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Abstract 

The reaction of Fischer chromiumcarbene complexes with vinylidenecyclopropanes in refluxing benzene proceeds in a highly 
regioselective fashion to afford allylidenecyclopropanes. 
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1. Introduction 

The reaction of metal carbene complexes with un- 
saturated carbon-carbon and carbon-nitrogen bonds 
appears in important organic processes such as the 
formation of cyclopropane [ll, naphthoquinone [2], in- 
danone [3], a&unsaturated enone [41, pyrone [51, p- 
lactam [6], cyclobutanone [71, furan [8] and cyclopen- 
tenone [9], as well as alkene [lo] and alkyne [ll] 
polymerization. Recently, limited examples of the cou- 
pling reaction of Fischer carbene complexes [(CO),- 
M=C(OEt)Ph; M = Cr, MO, WI with allenes were re- 
ported to give trimethylenemethane complexes as a 
major product [121. However, with the tungstencarbene 
complex (CO),W=C(H)Ph, the coupling reaction gave 
methylenecyclopropanes and methylenecyclopropane 
complexes [131. Here we report a novel coupling reac- 
tion of Fischer chromiumcarbene complexes 1 with 
vinylidenecyclopropanes 2, leading to allylidenecyclo- 
propanes 3. The reaction described here is the first 

example of a double-bond migration reaction of allenes 
involving the chromiumcarbene carbon center [14*]. 

Results and discussion 

Table 1 displays a series of examples with three 
chromiumcarbene complexes la-c and four vinyli- 
denecyclopropanes 2a-d [ 151 leading to allylidenecy- 
clopropanes 3, which undergo facile Diels-Alder reac- 
tions with activated dienophiles 1161. In general, car- 
bene complexes la,b react smoothly with 2 (4 h, 50°C 
benzene), while complex lc reacts at higher tempera- 
ture (4 h, SO’C). Without exception, the primary prod- 
ucts 3 arise from coupling of the chromium atom with 
the dimethylmethylene end of the allene. The first two 
steps in the reaction pathway must be replacement of a 
coordinated CO ligand with an external allene, fol- 
lowed by metalacyclobutane 4 formation. Noteworthy 
is that the carbene complexes only react on the less 
hindered side of the cyclopropane ring CR* = H, 2b-d). 
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TABLE 1. Reaction of chromiumcarbene complexes 1 with vinyiidenecyclopropanes 2 

Carbene Vinylidene~clopropane Allylidene~clopropane Yield (%) 

tOC&Cr~~Me 

~ $.j?:$ 

;i=*-,. 

Me0 R 0 
(la) R = Me (2a) (3a)R=R’=R”=Me 03) 63 

(la) 
g&P’ 
(2b) 

(3b) R = Me, R’ = Ph, R2 = H 91 

(la) 

(lb) R = Ph 
(lb) 
(lb) 

(2b) 
(2c) 

(3~) R = Me, R’ = cyclohexyl, R* = H 

(3d)R=Ph,R’=R2=Me 
(3e) R = R’ = Ph, R* = H 
(3f) R = Ph, R’ = cyclohexyl, RZ = H 

(1~) R = o-methoxyphenyl (2a) 

(Id 

(lb) 

(2c) 

--dPh ;i=._ 

(3g) R = o-methoxyphenyl, 
R’=R*=Me 

Me0 

(3h) R = o-metho~phenyl, 
R’ = cyclohexyl, R2 = H 

75 

81 
86 
86 

72 

Me0 

(3i) (d.e. ratio = 2: 1) OMe 47 

The postulated intermediate 4 does not rearrange to 
t~methylenemethane complexes [12] nor undergo re- 
ductive elimination to produce methylenecyclo- 
propanes [131 as reported in the literature. It appar- 
ently involves an exocyclic p-hydride elimination to 
give 5 followed by reductive elimination to give diene 3 
(Scheme 1). The reason for the difference is not clear. 
We assume that the strain present in the cyclopropane 
moiety and/or the bulky groups (methyl, phenyl or 
cyclohexyl) on the cyclopropane ring of 4 may force the 
C-H bond of the methyl group (on the meralocyclobu- 
tane ring) to insert into the chromium atom (p-hydride 
elimination). Thus, P-hydride elimination also occurs 
on the carbene ligand when R and R2 are methyl 
groups (Scheme I>. The same intermediate 4 (R’ = R2 
= R = methyl) can afford a&unsaturated ketone 8 as 
the minor product via 6 and 7 (3a/8 = 5 : 1). Wienand 
and Reissig have proposed a similar sequence of P-hy- 

dride elimination of a chromium metallacyclobutane to 
explain the insertion of the carbene ligand of a Fischer 
carbene complex into olefinic C-H bonds [17]. In most 
cases, the carbon-carbon double bond connected to 
the cyclopropane ring has the (El-configuration (3b-i). 
In some examples, diene rearrangement products (9 
and 10) are isolated as the minor products (3g/9 = 5 : 1; 
3h/lO = 3 : 2). However, the reaction is not particularly 
stereoselective as illustrated by the coupling of allene 
2d with the chromiumcarbene complex lb to produce 
3i as a mixture of diastereomers in a ratio of 2 : 1. 
Moreover, as found for the chromiumcarbene com- 
plexes 1, the reaction of the Fischer molybdenumcar- 
bene complex (CO),Mo=C(OMe)Bu (11) with allene 2a 
follows the same pathway to give 3j as the major 
product in 40% yield. 

The reaction described here is a formal ene reaction 
involving Fischer chromiumcarbene complexes (Scheme 
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2). Further application of the allylidenecyclopropanes 
is underway in our laboratory. 

OMe 

( WsMo --( 
PW&W3 

11 3j 

a,R=CH3 
‘b,R=Ph 
c, R = 2-MeOC& 

_I 

4 

k’ 

. . . . . . 

/ ‘%* 

[ ~ 

CW,Fr , OMe 

H 

6 

1 . . . . . . 
+ 

/ \ 
.,.” 

H 
/ OMe 

8 

Scheme 1. Proposed reaction pathways for the fo~ation of 3 and 8. 
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Scheme 2. The ‘ene-like’ reaction of Fischer chromiumcarbene com- 
plexes. 

2. Experimental details 

2.1. General 
All reactions were run under a nitrogen atmosphere 

in oven-dried glassware unless otherwise indicated. 
Anhydrous solvents or reaction mixtures were trans- 
ferred via an oven-dried syringe or cannula. Benzene 
was used directly from the commercial source (Merck 
Chemical Co.). Vinylidene~clopropa~es were synthe- 
sized according to the literature procedure [151. Flash 
column chromatography was carried out according to 
the method of Still et al. [18] with Merck silica gel 
(Kieselgel 60, 230-400 mesh) using the indicated sol- 
vents. Analytical thin-layer chromatography was per- 
formed with Silica gel 60 FZ4 plastic plates of 0.2-mm 
thickness from Merck. The term ‘under nitrogen’ im- 
plied that the apparatus was evacuated (oil pump) and 
then filled with nitrogen three times. The term ‘short- 
path distillation (Kugelrohr distillation)’ refers to the 
process in which the entire distillation apparatus (tube 
closed at one end, held horizontally~, with the excep- 
tion of the collection bulb, was heated slowly in an air 
bath from 25°C to 150°C under vacuum; the distillate 
was collected at - 78°C. ‘H NMR spectra were ob- 
tained with a JEOL-EX 400 (400 MHz) spectrometer. 
Chemical shift values are expressed in ppm relative to 
either tetramethylsilane (0.00 ppm) or CHCl, (7.26 
ppm) as internal standards. 13C NMR spectra were 
recorded using a JEOL-EX 400 (100.4 MHz) spectrom- 
eter with CDCl, (77.0 ppm) as an internal standard. 
Infrared (IR) spectra were recorded with a JASCO 
IR-700 spectrophotometer. Mass spectra were ac- 
quired on a JEOL JMS-D 100 spectrometer at an 
ionization potential of 70 eV and are reported as 
mass/charge (m/z) with percentage relative abun- 
dance. High-resolution mass spectra were obtained with 
an AEI MS-9 double focusing mass spectrometer and a 
JEOL JMS-HX 110 spectrometer in the Department of 
Chemistry, Northern Instrument Center, Hsinchu. 
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2.2. General procedure for coupling of Fischer chromi- 
umcarbe~ complexes with v~nyi~~~~iopropanes 

Carbene complex 1 and vinylidenecyclopropane 2 
(1.2-2.0 molar equiv.) in 10 ml of benzene were heated 
at 50°C (for la or lb) or at reflux (for lc) under a 
nitrogen atmosphere in a three-necked round-bottom 
flask equipped with a water condenser, a thermometer 
and a glass stopper. After 1 had been consumed com- 
pletely (monitored by TLC), the reaction mixture was 
diluted with 100 ml of hexane. The organic solution 
was washed with water (3 x 100 ml) and brine (3 X 100 
ml), and finally dried over magnesium sulfate. The 
dark green organic layer was evaporated by a rotary 
evaporator, and the residue was treated by flash chro- 
matography on a silica gel. Elution with hexane/ethyl 
acetate (50 : 1) afforded the allylidenecyclopropane 3 as 
the major product. 

2.3. Reaction of (OC),CrC(OMe)Me (la) with vinyli- 
denecyclopropane 2a to give allylidenecyclopropane 3a 
and ketone 8 

The crude mixture from the reaction of la (0.12 g, 
0.50 mmol) with 2a (0.10 g, 0.67 mmol) was flash-chro- 
matographed on silica gel, followed by short path distil- 
lation to give 3a (0.061 g, 0.29 mmol, 52%) and 8 (11 
mg, 0.06 mmol, 11%). 

Compound 3a: ‘H NMR (400 MHz, CDCl,) 6: 1.15 
(s, 3H); 1.17 (s, 3H); 1.18 (s, 3H); 1.19 (s, 3H); 1.38 (d, 
J = 6.4 Hz, 3H); 1.89 (s, 3H); 3.21 (s, 3H); 4.16 (q, 
J= 6.4 Hz, 1H); 4.94 (s, 1H); 5.31 (s, 1H) ppm. 13C 
NMR (100.4 MHz, CDCl,) 6: 19.5; 20.9; 21.1; 21.2; 
21.7; 21.8; 21.9; 23.2; 56.0; 79.9; 112.1; 129.0; 140.4; 
145.7 ppm. IR (CH,Cl,) (cm-‘): 3092; 2926; 1609; 
1455; 1372; 1253; 1205; 1157; 1056; 963; 922. MS (EI) 
m/z of major fragments: 208 (M+, 1%); 177 (83); 161 
(100); 121 (50); 83 (50). High-resolution MS for 
C,,H,,O: Calc.: 208.1827. Found: 208.1832. 

Compound 8: ‘H NMR (400 MHz, CDCl,) S: 1.04 
(d, J = 6.8 Hz, 6H); 1.22 (s, 6H); 1.24 (s, 6H); 2.27 (s, 
3H); 2.98 (septet, J= 6.8 Hz, 1H) ppm. 13C NMR 
(100.4 MHz, CDCl,) 6: 19.9; 20.7; 21.7; 22.2; 28.0; 28.7; 
136.9; 156.9; 199.7 ppm. IR (CH,Cl,) (cm’): 2991; 
2984; 2957; 2870; 1658; 1460; 1423; 1375; 1358; 1257; 
1099; 1047; 906; 893. MS (EI) m/t of major fragments: 
194 (M+, 100%); 179 (100); 165 (40); 151 (48); 137 (76); 
121 (55); 109 (58); 95 (60); 81 (40). 

2.4. Reaction of (OC),CrC(OMe)Me (la) with vinyli- 
denecyc~opropa~ 2b to give a~~yiidene~y~~opropane 3b 

The crude mixture from the reaction of la (0.12 g, 
0.50 mmol) with 2b (0.25 g, 1.0 mmol) was flash-chro- 
matographed on silica gel, followed by short path distil- 
lation to give 3b (0.14 g, 0.46 mmol, 91%). ‘H NMR 
(400 MHz, CDCl,) 6: 1.43 (d, J = 6.8 Hz, 3H); 1.91 (s, 

3H); 3.23 (AB, q, 2H); 3.24 (s, 3H); 4.37 (q, J = 6.8 Hz, 
1H); 4.41 (s, 1H); 5.43 (s, 1H); 7.14-7.31 (m, 1OH) ppm. 
13C NMR (100.4 MHz, CDCl,) 6: 14.6; 20.3; 56.0; 56.8; 
58.6; 73.4; 106.7; 125.7; 125.8; 127.8; 128.2; 128.4; 130.0; 
132.4; 136.3; 142.1; 148.7; 158.6 ppm. IR (CH,Cl,) 
(cm-‘): 3056; 3032; 2972; 2932; 1687; 1600; 1492; 1445; 
1276; 1089; 908; 718. MS (EI) m/z of major fragments: 
304 (Mf, 8%); 225 (10); 77 (10); 28 (100). High-resolu- 
tion MS for C,,H,,O: Calc.: 304.1827. Found: 304.1832. 

2.5. Reaction of (OC),CrC(OMe)Me (la) with vinyli- 
denecyclopropane 2c to give allylidenecyclopropane 3c 

The crude mixture from the reaction of la (0.12 g, 
0.50 mmol) with 2c (0.16 g, 1.0 mmol) was flash-chro- 
matographed on silica gel, followed by short path distil- 
lation to give 3c (0.082 g, 0.38 mmol, 75%). ‘H NMR 
(400 MHz, CDCl,) 6: 0.90 (m, 2H); 1.03 (m, 2H); 1.26 
(m, 2H); 1.37 (d, J = 6.8 Hz, 3H); 1.42 (m, 2H); 1.73 
(m, 4H); 1.92 (s, 3H); 3.19 (s, 3H); 4.29 (q, J = 6.8 Hz, 
1H); 4.94 (s, lH>; 5.20 (s, 1H) ppm. 13C NMR (100.4 
MHz, CDCI,) 6: 15.1; 20.6; 23.3; 24.4; 25.1; 26.2; 34.9; 
35.0; 55.5; 79.2; 111.5; 128.9; 135.4; 141.1 ppm. IR 
(CH,Cl,) (cm-‘>: 3051; 2984; 2930; 2854; 1446; 1265; 
1147; 1095. MS (EI) m/z of major fragments: 220 (M”, 
8%); 205 (16); 291 (66); 113 (75); 59 (100). High-resolu- 
tion MS for C,,H,O: Calc.: 220.1827. Found: 220.1836. 

2.4. Reaction of (OC)sCrC(OMe)Ph (Ib) with uinyh- 
denecyclopropane 2a to give allylidenecyciopropane 3d 

The crude mixture from the reaction of lb (0.17 g, 
0.54 mmol) with 2a (0.16 g, 1.07 mmol) was flash-chro- 
matographed on silica gel, followed by short path distil- 
lation to give 3d (0.12 g, 0.43 mmol, 81%). ‘H NMR 
(400 MHz, CDCl,) 6: 1.09 (s, 3H); 1.13 (s, 3H); 1.18 (s, 
3H); 1.19 (s, 3H); 1.79 (s, 3H); 3.32 (s, 3H); 4.77 (s, 1H); 
4.96 (s, 1H); 5.02 (s, 1H); 7.19-7.29 (m, 5H) ppm. 13C 
NMR (100.4 MHz, CDCl,) 6: 19.7; 20.8; 21.1; 21.9; 
22.5; 23.0; 30.8; 56.5; 85.1; 114.1; 125.8; 126.5; 127.3; 
127.8; 142.2; 148.7 ppm. IR (CH,Cl,) (cm-‘): 3030; 
2938; 2872; 1610; 1492; 1450; 1373; 1188; 1096; 982; 
962. MS (EI) m/z of major fragments: 270 (M+, 2%); 
255 (4); 237 (68); 222 (32); 121 (32); 91 (39); 77 (32); 73 
(100). High-resolution MS for C,,H,,O: Calc.: 
270.1984. Found: 270.1993. 

2.7. Reaction of (OC),CrC(OMe)Ph (lb) with vinyli- 
denecyclopropane 2b to give aILylidenecyclopropane 3e 

The crude mixture from the reaction of lb (0.16 g, 
0.50 mmol) with 2b (0.25 g, 1.0 mmol) was flash-chro- 
matographed on silica gel, followed by short path distil- 
lation to give 3e (0.16 g, 0.43 mmol, 86%). ‘H NMR 
(400 MHz, CDCl,) 6: 1.70 (s, 3H); 1.82 (d, J = 9.8 Hz, 
1H); 1.90 (d, J = 9.8 Hz, 1H); 3.41 (s, 3H); 4.93 (s, 1H); 
5.03 Is, 1H); 5.27 (s, 1H); 7.18-7.39 (m, 15H) ppm. 13C 
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appropriate, characteristic ‘H NMR signals. ‘H NMR 
(400 MHz, CDCI,) 6: 1.02 (dd, J= 9.8, 9.3 Hz, 1H); 
1.22 (dd, J = 9.8, 4.9 Hz, 1H); 1.83 (s, 3H); 2.77 (dd, 
J= 9.3, 4.9 Hz, 1H); 3.54 (s, 3H); 4.91 (s, 1H); 5.19 (s, 
1H); 5.35 (s, 1H); 7.07-7.46 (m, 10H) ppm. IR (CH,Cl,) 
(cm-‘): 3030; 2934; 1604; 1493; 1449; 1376; 1093; 1030; 
921. MS (ED m/z of major fragments: 290 (M+, 20%); 
275 (3); 259 (47); 199 (40); 124 (80); 121 (100); 91 (85). 
High-resolution MS for C,,H,,O: Calc.: 290.1670. 
Found: 290.1647. 

2.12. Reaction of (OC),MoC(OMe)Bu (11) with vinyli- 
denecyclopropane 2a to give allylidenecyclopropane 3j 

The crude mixture from the reaction of 11 (0.10 g, 
0.30 mmol) with 2a (0.10 g, 0.62 mmol) was flash-chro- 
matographed on silica gel, followed by short path distil- 
lation to give 3j (0.03 g, 0.12 mmol, 40%). ‘H NMR 
(400 MHz, CDCl,) 6: 0.87 (t, J = 7.3 Hz, 3H); 1.15 (s, 
3H); 1.17 (s, 6H); 1.19 (s, 3H); 1.27-1.32 (m, 4H); 1.66 
(m, 1H); 1.75 (m, 1H); 1.88 (s, 3H); 3.21 (s, 3H); 3.90 (t, 
J= 7.0 Hz, 1H); 4.92 (s, 1H); 5.31 (s, 1HI ppm. ‘3C 
NMR (100.4 MHz, CDCl,) 6: 14.0; 19.4; 21.0; 21.4; 
21.7; 22.0; 22.7; 23.4; 29.0; 34.7; 56.0; 85.1; 112.4; 128.0; 
140.7; 146.5 ppm. IR (CH,Cl,) (cm-‘>: 3070; 2993; 
2934; 2866; 1601; 1458; 1373; 1275; 1257; 1093; 912. MS 
(EI) m/z of major fragments: 250 (M+, 2%); 235 (16); 
219 (100); 175 (40); 161 (53). 
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