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Abstract

Palladium(0) ¢-alkyl isocyanide complex, generated in situ by mixing palladium(II) acetate or palladium(II) acetylacetonate and
an excess of f-alkyl isocyanide, is a novel and efficient catalyst for activation of the Si—Si bond of disilanes, which promotes
bis-silylation of carbon—carbon double bonds as well as triple bonds. Intramolecular disilanyl ethers of propargyl alcohols
underwent 4-exo-cyclization reactions in the presence of the palladium z-alkyl isocyanide catalyst, producing four membered cyclic
oxasiletanes. The intramolecular disilanyl ethers of optically active secondary propargylic alcohols followed by treatment with
n-BuLi provided optically active allenylsilanes with high stercoselectivity. The intramolecular bis-silylation of allylic alcohols
proceeded with 4-exo-ring closure, giving four membered oxasilatanes, which were converted to allylsilanes stereoselectively via
dimerization and subsequent disproportionation. Thus, highly enantio-enriched allylsilanes were prepared from the corresponding
optically active secondary allylic alcohols with 1,3-chirality transfer. Related silylboration reactions of carbon—carbon multiple

bonds were also described. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Isocyanides, which are structurally isoelectronic to
carbon monoxide, function as m-acid ligands for com-
plexation with various transition metals. The complexa-
tion with transition metals causes activation of
isocyanides which has made wide synthetic application
of isocyanides possible. Thus, isocyanides have been
used as a C, source in organic synthesis, which is the
synthetic equivalent to carbon monoxide.

On the other hand, the catalytic activities of transi-
tion metals conferred by isocyanide coordination could
lead to activation of any coordinating substrates on the
metals, which have not been synthetically utilized. This
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paper describes bis-silylation and silylboration reactions
of carbon—carbon multiple bonds catalyzed by the
palladium(0) z-alkyl isocyanide complex. To our best
knowledge, this provides the first example of a palla-
dium isocyanide complex catalyst, in which isocyanide
functions just as a ligand on the metal, a ‘spectator
ligand’, but not a reagent.

Several years ago, we found that a catalyst generated
in situ by mixing Pd(OAc), and an excess of z-alkyl
isocyanide promoted addition of the Si—Si bond of
hexamethyldisilane, which had been known to be inert
in the presence of palladium complexes, across the
carbon—carbon triple bonds [1]. The palladium z-alkyl
isocyanide complex has been successfully applied to
intramolecular bis-silylation of carbon-carbon double
bonds as well as triple bonds, leading to regio- and
stereoselective syntheses of organosilicon compounds
which are useful in organic synthesis.
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Concerning an active palladium species in the cata-
Iytic reactions, a bis(z-alkyl isocyanide)palladium(0)
complex may be presumably generated from Pd(OAc),
and an excess of ¢-alkyl isocyanide. Indeed, bis(z-alkyl
isocyanide)palladium(0), which is independently pre-
pared by the reaction of the (cyclopentadienyl)(p-al-
lyl)palladium(II) complex [2] with ¢-alkyl isocyanide,
promoted an activation of the Si—Si bonds of disilanes.

2. Formation of bis(organosilyl)bis(z-alkyl
isocyanide)palladium(IT) complexes

Oxidative addition of the silicon—silicon bond of
1,1,2,2-tetramethyl-1,2-disilacyclopentane onto bis(¢-
butyl isocyanide)palladium(0) took place instanta-
neously at room temperature in benzene, giving a
six-membered cyclic bis(organosilyl)bis(z-butyl iso-
cyanide)palladium(IT) complex (3a), which was isolated
by crystallization in high yield [3]. An X-ray analysis of
the related six-membered cyclic bis(organosilyl)bis(1-
adamantyl isocyanide) complex (3b) revealed a four
coordinated square planar structure [4,5].
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Of interest is that reaction of bis(disilanyl)dithiane 4
with an equimolar amount of bis(z-butyl iso-
cyanide)palladium(0) resulted in the formation of a
four membered cyclic bis(organosilyl) palladium(II)
bis(z-butyl isocyanide)complex together with 1,1,2,2-te-
tramethyl-1,2-diphenyldisilane. Presumably, the forma-
tion of 5 may have arisen from the simultaneous
activation of the two Si—Si bonds on palladium, which
led to intramolecular metathesis (disproportionation)

[6].
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A stoichiometric reaction [5] of the bis(organosi-
lyl)palladium(IT) complex (5) with terminal alkynes or
bis(methoxycarbonyl)acetylene proceeded smoothly at
room temperature, giving the corresponding spiro-disi-
lacyclopentene derivatives in high yields, as illustrated
below. However, attempts at the reactions with dialkyl-
acetylenes as well as unactivated alkenes have all failed
even using forced conditions.
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3. Bis-silylation of carbon—carbon multiple bonds
catalyzed by palladium(0)(z-alkyl isocyanide)
complex—intramolecular bis-silylation of alkynes

The palladium(0) ¢-alkyl isocyanide catalyst failed to
promote the intermolecular bis-silylation of internal
alkynes. However, disilanyl ethers 6 of homopropar-
gylic alcohols having internal carbon—carbon triple
bonds underwent intramolecular bis-silylation with 5-
exo-ring-closure to give cyclic oxasilolanes 7 in good
yields in the presence of a catalytic amount of palladi-
um(II) acetate and an excess of 7-octyl isocyanide [7,8].
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50°C or reflux R
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A = H, Me, Ph, SiMe,
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A highly sterically congested tetrakis(organosilyl)ethene
9 was successfully synthesized by intramolecular bis-
silylation of 8 under high pressure [8].
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The intramolecuar bis-silylation of propargylic alco-
hols is noteworthy, since few examples have been
known for 4-exo-cyclization reactions producing four-
membered ring organosilicon compounds containing
Si—O bonds. Reaction of disilanyl ether 10a prepared
from a primary propargylic alcohol gave the eight-
membered ring compound 11a in good yield [9]. The
formation of 11a may be rationalized by initial 4-exo-
cyclization followed by dimerization of the unstable
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oxasiletane [10]. In fact, the four-membered cyclic com-
pound 12b was formed quantitatively in the reaction of
10b prepared from the corresponding secondary alco-
hol, but was difficult to be isolated. Moreover, the
reaction with tertiary 10c afforded 12¢, which was
chromatographically stable and was isolated in high
yield.

SiMesPh Hex
thsli/ 27 Hex o
o F PhMesSi “SiPh,
. PhoSi SiMe,Ph
R R o
10a R=R'=H Hex
10b R=Me, R'=H 11a
10c R=R'=Me !
Pha . when 21
WNC oS ER:R':H( )
SiMesPh | ...
Pd(acac),
toluene, reflux R R Hex

12b R=Me, R'=H
12¢ R=R'=Me

4. Stereospecific synthesis of chiral allenylsilanes

The intramolecular bis-silylation of 13 (R = Me,
R,5R”Si = PhMe,Si), prepared from 3-decyn-2-ol, af-
forded the four-membered 14 in high yield under reflux
in toluene, which was subsequently treated with n-
butyllithium in THF, providing allenylsilane derivative
15 [11].
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New preparative method of optically active allenylsi-
lanes has been developed according to the procedure.
Optically active allenylsilane (-)-15a ([a]¥ = -13.2 (c =
1.7, benzene)) prepared from (R)-13a of 96.7% enan-
tiomeric excess (ee) was subjected to a TiCl, mediated
reaction with cyclohexane-carboxaldehyde under the
conditions reported by Danheiser et. al. providing syn-
homopropargylic alcohol 16a of 93.2% ee with (1S,2S5)
configuration stereoselectively. The stereochemical out-
come indicates that allenylsilane 15a with (R)-configu-
ration was formed via the two stereospecific processes,
i.e. cis-addition of the Si—Si bond to the carbon-car-
bon triple bond and syn-elimination of the resultant
silanolate. Probably, the subsequent reaction of cyclo-

hexane-carboxaldehyde with high stereoselectivity at
the n-face anti to the silyl group to give (15,25)-16a
with high ee [11].
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5. Intramolecular bis-silylation of alkenes catalyzed by
palladium(0)(z-alkyl isocyanide) complex

In the intramolecular bis-silylation reactions [12] of
homoallylic alcohols, the reactivities of the carbon—car-
bon double bonds decreased in the following order, i.e.,
monosubstituted > geminally  disubstituted > vicinally
disubstituted double bonds. The vicinally disubstituted
alkenes failed to give cyclization products, while the
monosubstituted alkenes underwent the intramolecular
bis-silylation even at room temperature in high yields.
However, the intramolecular bis-silylation of vicinally
disubstituted carbon—carbon double bonds was
achieved by a choice of the disilanyl group. Employ-
ment of disilanyl groups having aryl substituents on the
silicon atom adjacent to the oxygen remarkably en-
hanced the reactivities for the bis-silylation reactions as
manifested in the bis-silylations of 17 and 18. The
intramolecular bis-silylation proceeded with complete
cis-addition.
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6. Stereoselective synthesis of highly enantio-enriched
allylsilanes

The intramolecular bis-silylation of terminal al-
lylic alcohols [13,14] proceeded under mild condi-
tion, although the expected bis-silylation products
were not isolated. The reaction mixture was di-
rectly subjected to the oxidation with H,O, to af-
ford 1,2,3-triols in moderate stercoselectivities. The
bis-silylation with the related 4-disilanyl-1-butenes
underwent the stereoselective 4-exo-cyclization to
give the corresponding silacyclobutanes in moderate
stereoselectivities.
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SiMexOli-Pr) 2
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Y\ toluene ] . then Ac,O
R 35°C R SiMe,Oy-Pr) Et;N R
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85:15

Disilanyl ether (E)-21, which was prepared from
the corresponding allylic alcohol and 1-chloro-2,2-
dimethyl-1,1,2-triphenyldisilane, was heated for 2 h
in the presence of Pd(acac), (2 mol%) and 1,1,3,3-
tetramethylbutyl isocyanide (8 mol%) under reflux
in toluene. Unexpectedly, the reaction gave (E)-al-
lylsilane 22 (49%) and six-membered cyclic siloxane
23 (46%), which were separated and isolated by
column chromatography, through disproportionation
of the four-membered oxasiletane intermediate 24.
Treatment of 23 with #n-butyllithium in THF at
0°C led to the formation of (£)-22 in high yield
[15]. Noteworthy is that the relative stereochemistry
of the three consecutive stereocenters in 23 as well
as the trans geometry of the carbon-carbon double
bond in 22 was completely controlled. The result
obviously indicates the intramolecular bis-silylation
of allyl alcohols takes place with highly stereoselec-
tive 4-exo-cyclization to give trans-oxasiletane 24. It
is noted that (F)-allylsilane 22 was obtained also
from (Z)-21 in high yield.

The present palladium-catalyzed bis-silylation of
allylic alcohols followed by treatment with n-butyl-
lithium provides a convenient and general one pot
synthesis of (FE)-allylsilanes [15].
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The highly seclective formation of (F)-allylsilanes
prompted us to enantio-enriched allylic alcohols as the
starting materials, which are readily available by asym-
metric synthesis, e.g. Sharpless kinetic resolution. The
palladium-catalyzed reaction of (R)-(E)-25 (99.7-99.9%
ec) followed by the treatment with n-butyllithium gave
(S)-(E)-26 in 90% yield. On the basis of the stereoselective
bis-silylation followed by Peterson-type syn-elimination,
highly enantio-enriched (FE)-allylsilanes were prepared
from optically active allylic alcohols with 1,3-chirality

transfer.
2
RWR 1) Pd(acac),, X?ZNC 1 ]
6 _SiRpR __toluene, reflux R WR
Phe 2) n-BuLi or PhLi SiRR"
(R)-(E)-25 (SHE-26
Me\i/qux 1) Pd(acac),, X?ZNC . n
6\8,/SiMe2Ph toluene, reflux =
Phy 2) PhLi Lo
(R)-(2)-25 (R)-(E)-26

The stereoselective 1,3-chirality transfer may be explained
by diastereoface-selective intramolecular bis-silylation,
leading to the exclusive formation of 3,4-trans-oxasila-
tane intermediate, as illustrated below.
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7. Silylboration of carbon—carbon multiple bonds

An addition of a silicon-boron bond of
(dimethylphenylsilyl)pinacolborane (27) to alkynes took
place stereoselectively and regioselectively at reflux in
toluene in the presence of palladium(0) ¢-alkyl iso-
cyanide catalyst, giving the corresponding (Z)-1-boryl-
2-silylalkenes (28) [16].

Pd(OAc),

o} ><>(NC

%
PhMezS—B + R——=
e} B(Pin)
. -~
27 Pin=_ 28
o)

Double insertion of alkynes into the Si—B bond of 27
was catalyzed by nickel(0) catalyst, generated in situ
from nickel(II) acetylacetonate and di(i-
butyl)aluminum hydride, providing cis, cis-1-silyl-4-bo-
ryl-1,3-butadiene derivatives stereoselectwely 17].

SiMeoPh

Ni(acac),

J— DIBAH SIMezF’h ~~ “SiMePh
27 + R
B(Pin) B(Pin)

(major) (minor)

An application of the silaborative dimerization to 1,7-
octyne provided the 1,2-dimethylenecyclohexane deriva-
tive in moderate yield [17].

T Ni(acac),—DIBAH =~ ™ SiMezPh
27 * i
L . _B(Pin)

30

Unlike the silylboration of alkynes, alkenes underwent
the insertion reaction into the silicon—boron bond of
(dimethylphenylsilyl)pinacolborane (27) catalyzed by
Pt(CH,=CH,)(PPh;), complex catalyst but not by palla-
dium ¢-alkyl isocyanide. It is remarked that the regio-
chemistry of the silaborations with alkenes was

opposite to that with alkynes, in which the silicon
group is stereoselectively introduced at the less substi-
tuted terminal carbon [18].

B(Pin)

Pt(0) cat.
SiMesPh

R
27 * nCothig

31
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