

www.elsevier.nl/locate/jorganchem

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 582 (1999) 286-291

Organometallic Rh(III) complexes with the bifunctional ligand [2-(dimethylamino)ethyl]cyclopentadiene. Crystal structure of the $[\{\eta^5:\eta^1-C_5H_4(CH_2)_2NMe_2\}Rh^{III}Cl_2]$ complex

Athanassios I. Philippopoulos ^a, Bruno Donnadieu ^b, René Poilblanc ^b, Nick Hadjiliadis ^{a,*}

^a Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece ^b Laboratoire de Chimie de Coordination du CNRS,

Unité no 8241 lieé par convention à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 route de Narbonne, F-31077 Toulouse, Cedex, France

Received 4 December 1998

Abstract

The preparation of rhodium(III) complexes with [2-(dimethylamino)ethyl]cyclopentadiene is described. Starting from [{ η^5 -C₅H₄(CH₂)₂NMe₂}Rh^I(η^4 -cod)] (1) and [{ η^5 -C₅H₄(CH₂)₂N(H)Me₂}Rh^I(η^4 -cod)]⁺·(Cl)⁻ (2) the complexes [{ η^5 : η^1 -C₅H₄(CH₂)₂NMe₂}Rh^{III}Cl₂] (3), [{ η^5 -C₅H₄(CH₂)₂N(H)Me₂}Rh^{III}Cl(μ -Cl)]²⁺·(Cl)⁻ (4), [{ η^5 -C₅H₄(CH₂)₂NMe₂}Rh^{III}Cl₂(PPh₃)] (5) and [{ η^5 -C₅H₄(CH₂)₂N(H)Me₂}Rh^{III}Cl₂(PPh₃)]⁺·(Cl)⁻ (6) were synthesized and characterized by elemental analysis, IR, ¹H-, ¹³C- and ³¹P-NMR spectroscopy. The X-ray crystal structure of complex 3 has also been determined where Rh(III) chelates through the cyclopentadienyl and the terminal –NMe₂ group. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Organometallic complexes; Cyclopentadienyl ligand; Functionalized; Rhodium complexes

1. Introduction

 η^5 -Cyclopentadienyl derivatives of transition metals represent one of the most important classes of organometallic compounds, since more than 80% of all known organometallic complexes, of the transition metals, contain the cyclopentadienyl fragment or a derivative thereof [1].

Cyclopentadienyl derivatives with a functionalized side chain like [2-(dimethylamino)ethyl]cyclopentadiene containing both a hard and a soft donor site, form the so-called half-sandwich complexes with metals possessing specific structures and reactivity. Special properties and applications of such complexes are expected, e.g. solubility in unusual solvents including water, antitumour properties [2–4], and catalytic applications [5–7] etc.

Recently Flores et al. [5,6] developed the catalyst precursors [η^5 -(2-dimethylaminoethyl)cyclopentadienyl]-trichlorotitanium and [η^5 -2,3,4,5-tetramethyl-1-(2-dimethylaminoethyl)cyclopentadienyl]trichlorotitanium, for the polymerization of ethylene and propylene. Rausch et al. [7]

also reported the use of pendent aminoalkyl-substituted monocyclopentadienyltitanium compounds in the polymerization of ethylene and propylene.

Continuing our work on the use of cyclopentadiene bearing amino functionalized side chain and of its sodium salt, for the preparation of organometallic Rh and Co complexes, we report here the chloro derivatives of Rh(III) with the named ligand, in addition to the iodo ligand already reported [2,4]. In addition, the X-ray crystal structure of $[{\eta^5:\eta^1-C_5H_4(CH_2)_2-$ NMe₂}Rh^{III}Cl₂] (3) also supports the structure of the corresponding iodo derivative reported earlier [2,4]. Differences in the reactions for the preparation of the chloro complexes, in comparison to those of iodo, are also reported.

^{*} Corresponding author. Fax: + 30-651-44831.

E-mail address: nhadjil@cc.uoi.gr (N. Hadjiliadis)

A.I. Philippopoulos et al. / Journal of Organometallic Chemistry 582 (1999) 286-291

2. Experimental

2.1. General

All reactions (unless otherwise noted) were carried out under a nitrogen atmosphere, using standard Schlenk techniques. Gaseous Cl₂ was prepared from the oxidation of HCl by KMnO₄. Solvents and reagents were purified and dried by standard methods and were distilled immediately prior to use. The ligand C₅H₅- $(CH_2)_2NMe_2$ and its sodium salt $Na[C_5H_4(CH_2)_2NMe_2]$ were prepared according to literature methods [2]. The starting materials $[Rh(cod)Cl]_2$ [8], $[\{\eta^{5}-C_{5}H_{4} (CH_2)_2NMe_2$ Rh^I(η^4 -cod)] (1) [2] and [{ η^5 -C₅H₄- $(CH_2)_2N(H)Me_2$ Rh^I(η^4 -cod)] + \cdot (Cl) - (2) [2], were also prepared according to published procedures. Conductivity measurements were performed using an E365B Conductoscope, Metrhom Ltd, Herisau, Switzerland. Melting points were determined on a Buchi 510 capillary apparatus and are uncorrected. Microanalyses were performed by the Service de Microanalyses, Laboratoire de Chimie de Coordination and by the Microanalysis Center of the University of Ioannina. For chromatography of organometallic compounds, the silica gel was dried for 48 h at 110°C and then flushed with nitrogen saturated solvent. IR spectra were recorded on a Perkin-Elmer model 783 grating spectrometer, as CsBr pellets. All NMR spectra were obtained on Bruker AMX 400 MHz and AC 200FT spectrometers of the University of Ioannina and the Laboratoire de Chimie de Coordination, respectively. The spectra were calibrated using signals of residual protons from the solvent referenced to SiMe₄. Shifts quoted for the ³¹P-NMR spectra are relative to 85% H_3PO_4 .

2.2. Preparations

2.2.1. $[\{\eta^{5}:\eta^{1}-C_{5}H_{4}(CH_{2})_{2}NMe_{2}\}Rh^{III}Cl_{2}]$ (3)

To a stirred solution of 1 (70 mg, 0.20 mmol) in Et₂O (5 ml) Cl₂ gas was bubbled over a period of 10 min affording an orange precipitate. After filtration, the solid remaining was extracted with CH_2Cl_2 (2 × 10 ml). Evaporation of the extracts to a small volume, followed by addition of cold diethylether (10 ml) yielded complex **3** as an orange microcrystalline solid. Yield: 35%. M.p. 172–173°C.

Anal. Found: C, 35.04; H, 4.96; N, 4.71. Calc. for $C_{9}H_{14}NRhCl_{2}$: C, 34.86; H, 4.56; N, 4.51%.

IR (CsBr): 3100, 3050 (m, =CH), 2930 (m, -CH), 1475, 1455 (m, C=C), 1385, 1320, 1210, 1070, 905, 865, 775, 475, 290 (m, v_{Rh-Cl}), 260 (m, v_{Rh-Cl}) cm⁻¹.

¹H-NMR (CDCl₃): 5.63, 5.27 (2 × t, 4H, J = 1.6 Hz, C₅H₄) [2], 3.63 (t, 2H, J = 6.4 Hz, CH₂N), 2.65 (s, 6H, NMe₂), 2.52 (t, 2H, J = 6.4 Hz, CH₂).

¹³C-NMR (CDCl₃): 105.20 (s, $\underline{C}(CH_2)_2N$), 92.40, 86.90 (2 × d, $J_{Rh-C} = 6.74$ Hz, C_5H_4), 52.07 (s, CH_2N), 45.40 (s, NMe_2), 29.99 (s, CH_2).

The solid remaining was washed with diethylether $(2 \times 5 \text{ ml})$ and dried in vacuo, giving **4** as an orange-brown solid. Yield: 55%.

M.p. 221–222°C. $\Lambda_{\rm M}$ (H₂O): 251 Ω^{-1} cm² mol⁻¹. Anal. Found: C, 31.58; H, 4.40; N, 4.14. Calc. for C₁₈H₃₀N₂Rh₂Cl₆: C, 31.19; H, 4.36; N, 4.04%.

IR (CsBr): 3050, 3020 (m, =CH), 2930 (m, -CH), 2652 (s, NH⁺), 1460, 1440 (m, C=C), 1245, 1010, 950, 795, 310 (m, v_{Rh-Cl}), 282 (m, v_{Rh-Cl}), 251 (m, v_{Rh-Cl}) cm⁻¹.

¹H-NMR (D₂O): (using 3-(trimethylsilyl)propanesulfonic acid (TSP) as internal standard): 5.88, 5.82 (2 × s, 4H, C₅H₄), 3.56 (t, 2H, J = 6.4 Hz, CH₂N), 2.97 (s, 6H, NMe₂), 2.69 (t, 2H, J = 6.4 Hz, CH₂). ¹H-NMR (DMSO-*d*₆): 10.64 (br. s, NH⁺), 5.99, 5.87 (2 × t, 4H, J = 1.4 Hz, C₅H₄) [2], 3.38 (t, 2H, J = 6.4 Hz, CH₂N), 2.76 (d, 6H, $J_{\text{NH-CH}} = 4.80$ Hz, NMe₂), 2.67 (t, 2H, J = 6.4 Hz, CH₂).

¹³C-NMR (D₂O): 101.50 (s, $\underline{C}(CH_2)_2N$), 86.30, 86.20 (2 × s, C₅H₄), 57.31 (s, CH₂N), 45.98 (s, NMe₂), 24.23 (s, CH₂). ¹³C-NMR (DMSO-*d*₆): 107.90 (s, $\underline{C}(CH_2)_2N$), 87.70, 86.10 (2 × s, C₅H₄), 53.60 (s, CH₂N), 42.10 (s, NMe₂), 21.10 (s, CH₂).

2.2.2. $[\{\eta^{5}-C_{5}H_{4}(CH_{2})_{2}N(H)Me_{2}\}Rh^{III}-Cl(\mu-Cl)]_{2}^{2+}\cdot(Cl)_{2}^{-}$ (4)

To a stirred solution of **2** (90 mg, 0.23 mmol) in CH_2Cl_2 (10 ml) Cl_2 gas was bubbled over a period of 10 min affording an orange-brown precipitate. After filtration the solid was washed with CH_2Cl_2 (2 × 5 ml), diethylether (10 ml), and dried in vacuo. Yield: 85%.

Note. An authentic sample prepared in this way gave the same spectroscopic data (i.e. IR, NMR) as those referred to in the preparation in Section 2.2.1.

2.2.3. $[\{\eta^{5}-C_{5}H_{4}(CH_{2})_{2}N(H)Me_{2}\}Rh^{III}-$

 $Cl_2(PPh_3)]^+ \cdot (Cl)^-$ (5)

To a stirred suspension of 4 (84 mg, 0.24 mmol) in CH₃CN (10 ml), solid PPh₃ (63.8 mg, 0.24 mmol) was added. Gradually the insoluble solid dissolved affording a clear orange solution, which was stirred for one more hour. After removal of about half of the solvent by evaporation, diethyether was added in excess (15 ml). An orange solid was precipitated and after filtration it was dried in vacuo. The solid was dissolved to the minimum amount of CH_2Cl_2 (3 ml) and was then subjected to flash chromatograph on silica gel (230–400 mesh, 10% MeOH in CH_2Cl_2). A deep red band was collected, giving complex 5 as an orange–red solid and in a 68% yield.

M.p. 188–190°C. $\Lambda_{\rm M}$ (CH₃CN): 150 Ω^{-1} cm² mol⁻¹.

Anal. Found: C, 53.40; H, 4.67; N, 2.25. Calc. for C₂₇H₃₀NRhCl₃P: C, 53.28; H, 4.96; N, 2.30%.

IR (CsBr): 3050 (m, =CH), 2950 (m, -CH), 2675 (s, NH⁺), 1480, 1435 (m, C=C), 1100, 1035, 750, 700, 530, 280 (m, v_{Rh-Cl}), 230 (m, v_{Rh-Cl}) cm⁻¹.

¹H-NMR (CDCl₃): 10.66 (br, s, NH⁺), 7.97–7.34 (m, 15H, Ph), 5.21, 4.81 ($2 \times s$, 4H, C₅H₄), 3.53 (m, 2H, CH₂N), 3.06 (m, 2H, CH₂), 2.85 (s, 6H, NMe₂).

¹³C-NMR (CDCl₃): 135.44–128.54 (m, Ph), 114.20 (s, $\underline{C}(CH_2)_2N$), 88.68, 84.97 (2 × s, C₅H₄), 65.86 (s, CH₂N), 44.11 (s, NMe₂), 22.41 (s, CH₂).

³¹P-NMR (CD₃CN): 32.29 (d, $J_{Rh-P} = 138.65$ Hz).

2.2.4. $[\{\eta^5 - C_5 H_4(CH_2)_2 NMe_2\} Rh^{III} Cl_2(PPh_3)]$ (6)

2.2.4.1. Method A. To a stirred solution of complex **3** (70 mg, 0.23 mmol) in CH₂Cl₂ (10 ml), solid PPh₃ (58 mg, 0.22 mmol) was added at room temperature and the solution was stirred for ca. 4 h. After removal of about half of the solvent by evaporation, diethylether was added in excess (15 ml). An orange solid was precipitated and after filtration it was dried in vacuo. The solid was then dissolved with CH₂Cl₂ (3 ml) and flash column chromatographed on silica gel (230–400 mesh, 10% MeOH in CH₂Cl₂). An orange band was collected and evaporated to dryness to leave an orange solid in a 40% yield.

Table 1

Summary of crystal and intensity collection data for $[\{\eta^5:\eta^1-C_5H_4(CH_2)_2NMe_2\}Rh^{III}Cl_2]$ (3)

C ₉ H ₁₄ NCl ₂ Rh
310.03
$0.47 \times 0.25 \times 0.13$
Red needles
Monoclinic
$P2_1/c$ (no. 14)
11.990(8)
8.213(2)
11.858(2)
113.40(2)
1067(3)
90.47
Enraf–Nonius CAD-4
Mo- K_{α} ($\lambda = 0.71073$ Å)
293
$\omega/2\theta$; $\theta_{\rm max}$: 25°
11–12
2091
1882 ($R_{\rm m} = 0.0155$)
119
Full-matrix least-squares on F
$R^{a} = 0.0267$
0.0306
1.12

^a $R = \Sigma(||F_o| - |F_c||)/\Sigma|F_o|.$

^b $R_w = [\Sigma_w (\|F_o\| - \|F_c\|)^2 / \Sigma (|F_o|)^2]^{1/2}.$

^c GoF = $[\Sigma(|F_{o} - F_{c}|)^{2}/[N_{obs} - N_{parameters}]^{1/2}$.

2.2.4.2. Method B. To an ice-cooled solution of NaH (16 mg, 0.67 mmol) in CH₃CN (5 ml) (the NaH was prewashed twice with pentane and dried in vacuo) an equivalent amount of 5 (380.5 mg, 0.63 mmol) in CH₃CN (10 ml) was added under nitrogen. The solution was stirred for 30 min at this temperature followed by gentle warming to ambient temperature and was then stirred for another hour. After filtration through a small pad of Celite and removal of about half of the solvent by evaporation, diethylether was added in excess (15 ml). An orange solid was precipitated and after filtration it was dried in vacuo. Yield: 70%. M.p. 174–176°C.

Anal. Found: C, 56.90; H, 4.97; N, 2.25. Calc. for $C_{27}H_{29}NRhCl_2P$: C, 56.66; H, 5.10; N, 2.45%.

IR (CsBr): 3020 (m, =CH), 2900 (m, -CH), 1470, 1425 (m, C=C), 1085, 740, 685, 510, 275 (m, v_{Rh-Cl}), 235 (m, v_{Rh-Cl}) cm⁻¹.

¹H-NMR (CDCl₃): 7.66–7.37 (m, 15H, Ph), 5.10, 4.82 ($2 \times s$, 4H, C₅H₄), 2.82 (m, 4H, CH₂CH₂N), 2.33 (s, 6H, NMe₂).

¹³C-NMR (CDCl₃): 131.31–128.46 (m, Ph), 110.20 (s, <u>C</u>(CH₂)₂N), 88.47, 84.94 (2 × s, C₅H₄), 54.94 (s, CH₂N), 43.66 (s, NMe₂), 22.27 (s, CH₂).

³¹P-NMR (CDCl₃): 32.48 (d, $J_{Rh-P} = 133.95$ Hz).

2.3. X-ray crystallography and structure solution of complex **3**

Crystal data and full details of the data collection and data processing are listed in Table 1. A single crystal of compound 3 was mounted on a four-circle Enraf–Nonius diffractometer using Mo– K_{α} radiation and a graphite monochromator. Final lattice parameters were determined from the least-squares refinement of the setting angles 25 well centered reflections.

Corrections were made for Lorentz polarization effects, a semi-empirical absorption correction [9], and a scheme of ponderation [10], were applied. Calculations were carried out using the CRYSTALS package [11] adapted on a PC.

Positions of the heavy atoms were determined by direct methods SIR92 [12]. All other non-hydrogen atoms were located from a difference-Fourier synthesis. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were located by Fourier differences, but their coordinates were introduced in processes as fixed contributors with fixed thermal parameters. Refinements converged with R = 0.0267 for 1522 observed reflections. Selected bond lengths and bond angles are given in Table 2.

3. Results and discussion

The reactions studied are summarized in Fig. 1 for the case of $[\{\eta^5-C_5H_4(CH_2)_2NMe_2\}Rh^I(\eta^4-cod)]$ (1) and

Table 2 Selected bond distances (Å) and angles (°) for 3

Bond distances			
Rh(1)–Cl(1)	2.401(1)	C(1)–C(2)	1.419(9)
Rh(1)-Cl(2)	2401(1)	C(1)–C(5)	1.410(9)
Rh(1)–N(1)	2.196(4)	C(2)–C(3)	1.396(9)
Rh(1)–C(1)	2.120(6)	C(3)–C(4)	1.412(9)
Rh(1)–C(2)	2.159(6)	C(4)–C(5)	1.430(9)
Rh(1)–C(3)	2.160(6)	C(5)-C(50)	1.520(8)
Rh(1)–C(4)	2.121(6)	C(5)–C(51)	1.514(8)
Rh(1)–C(5)	2.096(6)	N(1)–C(51)	1.490(7)
Bond angles			
Cl(1)-Rh(1)-Cl(2)	89.38(5)	C(5)-C(50)-C(51)	108.2(5)
Cl(1)-Rh(1)-N(1)	91.9(1)	C(51)–N(1)–C(100)	109.4(5)
Cl(2)-Rh(1)-N(1)	95.7(1)	N(1)-C(5)-C(50)	111.8(5)
Rh(1)-N(1)-C(51)	104.3(3)	C(1)-C(5)-C(4)	107.5(5)
C(100)-N(1)-C(101)	106.8(4)	Rh(1)-C(5)-C(50)	113.1(4)

Fig. 1. Pathways towards the rhodium(III) complexes of [2-(dimethylamino)ethyl]cyclopentadiene. (i) Cl₂, Et₂O; (ii) Cl₂, CH₂Cl₂; (iii) PPh₃, CH₂Cl₂, 4 h; (iv) PPh₃, CH₃CN, 2 h; (v) NaH, CH₃CN, 0°C.

 $[\{\eta^5-C_5H_4(CH_2)_2N(H)Me_2\}Rh^I(\eta^4-cod)]^+ \cdot (Cl)^-$ (2) as starting materials.

Both complexes 1 and 2 in ether and in CH_2Cl_2 react with Cl_2 to give compounds 3 and 4, respectively. Thus, the oxidative addition of gaseous Cl_2 to an etheral solution of 1 yielded a mixture of 3 [13] and 4 in approximately equal proportions. The cationic complex 4 is very soluble in water while the neutral complex 3 is soluble in CH_2Cl_2 . Thus, the two complexes were readily separated after the addition of CH_2Cl_2 to the mixture of 3 and 4. It should be noted here, that reaction of 1 with I_2 solely produced the corresponding iodo derivative of 3 and not 4 as in the present case [4].

The IR spectrum of **3** shows the typical metallocene skeletal vibrations at 3050, 3045, 2930, 1455, 1070 and 905 cm⁻¹ [14]. The far-IR spectrum showed two strong $v_{\rm Rh-Cl}$ bands at 290 and 260 cm⁻¹ [15,16]. The compound is stable under atmospheric conditions and soluble in CH₂Cl₂, CHCl₃, (CH₃)₂CO, CH₃OH and DMSO. The ¹H-NMR spectrum of **3** in CDCl₃ shows two sets of pseudotriplets for the cyclopentadienyl protons at 5.63 and 5.27 ppm, a singlet for the -NMe₂ protons at 2.65 ppm and two triplets for the (α) -CH₂ and (β) -CH₂N protons at 2.52 and 3.63 ppm, respectively. Both the (α) -CH₂ triplet at 2.52 ppm and the -NMe₂ singlet at 2.65 ppm are down field shifted by ca. 0.1 and 0.46 ppm, respectively in comparison to those of complex 1. The most significant shift ppm) however, is observed for the $(\Delta \delta = 0.69)$ (β) -CH₂N protons adjacent to the nitrogen coordination site of the metal. These differences indicate a profound change in the environment of the nitrogen atom in 3. The change in environment that caused the shift in the ¹H-NMR signals of the ligand is undoubtedly due to nitrogen coordination of the atom. Additional evidence rhodium for the intramolecular coordination of the dimethylamino group arises from the change of the multiplicity pattern for the signals of the methylene hydrogen atoms (i.e. $-CH_2CH_2N$). In 1 they appear as multiplets; here they show clear triplets. Corresponding downfield shifts for the methylene and methyl groups adjacent to the nitrogen atom are also observed in the 13 C-NMR spectrum on passing from 1 to 3.

Final proof for the intramolecular coordination of the $-(CH_2)_2NMe_2$ side chain group to the Rh metal in complex **3**, is provided by X-ray crystal structure analysis. Suitable crystals were grown by slow diffusion of ether into a saturated dichloromethane solution of **3** (see Section 3.1). This is the first reported structure of a rhodium chelated compound with a $C_5H_4(CH_2)_2NMe_2$ ligand.

On the other hand, the dimer **4** was obtained as an orange-brown solid in an almost quantitative yield (85%) by the passage of gaseous Cl₂ through a dichloromethane solution of **2**. Complex **4** had a $\Lambda_{\rm M}$ (molar conductance) value of about 251 Ω^{-1} cm² mol⁻¹, in aqueous solutions [17], indicating possibly hydrolysis of the terminal and bridging chloride anions. The IR spectrum of **4** is similar to that of complex **3** except for the presence of a broad band at ca. 2650

 cm^{-1} , indicating protonation of the dimethylamino group at the side chain [2-4]. The far-IR spectrum showed two rather broad bands at 282 and 251 cm⁻¹ for both terminal and bridging Rh-Cl bonds [18]. This complex is also stable under atmospheric conditions and soluble in H₂O, DMF and DMSO. In the ¹H-NMR spectrum of 4 in D_2O the cyclopentadienyl triplets are observed at 5.88 and 5.82 ppm, the (β) -CH₂N triplet of the side chain is at 3.56 ppm, the (α)-CH₂ triplet is at 2.69 ppm, and the -NMe₂ singlet is at 2.97 ppm. Due to protonation both the (β) -CH₂N triplet and the -NMe₂ singlet are downfield shifted by 1.10 and 0.82 ppm, respectively in comparison to those of the free ligand. In DMSO- d_6 , a broad singlet can be seen at 10.64 ppm, assigned to the protonated amino group (NH⁺), while the $-NMe_2$ group protons appear as a doublet with $J_{\rm NH-CH} = 4.8$ Hz.

The dimer 4 reacted readily with PPh₃ in acetonitrile solution to give the corresponding mononuclear complex 5 in a 68% yield (See Fig. 1). The molar conductance value of 150 Ω^{-1} cm² mol⁻¹ indicates a 1:1 electrolyte in CH₃CN solution. The IR spectrum of 5 shows the typical metallocene skeletal vibrations at 3050, 2950, 1435 and 1035 cm⁻¹. Moreover, the far-IR spectrum showed two strong bands for terminal v_{Rh-Cl} at 280 and 230 cm⁻¹. These values are comparable to the ones reported for the [η^5 -C₅Me₅Rh^{III}Cl₂(PMe₃)] complex [19].

In complex 5 the resonance in the ³¹P-NMR spectrum is shown at 32.29 ppm, in the expected range, split into a doublet $J_{Rh-P} = 138.65$ Hz by coupling to the rhodium center. On the other hand the ¹H- and ¹³C-NMR spectra of this compound are similar to those of the dimer 4.

Upon treatment of the chloride salt **5** with a slight excess of NaH in CH₃CN the deprotonated complex **6** was produced as an orange solid in a 70% yield. Complex **6** could also be prepared but in a lower yield after the addition of PPh₃ to a dichloromethane solution of **3**. The spectroscopic data (i.e. IR, ¹H-, ¹³C-NMR) are similar to those of complex **5**. Also, the resonance in the ³¹P-NMR spectrum is shown at 32.48 ppm as a doublet due to coupling to the rhodium center ($J_{Rh-P} = 133.95$ Hz).

3.1. Description of structure

The molecular structure of 3 is shown in Fig. 2. The molecule comprises a dichloro rhodium(III) unit which is bonded to a pentahapto cyclopentadienyl ligand. The

Fig. 2. An ORTEP diagram of complex 3.

References

tertiary amino fragment coordinates to the rhodium in the remaining basal site of the overall 'piano-stool' conformation giving a five-membered ring. The metal nitrogen distance is 2.196(4) Å. This distance is only slightly shorter than that of 2.241(5) Å reported for the $[\{\eta^5-C_5Me_4(CH_2), NMe_2\}RhI_2]$ analogue [20]. The lengths of the Rh–Cl bonds are 2.404(1) Å within the normal limits. Known cyclopentadienyl dichhlororhodium(III) complexes show values slightly longer $(2.419(1) \text{ Å for } [\{\eta^5-C_5Me_4C_6H_4CH(Me)NMe_2\}Rh-$ Cl₂]) [21] but within the same range. The distance between the rhodium and the ring atoms vary in the range of 2.096(5) - 2.160(5) Å, while the angles between the three basal ligands are close to 90°. The structure also reveals that the side chain is bent by 9.45° towards the rhodium. This value is very similar $[{\eta^{5}-C_{5}Me_{4}(CH_{2})_{2}$ to that mentioned in the NMe₂}RhI₂] analogue. Finally an interesting detail is that the $-(CH_2)_2NMe_2$ side chain is coordinated to the rhodium in a zigzag fashion.

4. Supplementary material

For the structure of complex **3**, tables of (a) structure determination summary; (b) complete bond lengths; (c) complete bond angles; (d) atomic coordinates and equivalent isotropic thermal parameters for H atoms; (e) anisotropic thermal parameters and (f) structure factors are available on request from the authors.

Acknowledgements

The Platon Program for the bilateral scientific and technological cooperation (France–Greece) supported this research. A.I.P. is grateful to the French Ministére des Affaires Etrangéres for financial support. The authors thank the Johnson Matthey Co, for the generous loan of rhodium chloride.

- For a recent review see (a) P. Jutzi, U. Siemeling, J. Organomet. Chem. 500 (1995) 175. (b) C. Janiak, H. Schumann, Adv. Organomet. Chem. 33 (1991) 291. (c) N.J. Coville, K.E. du Plooy, W. Pickl, Coord. Chem. Rev. 116 (1992) 1.
- [2] A.I. Philippopoulos, N. Hadjiliadis, C.E. Hart, B. Donnadieu, P.C. Gowan, R. Poilblanc, Inorg. Chem. 36 (1997) 1842.
- [3] A.I. Philippopoulos, R. Bau, R. Poilblanc, N. Hadjiliadis, Inorg. Chem. 37 (1998) 4822.
- [4] A.I. Philippopoulos, R. Poilblanc, N. Hadjiliadis, Inorg. Chim. Acta 283 (1998) 24.
- [5] J.C. Flores, J.C.W. Chien, M.D. Rausch, Organometallics 13 (1994) 4140.
- [6] J.C. Flores, J.C.W. Chien, M.D. Rausch, Macromolecules 29 (1996) 8030.
- [7] M.S. Blais, J.C.W. Chien, M.D. Rausch, Organometallics 17 (1998) 3775.
- [8] G. Giordano, R.H. Crabtree, R.M. Heintz, D. Forster, D.E. Morris, Inorg. Synth. 28 (1990) 88.
- [9] E. Prince, Mathematical Techniques in Crystallography, Springer-Verlag, Berlin, 1982.
- [10] N. Walker, D. Stuart, Acta Crystallogr. A39 (1983) 158.
- [11] D.J. Watkin, J.R. Carruthers, P.W. Betteridge, CRYSTALS User Guide, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1985.
- [12] International Tables for X-Ray Crystallography, vol. IV, Kynoch Press, Birmingham, UK, 1974.
- [13] Complex **3** was also obtained in a low yield from the reaction of Na[C₅H₄(CH₂)₂NMe₂] with anhydrous Na₃RhCl₆. To a suspension of Na₃RhCl₆ (178 mg, 0.50 mmol) in a mixture of CH₃CN/THF (1:1, v/v) (15 ml), a solution of NaC₅H₄(CH₂)₂NMe₂ (80 mg, 0.50 mmol) in THF (10 ml) was added under nitrogen. The solution was heated to reflux overnight, and the resulting mixture was evaporated to dryness. After extraction with CH₂Cl₂ (3 × 5 ml) and evaporation of the solvent, complex **3** was obtained as an orange solid, in ca. 10% yield.
- [14] H.P. Fritz, Adv. Organomet. Chem. 1 (1964) 239.
- [15] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd edn., Wiley, New York, 1978.
- [16] M.A. Bennett, R.J. Clark, D.L. Milner, Inorg. Chem. 6 (1967) 1647.
- [17] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
- [18] J.W. Kang, P.M. Maitlis, J. Organomet. Chem. 30 (1971) 127.
- [19] K. Isobe, P.M. Bailey, P.M. Maitlis, J. Chem. Soc. Dalton Trans. (1981) 2003.
- [20] P. Jutzi, M.O Kristen, J. Dahlaus, B. Neumann, H.G. Stammler, Organometallics 12 (1993) 2980.
- [21] B. Adams, N.A. Bailey, M. Colley, P.A. Schofield, C. White, J. Chem. Soc. Dalton Trans. (1994) 1445.