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Preliminary communication

[Cp*FeP6MoCp*]: A dinuclear complex with a P4 and a P2 ligand
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Abstract

The cothermolysis of [Cp*Fe(h5-P5)] (1) and [Cp*Mo(CO)3CH3] (2) gives [Cp*(OC)Mo(m-h2:2-P2)2FeCp*] (3), which on
reaction with P4 yields [Cp*MoP6FeCp*] (4). Its X-ray crystal structure determination reveals, for the ‘P6’ ligand, a m-h4:2-P4 as
well as a m-h2:2-P2 co-ordination type. © 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

In 1985, the triple-decker sandwich complex
[Cp*Mo(m-h6:6-P6)MoCp*] with hexaphosphabenzene,
cyclo-P6, as middle deck [1], was synthesized and struc-
turally characterized. This was the starting point for a
novel chapter about complexes with Pn ligands [2]. In the
meantime, the sandwich compound [Cp*Fe(h5-P5)] (1)
[3] turned out to be a versatile educt. Besides the terminal
co-ordination of up to four 16 VE MLn fragments to the
P lone pairs of the cyclo-P5 ligand of 1 ([4]a), its reaction
with the 12 VE fragment {Cr(CO)3} gives a 30 VE
triple-decker in a stacking reaction ([4]b). Other com-
plexes show envelope conformation ([4]c), opening ([4]c)
or degradation ([4]d) of the cyclo-P5 ligand.

2. Results and discussion

The cothermolysis of 1 and 2 gives the dinuclear
complex 3 with two P2 ligands in moderate yield (c.f.

the complexes: [{Cp*(OC)Mo}2(m-h2:2-P2)2] ([1,5]a),
[{Cp*%Rh}2(m-h2:2-P2)2] ([5]b), Cp*’=C5Me4Et, and
[{Cp*Fe}2(m-h2:2-P2)2] ([5]c)). On reaction with white
phosphorus, P4, a P2 unit can be transferred to 3 with
formation of the heterobimetallic cluster 4 containing a
‘P6’ ligand (Scheme 1). 3 forms a dark-brown micro-
crystalline powder, 4 are red-brown needles. Both com-
plexes are sparingly soluble in pentane, slightly soluble
in toluene and readily soluble in dichloromethane2.

2 Complex 3: 198.2 mg (0.57 mmol) 1 [3] and 185.0 mg (0.56 mmol)
2 [11], dissolved in 50 ml xylene, were heated to reflux for ca. 4 h with
stirring (IR: only the (CO) band of 3 at 1954 cm−1). After evaporation
of the solvent under oil-pump vacuum, the residue was dissolved in 20
ml dichloromethane and ca. 1 g silica gel was added. The mixture was
concentrated (oil-pump vacuum) until it was free-flowing. Column
chromatography (column: 3×6 cm, neutral Al2O3 (3% H2O), petroleum
ether) with petroleum ether/diethyl ether (100:1) afforded 76.4 mg (23%)
dark-brown 3.
Complex 4: 116.7 mg (0.20 mmol) 3 and 100.0 mg (0.81 mmol) P4, each
dissolved in ca. 20 ml xylene, are heated for 90 min to 180°C (oil-bath
temperature) in a pressure Schlenk tube. For its isolation c.f. the synthesis
of complex 3: 10 ml dichloromethane, silica gel as column material
(column: 10×1 cm). 44.5 mg (36.5%) 4 were eluted with petroleum
ether/diethyl ether (100:1). The red-brown microcrystalline needles of
4 can be recrystallized from dichloromethane/pentane (4:1) at −30°C.

* Corresponding author. Fax: +49 631 2052187.
1 X-ray crystal structure determination.
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Scheme 1. The formation of the heterobimetallic cluster (4), containing a ‘P6’ ligand, from the dinuclear complex 3.

2.1. NMR data of the complexes 3 and 4

Assignment of the Cp* singlets in the 1H-NMR
spectrum to the complexes 3 and 4 (see Table 1) was
made by comparing it with spectra of the compounds
[Cp*(OC)Mo(P2)2FeCp*%] (3%) and
[Cp*Mo(P4)(P2)FeCp*%] (4%), Cp*%=C5Me4Et [6]. Tem-
perature-dependent (210�363 K) 1H- and 31P-NMR
studies gave no indication for a dynamic behaviour of
the (P2)2 ligands in complex 3. In compound 4, the
connectivities of the phosphorus atoms have been de-
termined by a 31P, 31P COSY-45 NMR spectrum. Its
simulation and iteration were carried out with PERCH-
NMR software.

The cross peaks in the 31P, 31P COSY-45 NMR
spectrum give evidence for a 1J(PP) coupling between
the atoms P3,4 and P5,6, respectively (simulation af-
fords −320 Hz). The coupling constant 1J(PP) of
−405 Hz indicates a multiple bond character in the
P4–P5 interaction (c.f. the discussion of the X-ray
structure). 1J(PP) of −200 Hz for P1–P2 lies at the
lower end of the expected range. For P1–P6 and P2–
P3, a coupling constant of 55 Hz was found. This result
does not favour a direct coupling between these atoms
(see also Section 2.2). A coupling constant of −33.5
Hz was detected for P1,5 and P2,4; a value which
points to a coupling across the Mo atom. Obviously,
such a type of coupling (Mo/Fe) may be the reason for
the small coupling constant (4.4 Hz) between the atoms
P1,3 and P2,6, respectively.

2.2. Molecular structure of
[Cp*Mo(m-h4:2-P4)(m-h2:2-P2)FeCp*] (4)

Selected bond lengths (Å) and angles (°) are compiled
in Table 2. Fig. 1 shows the molecular structure of
compound 4.

For complex 4 an X-ray structural study3 reveals a
butterfly skeleton (Fig. 1) for the atoms Mo1, P1, P2
and Fe1, where an additional Mo1�Fe1 bond affords a
dimetalla-diphosphatetrahedrane substructure. The
bond distance P1–P2 (2.08 Å) lies in the range of a P2

4 e− donor ligand [2]. The dihedral angle at the P1–P2
axis of the ‘butterfly’ (P1, P2, Mo1/P1, P2, Fe1) is
101.5°; for 1,3-diphospha bicyclo[1.1.0]butane, 107.3°
have been calculated (Ref. [7] and references therein).
The distance of 2.765 Å between the atoms Fe1 and
Mo1 has bonding character. Interestingly, the main axis
of the complex has a zig-zag shape (Fig. 1) and the
angles Cp*(centr.)–Fe1–Mo1 (170.4°) and Cp*(centr.)–
Mo1–Fe1 (161.5°) show a different deviation from
linearity. P3 to P6 form a trapezoid with alternating
bond lengths: P3–P4=2.18, P4–P5=2.09 and P5–
P6=2.18 Å; a result that formally points to a deproto-
nated (metalated) 6e−-donor tetraphosphabutene
ligand (�P

�
�P�P�P

�
�; c.f. the isolobal molecules H3C–

CH�CH–CH3(C4H8)lH2P–P�P–PH2(P4H4)). This
ligand can formally be regarded as P4

4− ion (2− �P−
P=P−P�2−).

3 Crystal-structure data of complex 4: C20H30FeMoP6, Mw=
608.1, orthorhombic, space group P212121 (no. 19), a=11.1119(12),
b=14.5231(12), c=15.6239(14) Å, Mo–Ka radiation, l=0.71073 Å,
T=298 K, V=2521.4(4) Å3, Z=4, Dc=1.602 mg mm−3, crystal
dimensions: 0.30×0.22×0.13 mm3, diffractometer: Stoe IPDS,
range for data collection: 1.91BuB24.08°, measured reflections
29304, independent reflections 3973 (Rint=0.0268), R indices [I\
2s(I)]: R1=0.0223, wR2=0.0615, R indices (all data): R1=0.0234,
wR2=0.0682. Refinement method: full-matrix least-squares on F2,
structure solution: direct methods, Siemens SHELXTL. Crystallo-
graphic data (excluding structure factors) have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publi-
cation no. CCDC 100917. Copies of the data can be obtained on
application to the Director, CCDC 12 Union Road, Cambridge CB2
1EZ, UK (Telefax: +44 1223 336033; e-mail: de-
posit@chemcrys.cam.ac.uk).
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Table 1
1H- and 31P-NMR dataa of the complexes 3 and 4 (in C6D6, 298 K,
d in ppm, J in Hz)

[Cp*(OC)Mo(P2)2FeCp*] (3) [Cp*Mo(P4)(P2)FeCp*] (4)

d 1H
1.15 s (15H, Fe)1.70 s (15H, Mo)

1.77 s (15H, Fe) 1.30 s (15H, Mo)

d 31P
AA%MM%XX% spin systemAX spin system
302.6 (m, 2P,31.3(d), −118.0(d)
P4/5=AA%)b

1J(AX)=−460 81.0 (m, 2P, P3/6=MM%)b

−147.5 (m, 2P,IRc (in xylene): n̄(CO)=1954 cm−1

(s) P1/2=XX%)b

NMR-softwared and Ref.
[6]

a FT-NMR spectrometer AC 200 and AMX 400 (Bruker). 1H-NMR
(200.13 or 400.14 MHz, TMS extern), 31P (81.01 or 161.97 MHz, 85%
H3PO4 as extern standard.
b For the assignment of numbers c.f. Fig. 1.
c IR: Perkin Elmer 16 PC, FT-IR spectrometer.
d R. Laatikainen and M. Niemitz, PERCH-NMR Software, Univer-
sity of Kuopio, Finland, 1995.

Fig. 1. Molecular structure for [Cp*Mo(m-h4:2-P4)(m-h2:2-P2)FeCp*]
(4) with the atom numbering scheme.

The bond distances Mo1–P3/P6=2.44/2.44 Å;
Mo1–P4/P5=2.59/2.59 Å, Mo1–P1/2=2.53/2.54 Å;
Fe1–P1/2=2.29/2.30 Å and Fe1–P3/P6=2.28/2.28 Å
reflect the high symmetry of the Mo(P4)Fe(P2) skele-
ton. An unsymmetric arrangement was found for the
Cp*Mo1 fragment lying above the P4 trapezoid (2.44/
2.59 Å). In contrast to the 28 VE-triple-decker
[Cp*Mo(m-h6:6-P6)MoCp*] [1], the six phosphorus
atoms of 4 define two planes with an interplanar angle
of 144° between P1,2,3,6/P3,4,5,6. Almost equal pairs
of intra-ring angles are found for: P1,2=106.9/107.0°,

P3,6=129.6° and P4,5=109.1/109.6°. Difficulties arise
upon attempted interpretation of the P···P distances of
2.50 and 2.51 Å for P2···P3 and P1···P6, respectively.
In the chemistry of complexes with Pn ligands [2], to
the best of our knowledge, the longest intact P–P
bond of 2.46 Å has been found for [RhCl(h2-
P4)(PPh3)2] [8]. Thus, the distances of 2.50/2.51 Å in 4
can be regarded as non-bonding and the ligands are
best described as m-h4:2-P4 as well as m-h2:2-P2 co-ordi-
nation type.

The large differences in P–P bond lengths and the
folding angle of 144° for the ‘P6’ ligand (c.f. the sand-
wich complex [Cp*Fe{Et2B2(CPri)2CMe}] [9]a) do not
allow a description of 4 as a 30 VE triple-decker
complex. (c.f. Ref. [2]). According to the Wade/Min-
gos rules ([10]a), the formal electron count gives 9 SEP
(skeletal electron pairs) or 54 cluster electrons. This
result is consistent with a closo-structure of the 8
vertices polyhedron 4. More meaningful are the fol-
lowing considerations: (a) The skeleton of 4 can also
be regarded as a 6 vertices polyhedron (distorted Mo1,
Fe1, P3,4,5,6 pentagonal pyramid) with additional co-
ordination of a P24 e− donor ligand (isolobal with
HC�CH, c.f. Fig. 1). The resulting electron count of 8
SEP is in accordance with a nido structure (nido-pen-
tagonal bipyramid). The folding angle at P3, P6 of the
five-membered ring (Fe1, P3–P6) is 22.7°. (b) For

Table 2
Selected bond lengths (Å) and angles (°) for [Cp*Mo(m-h4:2-P4)(m-
h2:2-P2)FeCp*] (4)

Bond lengths (Å)
Mo1–P1 2.082(2)P1–P22.5321(9)

2.5391(9) P2···P3Mo1–P2 2.500(2)
2.4443(10)Mo1–P3 P3–P4 2.179(2)

Mo1–P4 2.092(2)P4–P52.5878(11)
P5–P6 2.181(2)2.5905(11)Mo1–P5

Mo1–P6 2.4352(9) P1···P6 2.508(2)
3.539Fe1–P1 P3···P62.2932(19)

2.2979(10)Fe1–P2 Mo1–Fe1 2.7646(4)
2.2836(9) Mo1–Cp*(centr.)Fe1–P3 2.044
2.2774(9) Fe1–Cp*(centr.)Fe1–P6 1.754

Bond angles (°)
P1–P6–P5 129.61(5)106.96(5)P1–P2–P3

P2–P1–P6 106.89(5) P2–P3–P4 129.59(6)
109.12(7)P3–P4–P5 Mo1–Fe1–Cp*(centr.) 170.4
109.64(7)P4–P5–P6 Fe1–Mo1–Cp*(centr.) 161.5
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polyhedra with a common edge (pentagonal pyramid
Mo1, Fe1, P3,4,5,6/tetrahedrane Mo1, Fe1, P1,2; Fig.
1) the electron count ([10]b) of 54 cluster electrons is
the correct number for complex 4. Fig. 1 shows that in
the heterobimetallic cluster 4 both metal atoms fulfill
the 18 e− rule.
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31P31P COSY-45 NMR spectra and helpful discussions
with Professor Siebert, Heidelberg, about the structure
of complex 4 are gratefully acknowledged.

References

[1] O.J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. 97
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