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Abstract 

The reaction of I(CH,),Cm and an excess of LiI with [Mo(CNMe)(CO),(+Z,H,)1- gives crystallographically characterized 
cis-[MoI(CO),{=C(CH,),CH(CH,0H)NMe)(77-C5H5)]. This reacts with C,H,NO to give a high yield of the y-lactam 
Mek{C(=O)CH,CH,eH(CH,OH)}. The corresponding reaction of I(CH,),C%%$ with excess LiI and [Mo(CNMeXCO),(q-C,H,)1- 

gives cis-[{Mo(CO),{$-C(CH,),CH(CH,I)O)NHMe)] ( a so crystallographically characterized) rather than a carbene complex. 1 
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We discussed earlier [l] the use that can be made of 
the ease by which alkyl groups migrate to isocyanide 
[2-61 in making cyclic carbene complexes cis- 
[MI(CO),{=C(CH,),NMe}(?$,H,)] (M = MO or W> 
from the reactions between the anions [M(CO),- 
(CNMe)(+Z,H,)]- (1) and I(CH,),I. We demonstrate 
here the utilization of epoxides for the synthesis of 
cyclic molybdenum aminocarbene complexes in a strat- 
egy which also involves alkyl to isocyanide migration. 
Completion of this strategy by decomplexation of the 
resulting carbene (in this case to give high yields of a 
y-lactam) affords an efficient route to useful organic 
heterocycles. A closely related analogue of this y-lactam 
is known to act upon the mammalian nervous system, 
[7] and related y-lactams are used as nootropic drugs [s] 
or to combat arteriosclerosis [9]. 

We reasoned that a general approach to precursors of 
y-hydroxymethyl y-lactams could be provided by an 
intramolecular ring closure involving a nucleophilic at- 
tack of an imino nitrogen within a ‘metallacarbene moi- 
ety on an epoxide group (Scheme 1). Although epoxides 
are usually attacked by anionic nucleophiles at the less 
substituted terminus, [lo] the formation of a five-mem- 
bered ring, as in 2 (Scheme 21, was expected because 
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5-exo-tet cyclizations are favoured over 6-endo-tet pro- 
cesses [ll]. The isolation and characterization of the 
aminocarbene 2 reported here represents the first real- 
ization of the approach depicted,in Scheme 1. 

Addition of I(CH,),CHCH,O and an excess of LiI 
to a solution of [Mo(CNMe)(C0),(7)-C,H,)]- in THF 
at -78°C followed by warming to ambient tempera- 
ture, gave a maroon, alkaline, solution whose IR spec- 
trum [ v,,(THF); 1948s and 1860s cm-‘] indicated the 
formation of a cis-dicarbonyl complex. The solution 
was neutralized by addition of dilute aqueous hydro- 
chloric acid. Chromatography on alumina at ambient 
temperature afforded a red fraction from which dark 
red-purple crystals of the carbene complex 2 were ob- 
tained in 38% yield. This modest yield is the result of 
the sensitivity of the complex to decomposition, rather 
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Scheme 1. 

0022-328X/95/$09.50 0 1995 Elsevier Science S.A. All rights reserved 
SSDI 0022-328X(95)05503-7 



H. Adams et al./Journal of Organometallic Chemistry 494 (1995) C12-Cl4 Cl3 

than competing by-product formation. Infrared monitor- 
ing revealed the presence only of the carbene complex 2 
in the reaction mixture. The carbene carbon is manifest 
in the i3C NMR spectrum, which shows three signals 
[ Gc(CDCl,, - 50°C): 259.2, 252.0, 246.41 associated 
with two carbonyls and a carbene, in positions very 
similar to those found for cis-[MoI(CO),- 
{=~(CH,),~Me}(rl-C,H,)] [&-&D,cD,,- 60°C): 
254.3, 253.2, 253.2, 247.21 [l]. 

The anionic complex 3 is suggested as intermediate 
in this reaction. It is formed through nucleophilic re- 
placement of iodide in I(CH,),CHCH,O followed by 
migration of the resulting alkyl group to carbonyl. The 
occurrence of a subsequent 5-exe-tet cyclization is in- 
ferred from the constitution of the aminocarbene 2. An 
X-ray crystal structure analysis for 2 [12] (Fig. 1) 
confirmed that it is the five-membered ring which is 
formed. The carbene ligand possesses an envelope con- 
formation for the five-membered ring [r,m.s. deviation 
of plane C<llb, N(l), C(8), C(9) 0.018 A, deviation of 
C(10) 0.356 A]. This conformation is similar to that 
found in cis-[MoI(CO),{=C(CH,),NMe}(77-C,H,)] [l]. 

Reaction of complex 2 with C,H,N-0 (three equiv- 
alents, toluene at reflux, 24 h) cleaved the carbene from 
the metal to give the y-lactam 4 in 92% yield, with 96% 
purity (by GLC), after workup. The fate of the molyb- 
denum was not determined, but recycling of the molyb- 
denum is being investigated. 
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Fig. 1. Molecular structure of [MoI( =C(CH,),CH(CH,OH)NMe)- 
(CO),(T&H,)] (2). Selected bond lengths and angles: MO(~)-I(1) 
2.82801, MOW-C(~), 1.974(S), MO(~)-C(l), 1.974(8), MO(~)-C(8), 
2.167(7), N(l)-C(8) 1.293(10), N(l)-C(11) 1.495(11), N(l)-C(12) 
1.444(12), C(8)-C(9) 1.49501) 1(1)..0(3) 3.703, I(l)..H(0(3)) 2.70 
A; I(l)-Ma(l)-C(1) 79.2(3), I(l)-MO(~)-C(2) 128.6(3), C(l)- 
Ma(l)-C(2), 75.3(4), I(l)-MO(~)-C(8) 77.2(2), C(l)-Ma(l)-C(8) 
116.8(3), C(2)-Ma(l)-C(8) 75.8(3), MO(~)-C(l)-O(1) 175.4(9), 
Ma(l)-C(2)-O(2) 177.8(9), N(l)-C(8)-C(9), 108.8(6)“. 

Rather surprisingly, the use of I(CH,),CHCH,O did 
not lead to isolation of an analogous azacarbene. Al- 
though the IR spectrum of the mixture formed from 
I(CH,),CHCH,O, [Mo(CNMe)(CO),(~-C,H,)1-, and 
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Fig. 2. Molecular structure of [(M0(C0),{q2-C(CH,),CH- 
(CH,I)O)NHMeX77-C,H,)] (5). Selected bond lengths and angles: 
M&x=xl) 
2.168(10), MO(~)-C(1) 1.927(12), MO(~)-C(2) 1.927(13), MO(~)- 
C(12) 2.219(13), I(l)-C(14) 2.121(14), N(l)-C(12) 1.409(13), 
N(l)-MO(~)-C(2) 89.9(6), C(l)-MO(~)-C(2) 78.8(5), C(l)--MO(~)- 
C(12) 82.5(5), N(l)-MO(~)-C(12) 37.4(3), N(l)-MO(~)-C(1) 
109.9(5), C(2)-Ma(l)-C(12) 109.5(6), MO(~)-N(l)-C(12) 73.3(7), 
MO(~)-C(12)-N(1) 69.3(7)“. 

an excess of LiI was similar to that containing 2, no 
product could be isolated. It appears that a carbene 
complex was formed, but decomposed upon work-up. A 
prolonged reaction time led to replacement of these two 
carbonyl bands by two new bands [ v,,(THF): 1913s 
and 1819s cm-‘] assigned as the carbonyl ligands of 
compound 5. The 13C NMR spectrum showed no car- 
benoid signals. Owing to the complexity of the NMR 
spectra of 5 and its unusual constitution, it was charac- 
terized by X-ray crystallography (Fig. 2) [13]. In both of 
the essentially identical crystallographically independent 
molecules, the molybdenum is $-bonded to the 
MeHNC((CH,),CH(CH,I)O} ligand through the exo- 
cyclic CN bond. The saturated six-membered ring adopts 
a chair conformation [r.m.s. deviations thr?ugh atoms 
C(8), C(lO), C(ll), C(12) 0.006, 0.011 A, displace- 
ments of O(3) + 0.621, + 0.604 A, and of C(9) - 0.651, 
- 0.665 A]. Both the NHMe and CH,I groups are 
equatorial. The bonding of oxygen, nitrogen, and 
molybdenum to a single carbon atom as in 5, is to our 
knowledge, unique. 

A plausible mechanism for formation of 5 is pre- 
sented in Scheme 2. It involves an epoxide ring opening 
in complex 6 to give the intermediate 7, and subsequent 
ring closure through intramolecular nucleophilic attack 
of the alkoxide upon the carbene. A requirement for this 

process to take place exclusively is that the rate of 
attack of the aminocarbene nitrogen on the epoxide ring 
(as for complex 3) to give a six-membered right must be 
appreciably slower than intermolecular attack of iodide 
ion on the less substituted epoxide carbon atom. 
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