)	4.6(1)			
C62	0.3203(4)	-0.0037(4) -0.0276(4)	0.5019(4)	4.1(1) 4.5(1)			
			0.5019(4)				
C63	0.3881(5)	-0.0765(5)		5.3(1) 5.5(1)			
C64	0.4725(5)	-0.1615(5)	0.5630(4)	5.5(1)			
C65	0.4822(6)	-0.2000(5)	0.4846(5)	6.8(2)			
C66	0.4052(6)	-0.1505(5)	0.4135(4)	6.2(1)			

3.6. Addition von Acetylacetonat

Zu einer Lösung von 0.25 mmol Thiobenzaldehyd-Komplex in 10 ml Aceton gibt man bei 20°C 50 mg Na-Acetylacetonat (0.40 mmol), dabei schlägt die Farbe der Lösung rasch von rot nach gelb um. Aufarbeitung wie für 11a-11e beschrieben.

13a: Ausbeute 125 mg (65%), gelbes Kristallpulver, Zers.-P. 142–144°C. (Gef.: C, 64.99; H, 5.23. $C_{42}H_{40}$ O_2P_2 RuS ber.: C, 65.36; H, 5.22%).

13b: Ausbeute 115 mg (59%), gelbes Kristallpulver, Zers.-P. 68-70°C. (Gef.: C, 65.96; H, 5.51. $C_{43}H_{42}$ O_2P_2 RuS ber.: C, 65.72; H, 5.39%).

13c: Ausbeute 40 mg (24%), gelbes Kristallpulver, Zers.-P. 144°C. (Gef.: C, 59.64; H, 6.06. C₃₃H₃₈ O₂P₂RuS ber.: C, 59.90; H, 5.79%).

3.7. Addition von Dimethylmalonat

Zu einer Lösung von 0.20 mmol Thiobenzaldehyd-Komplex in 5 ml Dichlormethan gibt man bei 20°C tropfenweise eine Lösung von Lithiumdimethylmalonat—frisch hergestellt aus Malonsäuredimethylester und Lithiumbis (trimethylsilyl) amid—im gleichen Solvens, bis die ursprünglich dunkelrote Farbe der Lösung nach orangefarben umschlägt. Nach 30 min Rühren bei Raumtemperatur entfernt man das Lösungsmittel im Vakuum, extrahiert den Rückstand mit Benzol, filtriert, engt erneut zur Trockne ein und kristallisiert den Rückstand bei -70°C aus Ether/Pentan um.

13d: Ausbeute 70 mg (44%), gelbes Kristallpulver, Zers.-P. 141–143°C. (Gef.: C, 62.47; H, 5.03. $C_{42}H_{40}$ O_4P_2 RuS ber.: C, 62.76; H, 5.02%).

13e: Ausbeute 65 mg (40%), gelbes Kristallpulver, Zers.-P. 65-68°C. (Gef.: C, 62.73; H, 5.41. $C_{43}H_{42}O_4$ P_2 RuS ber.: C, 63.15; H, 5.18%).

3.8. Diels-Alder-Addition mit Dienen

Zu einem Gemisch von 0.15 mmol Thiobenzaldehyd-Komplex und 0.5 ml Dien gibt man bei Raumtemperatur gerade so viel Aceton, daß sich der Komplex eben löst (ca. 2-3 ml). Man läßt 2 h (Cyclopentadien) bzw. 20 h (2,3-Dimethylbutadien) rühren und fällt dann das Produkt durch Zugabe von Ether aus. Der braune Niederschlag wird mit Ether gewaschen und zur weiteren Reinigung mit Dichlormethan/Aceton (20:1) über eine 20 cm lange Kieselgelsäule chromatographiert. Aus der gelben Zone erhält man durch Einengen und Fällen mit Ether das Produkt als ockerfarbenes Kristallpulver. 14e fällt dabei als Solvat mit 0.5 mol Et₂O pro Formeleinheit an. Ausbeuten, Schmelzpunkte und Analysendaten sind in Tabelle 9 zusammengestellt.

3.9. Strukturbestimmung von $3c \cdot 0.5 Et_2O$

Für Diffraktometermessungen geeignete Kristalle wurden durch Diffusion von Diethylether in eine

TABELLE 12. Lageparameter der Atome der Verbindung 14b-MeCN, Standardabweichungen in Klammern

Wiech, Standardaoweichungen in Klainniern							
Atom	x	у	z	B (Å ²)			
Ru	0.82552(6)	0.05811(5)	0.12884(4)	2.32(1)			
C1	1.2399(3)	0.1876(3)	0.4457(2)	7.2(1)			
S	0.9303(2)	0.1681(2)	0.1644(1)	2.91(6)			
P1	0.7751(2)	0.0480(2)	0.2319(1)	2.47(5)			
P2	0.6993(2)	0.1498(2)	0.1429(1)	2.30(5)			
P3	0.8013(3)	0.3675(2)	0.3518(2)	4.49(8)			
F1	0.7165(6)	0.4038(6)	0.3060(4)	8.7(2)			
F2	0.8884(6)	0.3348(6)	0.3981(4)	7.4(2)			
F3	0.8355(7)	0.4589(5)	0.3678(5)	8.5(3)			
F4	0.768(1)	0.2789(6)	0.3364(6)	14.9(4)			
F5	0.8696(7)	0.363(1)	0.2933(5)	14.2(4)			
F6	0.7323(6)	0.3749(6)	0.4112(4)	6.7(2)			
N1	0.492(1)	0.654(1)	0.155(1)	14.0(7)			
C1C	0.5702(7)	0.1247(7)	0.1184(5)	2.7(2)			
C1B	0.8613(7)	0.0429(7)	0.3005(5)	2.8(2)			
C1D	0.7108(7)	0.2568(7)	0.1166(5)	2.6(2)			
C1A	0.6863(8)	-0.0345(7)	0.2474(5)	3.1(2)			
C1N	0.491(1)	0.709(1)	0.121(1)	9.2(6)			
C1	0.7065(7)	0.1471(6)	0.2318(5)	2.6(2)			
C1E	1.1013(8)	0.1514(6)	0.2470(6)	3.1(2)			
C2C	0.5000(8)	0.1886(7)	0.1118(6)	3.8(3)			
C2A	0.5871(8)	-0.0199(8)	0.2568(7)	4.5(3)			
C2E	1.1917(8)	0.1141(7)	0.2640(6)	3.5(3)			
C2B	0.9493(8)	-0.0005(7)	0.2952(6)	3,4(3)			
C2D	0.7139(8)	0.3229(7)	0.1586(5)	3.1(2)			
C2N	0.496(2)	0.785(1)	0.080(1)	11.3(7)			
C2	0.9653(8)	0.2484(8)	0.1030(6)	4.0(3)			
C3	1.0039(9)	0.2033(8)	0.0486(6)	4.4(3)			
C3E	1.2355(8)	0.1264(7)	0.3252(7)	4.2(3)			
C3D	0.7263(9)	0.4025(8)	0.1370(6)	4.4(3)			
C3B	1.0170(9)	-0.0104(8)	0.3466(6)	4.1(3)			
C3A	0.5214(9)	-0.0857(8)	0.2612(7)	5.1(3)			
C3C	0.4008(8)	0.1679(9)	0.0995(7)	4.8(3)			
C4B	0.9973(9)	0.0241(9)	0.4031(7)	5.9(3)			
C4C	0.3705(8)	0.0877(8)	0.0924(6)	4.6(3)			
C4	1.0922(9)	0.1748(8)	0.0637(6)	4.2(3)			
C4D	0.7295(9)	0.4171(8)	0.0721(8)	5.5(4)			
C4A	0.554(1)	-0.1657(9)	0.2603(7)	5.8(4)			
C4E	1.188(1)	0.1741(7)	0.3686(7)	4.5(3)			
C5	1.1172(8)	0.1993(8)	0.1307(6)	4.0(3)			
C5E	1.098(1)	0.2120(8)	0.3519(6)	4.5(3)			
C5D	0.725(1)	0.3488(9)	0.0268(7)	5.2(3)			
C5B	0.910(1)	0.073(1)	0.4113(6)	5.8(4)			
C5C	0.4400(9)	0.0259(8)	0.0979(7)	4.9(3)			
C5A	0.657(1)	-0.1825(8)	0.2530(7)	4.7(3)			
C6B	0.8412(9)	0.0793(9)	0.3591(5)	4.4(3)			
C6A	0.7211(9)	-0.1164(7)	0.2465(6)	3.9(3)			
C6C	0.5399(8)	0.0441(8)	0.1098(6)	4.1(3)			
C6	1.0629(7)	0.1402(7)	0.1779(6)	3.1(2)			
C6D	0.7146(8)	0.2697(7)	0.0517(6)	3.6(3)			
C6E	1.0547(8)	0.2011(7)	0.2914(5)	3.3(2)			
C7	1.0620(9)	0.2816(8)	0.1371(7)	4.7(3)			
C51	0.9347(8)	-0.0089(7)	0.0689(5)	3.3(2)			
C52	0.8891(9)	-0.0658(7)	0.1076(6)	3.9(3)			
C53	0.7845(9)	- 0.0645(7)	0.0904(5)	3,9(3)			
C54	0.7697(9)	-0.0054(8)	0.0413(5)	3.7(3)			
C55	0.8622(9)	0.0292(7)	0.0277(5)	3.7(3)			

konzentrierte Lösung von 3c in Dichlormethan erhalten. Fünfundzwanzig zentrierte Reflexe im Bereich von $10^{\circ} < \theta < 14^{\circ}$ ergaben eine trikline Elementarzelle mit den in Tabelle 10 angegebenen Dimensionen. Im Bereich von $2^{\circ} < \theta < 23.5^{\circ}$ wurde die Hälfte der Reflexionssphäre vermessen (h = -12, 12, k = -14, 14,l = 0, 16, Enraf-Nonius-CAD4-Diffraktometer, Mo-Kα-Strahlung, Graphit-Monochromator, Filterfaktor 16.55). Abtastungen von neun Reflexen dienten als Grundlage für eine empirische Absorptionskorrektur, eine Zerfallskorrektur wurde nicht durchgeführt. Die Lösung der Struktur gelang über die Methode der Patterson-Synthese, Wasserstoffatome wurden auf idealisierten Positionen (C-H-Abstand 0.95 Å) bei den Rechnungen berücksichtigt. Least-Squares-Zyklen zur Verfeinerung des Strukturmodells (Programmpaket Enraf-Nonius-spp) führten zu den in Tabelle 10 angegebenen R-Werten. Die fünf höchsten Maxima einer abschließenden Differenzfouriersynthese lagen zwischen 0.77 e Å⁻³ und 0.46 e Å⁻³, wobei der Peak mit der höchsten Elektronendichte in der Nähe des Atoms P3 mit einem Abstand d = 1.44 Å liegt. Bei der Auswertung wurde berücksichtigt, daß sich in der asymmetrischen Einheit zusätzlich ein halbes Molekül Diethylether befindet, das teilweise anisotrop verfeinert werden konnte. Die Atomkoordinaten sind in Tabelle 11 aufgeführt. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57814, des Autors und des Zeitschriftenzitates angefordert werden.

3.10. Strukturbestimmung von 14b · MeCN

Für Diffraktometermessungen geeignete Kristalle wurden durch Diffusion von Diethylether in eine gesättigte Lösung von 14b in Acetonitril erhalten. Fünfundzwanzig zentrierte Reflexe im Bereich von 9° $< 2\theta < 12^{\circ}$ ergaben eine monokline Elementarzelle mit den in Tabelle 10 angegebenen Dimensionen. Im Bereich von $2^{\circ} < \theta < 22^{\circ}$ wurde ein Viertel der Reflexionssphäre vermessen (h = 0, 14, k = 0, 16, l =-21, 21. Enraf-Nonius-cad 4-Diffraktometer, Mo- $K\alpha$ -Strahlung, Graphit-Monochromator, Filterfaktor 16.4). Abtastungen von neun Reflexen dienten als Grundlage für eine empirische Absorptionskorrektur, eine Zerfallskorrektur (Intensitätsverlust 1.2% in 117 h) wurde durchgeführt. Die Lösung der Struktur gelang über direkte Methoden (Programm SHELLXS86), Wasserstoffatome wurden auf idealisierten Positionen (C-H-Abstand 0.95 Å) bei den Rechnungen berücksichtigt. Least-Squares-Zyklen zur Verfeinerung des Strukturmodells (Programmpaket Enraf-NoniusMOLEN) führten zu den in Tabelle 10 angegebenen R-Werten. Die fünf höchsten positiven Maxima einer abschließenden Differenzfouriersynthese lagen zwischen 1.76 e Å⁻³ und 0.54 e Å⁻³, die negativen Maxima zwischen 0.41 e Å⁻³ und 0.37 e Å⁻³. Bei der Auswertung wurde berücksichtigt, daß sich in der asymmetrischen Einheit zusätzlich noch ein Molekül Acetonitril befindet, das anisotrop verfeinert werden konnte. Die Atomkoordinaten sind in Tabelle 12 aufgeführt. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57814, des Autors und des Zeitschriftenzitates angefordert werden.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft im SFB 347 "Selektive Reaktionen Metall-aktivierter Moleküle" und dem Fonds der Chemischen Industrie finanziell gefördert. Der DEGUSSA AG danken wir für eine Spende von Ruthenium (III)-chlorid.

Literatur

- 1 W.A. Schenk, T. Stur und E. Dombrowski, *Inorg. Chem.*, 31 (1992) 723.
- 2 (a) R.K. Olsen und J.O. Currie, in S. Patai (Hrsg.), The Chemistry of the Thiol Group, Wiley, NY, 1974, S. 519; (b) G. Capozzi und G. Modena, The Chemistry of the Thiol Group, Wiley, NY, 1974, S. 785
- 3 H. Itagaki, N. Koga, K. Morokuma und Y. Saito, Organometallics, 12 (1993) 1648, und dort zitierte Literatur.
- 4 (a) S.L. Buchwald, R.B. Nielsen und J.C. Dewan, J. Am. Chem. Soc., 109 (1987) 1590; (b) S.L. Buchwald und R.B. Nielsen, J. Am. Chem. Soc., 110 (1988) 3171.
- 5 (a) G. Parkin, E. Bunel, B.J. Burger, H.S. Trimmer, A. van Asselt und J.E. Bercaw, *J. Mol. Catal.*, 41 (1987) 21; (b) J.E. Nelson, G. Parkin und J.E. Bercaw, *Organometallics*, 11 (1992) 2181.
- 6 W.A. Schenk und T. Stur, Z. Naturforsch., B 45 (1990) 1495.
- (a) H. Fischer, S. Zeuner und J. Riede, Angew. Chem., 96 (1984)
 707; Angew. Chem., Int. Ed. Engl., 23 (1984) 726; (b) H. Fischer und S. Zeuner, Z. Naturforsch., B 40 (1985) 954.
- W. Paul und H. Werner, Angew. Chem., 95 (1983) 333;
 Angew. Chem., Int. Ed. Engl., 22 (1983) 316; (b) L. Hofmann und H. Werner, J. Organomet. Chem., 255 (1983) C41; (c) idem, Chem. Ber., 118 (1985) 4229; (d) H. Werner, L. Hofmann, J. Wolf und G. Müller, J. Organomet. Chem., 280 (1985) C55; (e) H. Werner, W. Paul, W. Knaup, J. Wolf, G. Müller und J. Riede, J. Organomet. Chem., 358 (1988) 95.
- W.E. Buhro, A.T. Patton, C.E. Strouse, J.A. Gladysz, F.B. McCormick und M.C. Etter, J. Am. Chem. Soc., 105 (1983) 1056;
 (b) F.B. McCormick, Organometallics, 3 (1984) 1924.
- H. Fischer, S. Zeuner, U. Gerbing, J. Riede und C.G. Kreiter, J. Organomet. Chem., 377 (1989) 105.
- 11 F. Delbecq und P. Sautet, J. Am. Chem. Soc., 114 (1992) 2446.

- 12 G.M. Garner, N. Quiros Mendez, J.A. Kowalczyk, J.M. Fernandez, K. Emerson, R.D. Larsen und J.A. Gladysz, J. Am. Chem. Soc., 112 (1990) 5146.
- 13 W.A. Schenk, P. Urban und E. Dombrowski, Chem. Ber., 126 (1993) 679.
- 14 S.G. Davies, J.P. Mc Nally und A.J. Smallridge, Adv. Organomet. Chem., 30 (1990) 1.
- 15 (a) F.M. Conroy-Lewis und S.J. Simpson, J. Chem. Soc., Chem. Commun., (1991) 388; (b) H. Park, D. Minick, M. Draganjac, A.W. Cordes, R.L. Hallford und G. Eggleton, Inorg. Chim. Acta, 204 (1993) 195.
- 16 D.R. Johnson, F.X. Powell und W.H. Kirchoff, J. Mol. Spectrosc., 39 (1971) 136.
- 17 H. Fischer, K.H. Fluck und C. Troll, Chem. Ber., 125 (1992) 2675.
- 18 B.A. Karcher und R.A. Jacobson, J. Organomet. Chem., 132 (1977) 387.
- 19 J.M. Fernandez, K. Emerson, R.D. Larsen und J.A. Gladysz, J. Chem. Soc., Chem. Commmun., (1988) 37.
- (a) P. Hofmann, Angew. Chem., 89 (1977) 551; Angew. Chem.,
 Int. Ed. Engl., 16 (1977) 536; (b) B.E.R. Schilling, R. Hoffmann
 und D.L. Lichtenberger, J. Am. Chem. Soc., 101 (1979) 585.
- 21 M.F. Asaro, G.S. Bodner, J.A. Gladysz, S.R. Cooper und N.J. Cooper, Organometallics, 4 (1985) 1020.
- 22 G.S. Bodner, J.A. Gladysz, M.F. Nielsen und V.D. Parker, J. Am. Chem. Soc., 109 (1987) 1757, und dort zitierte Literatur.
- 23 D. Mandon und D. Astruc, Organometallics, 8 (1989) 2372.
- 24 J.C. Hayes und N.J. Cooper, J. Am. Chem. Soc., 104 (1982) 5570.
- 25 (a) P.M. Treichel, L.D. Rosenhein und M.S. Schmidt, *Inorg. Chem.*, 22 (1983) 3960; (b) P.M. Teichel, M.S. Schmidt und R.A. Crane, *Inorg. Chem.*, 30 (1991) 379.
- 26 D. Astruc, Angew. Chem., 100 (1988) 662; Angew. Chem., Int. Ed. Engl., 27 (1988) 643.

- 27 Vergleiche hierzu: D.E. Westerberg, L.F. Rhodes, J. Edwin, W.E. Geiger und K.G. Caulton, *Inorg. Chem.*, 30 (1991) 1107.
- 28 (a) R.P. Bell, Chem. Soc. Rev., 3 (1974) 513; (b) A.V. Willi, Isotopeneffekte bei chemischen Reaktionen, Thieme, Stuttgart 1983.
- 29 (a) H. Fischer, J. Hofmann, U. Gerbing und A. Tiriliomis, J. Organomet. Chem., 358 (1988) 229; (b) H. Fischer, U. Gerbing, A. Tiriliomis, G. Müller, B. Huber, J. Riede, J. Hofmann und P. Burger, Chem. Ber., 121 (1988) 2095.
- H. Fischer, C. Kalbas und J. Hofmann, J. Chem Soc., Chem. Commun., (1992) 1050.
- 31 H. Fischer, K. Treier und U. Gerbing, J. Organomet. Chem., 433 (1992) 127.
- 32 W.A. Schenk, D. Rüb und C. Burschka, J. Organomet. Chem., 328 (1987) 305.
- 33 H. Viola, H. Hartenhauer und R. Mayer, Z. Chem., 28 (1988) 269.
- 34 E. Schaumann, in S. Patai (Hrsg.), The Chemistry of Double-Bonded Functional Groups, Bd. 2, Wiley, NY, 1989, S. 1269.
- 35 D.L. Boger und S.M. Weinreb, Hetero-Diels-Alder Methodology in Organic Synthesis, Academic Press, NY, 1987, S. 120.
- 36 (a) H. Fischer, K. Treier, U. Gerbing und J. Hofmann, J. Chem. Soc., Chem. Commun., (1989) 667; (b) H. Fischer, U. Gerbing und J. Riede, J. Organomet. Chem., 364 (1989) 155; (c) H. Fischer, U. Gerbing, K. Treier und J. Hofmann, Chem. Ber., 123 (1990) 725.
- 37 H. Fischer, J. Organomet. Chem., 345 (1988) 65.
- 38 E. Vedejs, J.S. Stults und R.G. Wilde, J. Am. Chem. Soc., 110 (1988) 5452.
- 39 E.W. Abel, K.G. Orrell und S.K. Bhargava, *Progr. Inorg. Chem.*, 32 (1984) 1.
- 40 J. Amarasekera, T.B. Rauchfuss und S.R. Wilson, J. Am. Chem. Soc., 110 (1988) 2332.