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Abstract

The synthesis and X-ray crystal structure of the [4]ferrocenophane compound [1,2-B2(NMe2)2{1,1%-(SC5H4)2Fe}] which contains
a B–B bond are described. The ferrocene-1,1%-dithiolate group bridges the B–B bond of the diborane(4) unit [B–B 1.709(9) Å]
in a 1,2- fashion. Each boron centre is trigonal planar, the angle between these planes being 82.0° such that the conformation
about the B–B bond is staggered rather than eclipsed. All other angles fall within expected ranges indicating that there is little
strain present in this compound. © 1999 Elsevier Science S.A. All rights reserved.
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In recent years, [n ]ferrocenophanes have received re-
newed attention as precursors to polymeric materials
prepared by ring-opening polymerisation (ROP) reac-
tions [1], particularly as a result of work by Manners
and coworkers. Numerous compounds are known with
silicon [2], carbon [3] and tin containing bridges [4], but
only a few boron containing species have been charac-
terised [5]. Two examples are the [1]ferrocenophanes (1)
reported by Braunschweig and Manners [6] and, of
particular interest with respect to this study, the dibo-
rane(4) derived [2]ferrocenophane (2) prepared by the
group of Herberhold [7], this former species being
highly strained and undergoing ROP at 190°C. As part
of our own interest in diborane(4) compounds [8] and
their potential as precusors to boron-containing poly-
mers, we sought to prepare further examples of ferro-
cenophanes containing B–B bonds, preliminary details
of which are reported herein.

Our target compound was the sulphur derivative
[1,2-B2(NMe2)2{1,1%-(SC5H4)2Fe}] 3 but initial attempts
to prepare this species by the reaction of B2(NMe2)4 [9]
with one equivalent of ferrocene-1,1%-dithiol [10] re-
vealed that a number of products were present as
shown by mass spectrometry. Thus although compound
3 was formed, subsequent reactions with ferrocene-1,1%-
dithiol resulted in compounds identified as 4 and 5 even
under conditions of slow reagent addition and high
dilution [11].
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However, the reaction between the dilithium salt of
ferrocene-1,1%-dithiol and 1,2-B2Cl2(NMe2)2 [12] af-
forded 3 quantitatively as judged by NMR spec-
troscopy [13]. Compound 3 is very soluble in common
solvents and could only be isolated in bulk as a rather
oily solid but orange crystals were obtained from hex-
ane solution on prolonged standing; one of these was
suitable for X-ray crystallography. The molecular struc-
ture is shown in Fig. 1 [14]. Compound 3 crystallises as
isolated molecules with no short intermolecular con-
tacts. The ferrocene-1,1%-dithiolate group bridges the
B–B bond in a 1,2- fashion consistent with the struc-
ture of the precursor, 1,2-B2Cl2(NMe2)2 with each
boron also bonded to a NMe2 group oriented such as
to maximise B–N p-bonding (i.e. with NMe2 and B2S
groups coplanar). The boron centres are both trigonal
planar, the angle between these planes being 82.0° such
that the conformation about the B–B bond is staggered
rather than eclipsed. Although the eclipsed conforma-
tion is the one generally observed [8,15] in diborane(4)
compounds with good p-donors, the staggered form is
found particularly in those compounds containing
bulky aryl groups [16] where steric effects are expected
to predominate (the barrier to rotation in unhindered
diborane(4) compounds is expected to be small [8,15]).
As a result of this staggered conformation, the molecule
has approximate C2 symmetry, which results in each of
the C5H4 hydrogens being inequivalent and since four

signals are observed in the 1H-NMR spectrum of 3 [13],
even at −80°C, this conformation is presumably re-
tained in solution. All the bond lengths in 3 (Fig. 1) are
similar to values in other diborane(4) compounds [8,15]
and warrant no special comment. As a final point, the
observed (Cp-centroid)–Fe–(Cp-centroid) angle is
179.5° which, together with the unexceptional bond
lengths and angles associated with the boron and sul-
phur centres, indicates that there is little conforma-
tional strain in the molecule.

Further studies are in progress to look at ROP
reactions of 3 and to isolate and more fully characterise
4 and 5.
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