
Journal 
ofOfg-~ui6-. 

me t a l l iC  
Chemistry 

ELSEVIER Journal of Organometallic Chemistry 498 (1995) C10-C13 

Preliminary communication 

Direct synthesis of acetals by rhodium catalysed hydroformylation 
of alkenes in the presence of orthoformate 

K. Soulantica a, S. Sirol u S. Ko'inis a, G. Pneumatikakis a,*, Ph. Kalck b,. 
a Inorganic Chemistry Department, University of Athens, Panepistimiopolis, 157 71 Athens, Greece 

b Laboratoire de Catalyse et de Chimie Fine, Ecole Nationale Supdrieure de Chimie deToulouse, 
118, route de Narbonne 31077 Toulouse cddex, France 

Received 9 January 1995 

Abstract 

The two catalyst precursors [Rh2(/x-penicillamine)2(CO)4][OTf] 2 and [Rh2(/~-cysteine)2(CO)4][OTf] 2 in the presence of 4 equiva- 
lents of P(OPh) 3 in triethyl orthoformate as solvent and reactant, permit the low pressure hydroformylation of various alkenes into the 
corresponding acetals. Apart from a few low-yield by-products resulting from isomerization of the substrates, the carbonylated products 
obtained directly and exclusively are acetals. 
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Acetals are protected forms of aldehydes, and several 
recent papers have described not only the catalytic 
conversion of an aldehyde into the corresponding acetal 
[1] but also the direct production of acetals by hydro- 
formylation when identification of chiral compounds are 
required by NMR spectroscopy [2,3]. In particular, Stille 
and Parrinello have shown that hydroformylation of 
various prochiral alkenes catalysed by platinum-tin sys- 
tems can be carried out in triethyl orthoformate, leading 
directly the diethylacetals of interest [2,3]. However, the 
introduction of trialkyl orthoformate as solvent or reac- 
tant causes a dramatic reduction in reaction rates. Cobalt 
catalysts have also been used but the yields remain very 
poor [4]. Recently Claver, Castill6n, et al. carried out 
the hydroformylation of alkenes in triethyl orthoformate 
in the presence of pyridinium 4-toluene sulfonate and 
obtained high yields of the expected acetals [5,6]. 

In addition, Venanzi et al. have shown that aldehydes 
and ketones can be acetalized under mild conditions of 
temperature [1] using various rhodium precursors that 
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generate species with Lewis-acid character and contain 
the triphosphine H3CC(CH2PPhe) 3. 

We report preliminary results where 1-0ctene or 
monoterpenes are chemoselectively converted into di- 
ethylacetals by use of cysteine- or penicillamine-bridged 
dicationic dirhodium complexes as catalyst precursors. 

The classical hydridorhodium mononuclear complex 
[HRh(CO){P(OPh)3}3] , in triethylorthoformate as sol- 
vent (molar alkene/rhodium ratio = 300) at 84 °C, 1.2 
MPa and for 18 h gave a 31% conversion of trans-iso-  

limonene into a mixture of 50% acetal and 50% alde- 
hyde, with a small amount of isomers of the substrate 
(Eq. 1). 
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The complex [Rh2(/x-S-tBu)2(CO)2{P(OPh)3}2] 
(molar alkene/dirhodium ratio--600) in the presence 
of 10 equivalents of P(OPh) 3 transformed 50% of 



K. Soulantica et al. /Journal of Organometallic Chemistry 498 (1995) C10-C13 C l l  

limonene into carbonylated products with selectivities 
of 93% in aldehyde and only 7% in acetal (Eq. 2). 

HC(OEt) 3 

CHO CH(OEt) 2 

( + )-R-limonene 

(2) 

A similar experiment carried out with (1R, 4R)-iso- 
limonene (see Eq. 1) in the presence of 4 equivalents of 
P(OPh) 3 gave a 28% conversion, including 4% isomer- 
ization of the substrate, and a ratio of aldehyde/acetal 
of 96/4. 

We have found that dinuclear precursors containing 
cysteine or penicillamine as bridging ligands can trans- 
form l-octene, trans-isolimonene or fl-pinene into ac- 
etal with complete chemoselectivity. Provided the reac- 
tion time was adjusted for each substrate, only minor 
amounts of isomers of the starting materials were pro- 
duced (2-octene, terpinene or terpinolene..., a-pinene 
respectively). 

The two thioamino acids HSCR2CH(NH3)+(COO) - 
[R = H (cysteine 1) and R = Me (penicillamine 2)], 
were used as bridging ligands to prepare the two te- 
tracarbonyl complexes [Rh2(/z-1)x(CO)n][CF380312, 3, 
and [Rh2(/x-2)2(CO)4][CF3SO3] 2, 4, that we isolated in 
the solid state. Addition of Ag(CFaSO 3) to [RhEC12- 
(CO) 4] in acetone under CO led, filtration of silver 
chloride and addition of 1 or 2, to the two complexes 
3 and 4, in which the bridging ligands are 
-SCR2CH(NHa)+(COOH) (Fig. 1). 

Complex 3 shows three v(CO) bands at 2096 (s), 
2073 (s) and 2027 (vs) cm -1 (KBr pellets) consistent 
with a CEv symmetry, and no v(SH) band in the 2550 
cm-1 region. The COOH group is characterized by its 
v(CO) band at 1740 cm -1 and the NH~- group by its 
v(NH) band at 2955 cm -1. Similarly, complex 4 has 3 
v(CO) bands at 2084 (s), 2068 (s) and 2018 (vs) cm -1, 
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Fig. 1. Schematic diagram showing the two tetracarbonyl (/x-cy- 
steine) or (/z-penicillamine) dirhodium complexes 3 and 4. 

a v(CO) band at 1733 cm-1 for the COOH group, and 
a v(NH) band at 2971 cm -1 consistent with a NH~ 
group [7]. 

Addition of 4 equivalents of triphenylphosphite to 
complexes 3 and 4 in triethyl orthoformate generated 
active species which converted the substrates at 0.5, 1.2, 
or 2.1 MPa and 84 °C into the corresponding diethylac- 
etals (Table 1). For instance 4, 1-octene (row 1, Table 
1) gave 87% conversion with only traces of 2-octene in 
30 min. Two acetals were obtained with almost 100% 
chemoselectivity, the distribution being 1, 1-diethoxy- 
2-methyl-octane (18%) and 1, 1-diethoxy-nonane (82%). 
This catalysis corresponds to a turnover frequency of 
1080 mol of product (mo1-1 of precursor) -1 h -1. (1R, 
4R)-isolimonene (row 2, Table 1) reacted more slowly 
(53% in 3 h) and 47% of the acetal was produced. 
About 2% heavy-products and 4% isomers were identi- 
fied. 

Harsher conditions need to be used for fl-pinene. 
Row 6, Table 1 shows that 2.1 MPa and 98 °C permit- 

Table 1 
Direct synthesis of acetals 
precursor a 

by hydroformylation of alkenes using [Rh(/x-SCR2CH(NHa)(COOH)]2[OTf] 2 [R = H (3), R = Me (4)] as catalyst 

Row Catalyst b Substrate P t Conversion c Yield d By-products 
(MPa) (h) (%) (%) 

1 4 1-octene 0.5 0.5 nd 87 e traces of 2-octene 
2 3 (1R, 4R)-isolimonene 1.2 3 53 47 isomers of isolimonene 
3 3 (1R, 4R)-isolimonene 1.2 18 97 44 isomers and heavy products 
4 4 (1R, 4R)-isolimonene 1.2 18 95 76 isomers and heavy products 
5 4 (-)-/3-pinene 2.1 18 56 52 a-pinene 
6 4 ( - )-/3-pinene 2.1 18 80 f 71 a-pinene 

a Reaction conditions: 40 ml triethyl orthoformate, 60 mmol substrate, substrate/catalyst = 600, 0.4 mmol triphenyl phosphite, C O / H  2 = 1/1,  
T = 84°C. 
b 3 or 4 prepared in triethyl orthoformate starting from 0.1 mmol of [Rh2C12(CO)4]. 
c Substrate converted measured by gas phase chromatography with an internal standart (acetophenone). 
d Yield in acetals. 
e Octene converted based on the total octene (1- and 2-) present, measured by gas phase chromatography with an internal standard (anisole). 
f T = 98°C. 
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Fig. 2. 13C NMR (62, 9 MHz, CDC13) data for acetals produced by hydroformylation of (-)-fl-pinene and (1R, 4R)-isolimonene in 
triethylorthoformate. 

ted 80% transformation of the starting material in 18 h. 
However, at this temperature there was 8% isomeriza- 
tion to a-pinene, whereas at 84 °C only 4% isomeriza- 
tion occured (row 5). The reaction is diastereoselective. 
A chiral carbon atom is formed, and the two configura- 
tions were obtained in a ratio of 87% (R) to 13% (S) i.e. 
a diastereoisomeric excess of 74% (Eq. 3) as observed 
by GC. However, in this case the two chiral bridging 
ligands do not improve the diastereoselectivity with 
regard to [Rh2(/.t-S-tBu)2(CO)4] plus P(OPh) 3. Pittman 
et al. [8] have previously observed such an asymmetric 
induction (67% d.e.) in the absence of chiral ligands on 
their rhodium or cobalt precursors. However, they ob- 
tained mixtures of 3- and 10-formylpinane and the 
corresponding alcohols, depending on the reaction con- 
ditions. 

~ C H ( O E t ) 2  @ C H ( O E t ) 2  + --- 

4 + 4 P(OPh)3 + 
2.1 MPa 84°C 

( - )-fl-pinene 87% 13% 
(3) 

Here, the two acetals resulting from (-)-fl-pinene 
were isolated by column chromatography on silica gel 
(hexane, ethyl acetate) and identified by GC/MS,  and 
1H NMR, and 13C NMR spectroscopy (see Fig. 2). A 
similar procedure was carried out for (1R, 4R)-iso- 
limonene, and we also obtained the two acetals. In this 
case, no diastereoisomeric excess was observed. 

The main benefit of using 3 or 4 as catalyst precur- 
sors in the hydroformylation reaction carried out in 
trialkyl orthoformate is to produce acetals directly in 
high yield with no decrease of the reaction rate. 
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