Reaction of $[(PEt_3)_3Rh{C(N_2)SiMe_3}]$ with terminal alkynes—synthesis of σ -alkynyl rhodium(III) complexes

Eric Deydier, Marie-Joëlle Menu, Michèle Dartiguenave and Yves Dartiguenave

Laboratoire de Chimie Inorganique, Université P. Sabatier, 118 route de Narbonne, 31062 Toulouse-Cédex (France) (Received September 10, 1993)

Abstract

Reaction of $[(PEt_3)_3Rh{C(N_2)SiMe_3}]$ with two equivalents of HC=CR (R = SiMe_3, Ph, or ^tBu) affords the Rh^{III} complex $[(PEt_3)_3RhH(C=CR)_2]$ in high yield, showing that the trimethylsilyldiazomethyl group behaves like an alkyl group. The reaction was followed by ³¹P and ¹H NMR spectroscopy. The first step is the oxidative addition of alkyne to the metal, which is followed by elimination of trimethylsilyldiazomethane and formation of $[(PEt_3)_3Rh(C=CR)]$.

ļ

Key words: Rhodium; Alkynes; Diazoalkanes; Synthesis; Hydride; Phosphine

1. Introduction

Reaction of alkynes with transition metal complexes is well documented since it generates a very rich inorganic, organometallic, and organic chemistry. Many examples of rhodium complexes with π -coordinated alkyne have been described [1] although σ -bonded alkynyl, hydridoalkynyl or vinylidene complexes were obtained by oxidative addition of terminal alkynes to basic metal centres [2,3]. Using [RhCl(PⁱPr₃)₂], Werner et al. studied the alkynyl-vinylidene rearrangement within the coordination sphere [4]. Increased interest in metal-alkynyl complexes has developed recently because they can give rise to linear conjugated molecules that may exhibit both second- and third-order non-linear optical activity [5,6]. Terminal alkynes are also synthons for organic cycles and heterocycles. An example is the reaction with organic diazoalkanes, which give pyrazoles through dipolar [2+3] cycloaddition, and cyclopentene after N₂ evolution [7].

It was thus of interest to study the reaction of alkynes with α -metallated diazoalkanes which combine the properties of a diazoalkane with those of a metal. This has not been done before because of the lack of suitable precursors. Since we prepared stable [(PEt₃)₃-

Rh{C(N₂)SiMe₃}] (1) [8], we investigated its reaction with terminal alkynes HC=CR (R = SiMe₃, Ph or ^tBu), and the results are reported here.

2. Results and discussion

[(PEt₃)₃Rh{C(N₂)SiMe₃]] (1) dissolved in C₆H₆ reacts at 25°C under Ar with two molecules of alkyne, HC=CR, to give quantitatively the Rh^{III} complexes (2a-c) mer-trans [(PEt₃)₃RhH(C=CR)₂], which have been isolated as orange, air-sensitive, oily solids. The reactions were followed by ³¹P{¹H} and ¹H NMR spectroscopies and all followed a similar path.

$$(PEt_{3})_{3}Rh\{C(N_{2})SiMe_{3}\}\} + 2 HC \equiv CR \longrightarrow$$

$$1$$

$$[(PEt_{3})_{3}RhH(C \equiv CR)_{2}] + HC(N_{2})SiMe_{3}$$

$$2 \quad 2a: \quad R = SiMe_{3}$$

$$2b: \quad R = Ph$$

$$2c: \quad R = ^{t}Bu$$

$$RC \equiv C - Rh - C \equiv CR$$

$$Et_{3}P - | PEt_{3}$$

To our knowledge they are the second example of bis(alkynyl)hydridorhodium complexes. The first exam-

Correspondence to: Dr. M. Dartiguenave.

Compound	δP _A (ppm)	δP _B (ppm)	J(Rh-PA) (Hz)	J(Rh-PB) (Hz)	J(P-P) (Hz)	δH (ppm)	J(Rh-H) * (Hz)	J(H-PA) (Hz)
2a ¹	-3	19	74	95	21	- 10.38	13.5	166.9
2b ²	-3	20	79	94	21	- 10.19	13.4	170.5
2c ²	-2	21	77	97	21	- 10.65	12.0	171.9
3a ³	24	20	128	137	38			
3b ⁴	24	21	131	136	38			
3c ⁴	25	21	133	135	38			

TABLE 1. Selected ³¹P(¹H) and ¹H NMR parameters for 2a-c and 3a-c

¹ ³¹P{¹H}: C_7D_8 , 203 K; ¹H: C_7D_8 , normal probe temperature. ² C_7D_8 , normal probe temperature. ³ C_7D_8 , 183 K. ⁴ C_7D_8 , 203 K. ^{*} $J(Rh-H) = J(P_B-H)$.

ple is the related PMe₃ compound that was synthesized by the reaction of HC=CR with $[(PMe_3)_4Rh(C=CR)]$ and structurally characterized [9].

Presence of the hydrido-ligand is deduced from the ¹H NMR spectrum, which shows a doublet of quadruplets characteristic of the *mer-trans* conformation (Table 1). The ³¹P{¹H} NMR spectra are consistent with this conformation since they indicate an AB₂X system with coupling constants characteristic of a Rh^{III} centre. The sextuplet observed in the ¹³C{¹H} NMR spectra confirms the equivalence of the two *trans*-alkyne carbon atoms. In contrast to the reaction of $[(PR_3)_n RhCl]$ (n = 2, 3, or 4) with alkyne, which gives alkynyl, hydridoalkynyl, and vinylidene derivatives, here the reaction is stereoselective and only complexes (2) have been observed.

It is possible to follow the addition of HC=CR on (1) in deuterated benzene or toluene by ³¹P and ¹H NMR spectroscopy. In every case a similar sequence of events was observed and we describe the experiment in the case of HC=CSiMe₃. The reaction occurs stepwise.

When the alkyne/complex ratio is about 1/2, the ³¹P{¹H} NMR spectrum shows the multiplet characteristic of 1 and a second order $AB_2X (X = Rh)$ multiplet attributed to [(PEt₂)₂Rh(C=CSiMe₂)], (3a), which becomes first order at -80° C. No signal due to free PEt₃ is apparent at low temperature, indicating that the first step is not a substitution process. The low temperature ¹H NMR spectrum for an alkyne: complex ratio of less than 0.5 shows two SiMe₃ singlets corresponding to 1 and 2a, respectively, and the two signals of free $HC(N_2)SiMe_3$ [2.22 ppm (1H) and -0.02 ppm (9H)]. We could not isolate 3a from the mixtures even at -70°C but it was successfully synthesized by reaction of lithio(trimethylsilyl)acetylene with [(PEt₃)₃RhCl] at -78° C and its structure confirmed by IR and ¹H, ³¹P, ¹³C NMR spectroscopies and by comparison with the reported X-ray structure of the PMe₃ analogue [3].

When the amount of alkyne was increased, 2a became the major species and for the ratio L/M > 2, it is the only complex present in solution. The corresponding ¹H NMR spectrum shows two new singlets in the

Scheme 1.

SiMe₃ region and two doublets at 6.51 and 5.93 ppm $(J_{\rm HH} = 19 \text{ Hz})$ in the alkene region besides 2a and free trimethylsilyldiazomethane. These data are consistent with the stereoselective formation of the *E*-1,4-bis-(trimethylsilyl)but-1-ene-3-yne, (SiMe₃)CH=CH-C=C(SiMe₃) (4), resulting from the head-to-head coupling of two alkyne molecules. Larger quantities of trimethylsilylacetylene increased the amount of 4 as expected, since this coupling is known to be rhodium-catalyzed [10-12].

Scheme 1 suggests a mechanistic interpretation of the reaction course. The observation that 1 reacts with HC=CR to give 3, (Table 1), led us to infer that the unobserved [(PEt₃)₃RhH{C(N₂)SiMe₃}(C=CR)] A resulting from oxidative addition of HC=CR to 1 is an unobserved intermediate. We have obtained previously the related Rh^{III} species [(PMe₃)₃ Rh{C(N₂)SiMe₃}IMe] by oxidative addition of MeI to $[(PMe_3)_4 Rh\{C(N_2) SiMe_3$], but we were unable to prepare the PEt₃ complex, which may be due to the larger steric hindrance of PEt₃ (cone angle of 123°) compared to PMe₃ (cone angle of 118°). Thus, formation of an unstable intermediate A remains probable, and it would give [(PEt₃)₃Rh(C=CR)] and free trimethylsilyldiazomethane through reductive elimination. This reaction is related to the reaction of terminal alkyne with $[(PMe_3)_4RhMe]$ which produces $(PMe_3)_4Rh(C=CR)$ and methane. Consequently, trimethylsilyldiazomethane in 1 behaves like an alkyl group.

3. Experimental details

All operations were carried out under dinitrogen or in vacuum. Benzene was dried over sodium and distilled from sodium-benzophenone under dinitrogen. It was degassed by three freeze-thaw cycles before use. C_6D_6 (CEA) and PEt₃ were used as received. [(PEt₃)₃Rh{C(N₂)SiMe₃}] was made by the published method [8]. Spectrometers: NMR; Bruker AC 200 and AC80, data in ppm referenced to SiMe₄ for ¹H and ¹³C and to H₃PO₄ 85% in D₂O for ³¹P: IR; Perkin Elmer 577 and 983. Spectra in Nujol mulis or in NaCl cells (0.1 mm width), data in cm⁻¹.

3.1. $[(PEt_3)_3 RhH(C \equiv CSiMe_3)_2]$ (2a)

HC=CSiMe₃ (1.10 mmol) was added to a benzene solution (5 ml) of $[(PEt_3)_3Rh{C(N_2)SiMe_3}]$ (300 mg; 0.53 mmol). The solution was stirred for 15 min. Evaporation of the solvent *in vacuo* gave an orange oily product which, after recrystallization from pentane, produced 1 in good yield (90%). IR: ν (C=C) = 2055 cm⁻¹; ν (Rh-H) = 2005 cm⁻¹; ¹H NMR (C₇D₈; probe temperature): -10.38 (dq, Rh-H, ²J(PB-H) = 13.5, ²J(PA-H) = 166.9, ¹J(Rh-H) = 13.5); 0.24 (s,

 $(CH_3)_3$ Si); 1.16 (q, $(CH_3CH_2)_3P_A$, ${}^3J(P-H) = 15$, ${}^3J(H-H) = 7.6$); 1.15 (q, $(CH_3CH_2)_3P_B$, ${}^3J(P-H) = 15$, ${}^3J(H-H) = 7.6$); 1.85 (m, $(CH_3CH_2)_3P_A$, ${}^3J(H-H) =$ 7.6); 1.91 (m, $(CH_3CH_2)_3P_B$, ${}^3J(H-H) = 7.6$); ${}^{31}P{}^{1}H$ NMR (C_7D_8 ; 203 K): -3 (dt, $(CH_3CH_2)_3P_A$, ${}^1J(Rh-P) =$ = 74); 19 (dd, $(CH_3CH_2)_3P_B$, ${}^1J(Rh-P) = 95$, ${}^2J(P-P) =$ = 21); ${}^{13}C{}^{1}H$ }NMR (C_7D_8 , RT): 1.7 (s, $(CH_3)_3$ Si); 8.8 (s, $(CH_3CH_2)_3P)$; 19.3 (d, $(CH_3CH_2)_3P_A$, J(P-C) =16); 20.7 (t, $(CH_3CH_2)_3P_B$, J(P-C) = 14); 136.1 (dq, Rh($CCSiMe_3$), J(P-C) = 16; J(Rh-C) = 32); 112.8 (d, Rh($CCSiMe_3$), J(Rh-C) = 5).

3.2. $[(PEt_3)_3 Rh(C \equiv CSiMe_3)]$ (3a)

1.5 ml of PEt₃ (0.01 mol) was added slowly to a suspension of 500 mg (1.3 mol) of $[{RhCl(C_2H_4)_2}_2]$ in ether (20 ml). The stirring was continued for 15 min. then the solvent was evaporated in vacuo. The resulting solid was allowed to react at -78° C with a solution of LiC=CSiMe₃ [1.75 ml (2.8 mmol) of MeLi + 300 mg (3 mmol) of HC=CSiMe₃ in ether (15 ml), -78° C, 25 min stirring]. The resulting solution was stirred at -78°C for 1 h and at 25°C for 15 min. Evaporation of the solvent gave a red solid which was recrystallized from pentane. (Yield: 80%). IR: ν (C=C): 1998 cm⁻¹. ¹H NMR (C_2D_8 , 293 K): 0.21 (s, (CH_3)₃Si); 0.92 (q, INVIK $(C_7D_8, 293 \text{ K})$: 0.21 (s, $(CH_3)_3\text{Si}$); 0.92 (q, $(CH_3\text{CH}_2)_3\text{P}_A$, ${}^3J(\text{P}-\text{H}) = 15$, ${}^3J(\text{H}-\text{H}) = 7.4$); 0.92 (q, $(CH_3\text{CH}_2)_3\text{P}_B$, ${}^3J(\text{P}-\text{H}) = 15$, ${}^3J(\text{H}-\text{H}) = 7.5$); 1.36 (q, $(CH_3CH_2)_3\text{P}_A$, ${}^3J(\text{H}-\text{H}) = 7.4$); 1.85 (m, $(CH_3CH_2)_3\text{P}_B$, ${}^3J(\text{H}-\text{H}) = 7.5$); ${}^{31}\text{P}^{1}\text{H}$ NMR (C_7D_8 , 183 K): 20 (dd, $(CH_3CH_2)_3\text{P}_B$, ${}^1J(\text{Rh}-\text{P}) = 137$); 24 (dt, $(CH_3CH_2)_3\text{P}_A$, ${}^1J(\text{Rh}-\text{P}) = 128$, ${}^2J(\text{P}-\text{P}) = 38$); ${}^{13}\text{C}^{1}\text{H}$ NMR (C_7D_8 , 223 K): 2.1 (s, $(CH_3)_3\text{Si}$); 9.5 (s, $(CH_3CH_2)_3\text{P}_A$); 9.5 (s, $(CH_3CH_2)_3\text{P}_A$); 10.7 (+ $(CH_{3}CH_{2})_{3}P_{A}$; 9.5 (s, $(CH_{3}CH_{2})_{3}P_{B}$); 19.7 (t, $(CH_3CH_2)_3P_B$, J(P-C) = 13; 20.6 (d, $(CH_3CH_2)_3P_A$, J(P-C) = 19; 156.5 (ddt, Rh(CCSiMe₃), J(PA-C) =84, J(PB-C) = 24, J(Rh-C) = 40; 112.6 (dd, $Rh(CCSiMe_3)$, J(Rh-C) = 11, J(PA-C) = 21). Microanalysis calc. for C₂₃H₅₄P₃RhSi: H 9.82; C 49.82; found: H 9.78; C 48.96%.

References

- 1 D. Schneider and H. Werner, Angew. Chem. Int. Ed. Engl., 30 (1991) 700.
- 2 J. Wolf, H. Werner, O. Serhadli and M. Ziegler, Angew. Chem. Int. Ed. Engl., 22 (1983) 414.
- 3 D. Zargarian, P. Chow, N.J. Taylor and T.B. Marder, J. Chem. Soc., Chem. Commun., (1989) 540.
- 4 T. Rappert, O. Nürnberg, N. Mahr, J. Wolf and H. Werner, Organometallics, 11 (1992) 4156.
- 5 S.J. Davies, B.F.J. Johnson, M.S. Khan and J. Lewis, J. Chem. Soc., Chem. Commun., (1991) 187.
- 6 H.B. Fyfe, M. Mlekuz, D. Zargarian, N.J. Taylor and T.B. Marder, J. Chem. Soc., Chem. Commun., (1991) 188.
- 7 S. Patai, The Chemistry of Diazonium and Diazo Groups, Wiley,

New York, 1978; M. Regitz and G. Mass, *Diazo Compounds:* Properties and Synthesis, Academic Press, New York, 1986.

- 8 M.J. Menu, P. Desrosiers, M. Dartiguenave, Y. Dartiguenave and G. Bertrand, Organometallics, 6 (1987) 1822; E. Deydier, M.J. Menu, M. Dartiguenave, Y. Dartiguenave, A.L. Beauchamp, J.C. Brewer and H.B. Gray, submitted to Organometallics.
- 9 P. Chow, D. Zargarian, N.J. Taylor and T.B. Marder, J. Chem. Soc., Chem. Commun., (1989) 1545.
- 10 L. Carlton and G. Read, J. Chem. Soc., Perkin Trans., (1978) 1633.
- 11 J. Oshita, K. Furumori, A. Matsuguchi and M. Ishikawa, J. Org. Chem., 55 (1990) 3277.
- 12 W.T. Boese and A.S. Goldman, Organometallics, 10 (1991) 782.