www.elsevier.nl/locate/jorganchem Journal of Organometallic Chemistry 588 (1999) 125-133 # Synthesis, fluxional behavior and structures of diethyldithiophosphate molybdenum complexes: crystal structures of $[Et_4N][Mo(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ and $[Mo(CH_3CN)(\eta^3-C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}]$ Kuang-Hway Yih a,*, Gene-Hsiang Lee b, Yu Wang b ^a Department of Applied Cosmetology, Hung Kuang Institute of Technology, Sahlu, Taichung 433, Taiwan ^b Department of Chemistry, National Taiwan University, Taipei 106, Taiwan Received 21 April 1999; received in revised form 16 June 1999 #### **Abstract** The air-sensitive dithiophosphate complexes $[Et_4N][M(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ (1, M = Mo; 2, M = W) are accessible by the reaction of $M(CO)_4(pip)_2$ (pip = piperidine) (M = Mo, W) with $NH_4S_2P(OEt)_2$ in refluxing acetonitrile in the presence of Et_4NBr . Complex 1 reacts with allyl bromide in CH_3CN to give the complex $[Mo(CH_3CN)(\eta^3-C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}]$ (3). The single-crystal structures of complexes 1 and 3 have been determined by X-ray diffraction analyses. Crystal data for 1: space group, C2/c with a = 13.088(7), b = 16.271(4), c = 11.366(7) Å, $\beta = 93.88(5)^\circ$, V = 2414.9(21) Å³, Z = 4. The structure was refined to R = 0.031 and Rw = 0.031; Crystal data for 3: space group, $Pna2_1$ with a = 15.979(3), b = 8.613(2), c = 12.720(3) Å, V = 1750.6(6) Å³, Z = 4. The structure was refined to R = 0.026 and Rw = 0.028. Treatment of 3 with piperidine results in the formation of the complex $[Mo(\eta^3-C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}(C_5H_{10}NH)]$ (4), in which the labile CH_3CN ligand was substituted by $C_5H_{10}NH$. The rotational behaviors of complex 3 and 4 in solution state were detected by variable-temperature 1H -NMR spectroscopy. The mechanism can be described as a trigonal twist, which involves the rotation of the triangular face formed by the nitrogen ligand and the two sulfur atoms relative to the face formed by the allyl and the two carbonyl groups. The 16-electron dithiocarbamate complex $[Mo(\eta^3-C_3H_5)(CO)_2(\eta^2-S_2CNC_5H_{10})]$ (5) is produced by $S_2P(OEt)_2^-$ ligand replacement of 4 with $C_5H_{10}NC(S)SH$ or the insertion reaction of CS_2 into the Mo–N bond of 4 with releasing of the $(EtO)_2P(S)SH$ ligand. © 1999 Elsevier Science S.A. All rights reserved. Keywords: Molybdenum; Diethyldithiophosphato ligand; Trigonal twist; Carbon disulfide; Insertion reaction #### 1. Introduction The anionic dithiophosphate ligands, $S_2P(OR)_2^-$ (R = alkyl), have proven to be versatile, and can bind as a unidentate [1], chelating [2], or bridging [3] ligand to a wide range of transition metals. These ligands are of interest, in part, due to their use as catalyst additives [4], sequestering agents [5] and isolation of the cubanlike cluster [6]. Although many simple $M\{S_2P(OEt)_2\}_n$ species have been prepared [7], fewer organometallic dithiophosphate molybdenum complexes except Cp- $Mo(CO)_2\{S_2P(OPr^i)_2\}$ [8a], $Mo(CO)_2\{S_2P(OEt)_2\}$ - (NCMe)(SnRCl₂) [9a], Mo(CO)₂{S₂P(OEt)₂}(S₂CPCy₃)-(SnPhCl₂) [9b] and Mo₂(η^3 -C₃H₅)₂(CO)₄{S₂P(OEt)₂}₂-(μ -NH₂NH₂) [9c] have been characterized and only rarely subjected to crystallographic study. Complexes of the type [MoL(η^3 -C₃H₅)(CO)₂A] (A: pyrazolylborate or β -diketonate ligand, L: neutral monodentate ligand) have been known for more than 15 years. Notably, the solution rotational behavior [10] and structures [11] of these compounds containing the nitrogen, phosphine, and oxygen bidentate ligands have been studied clearly but no detailed information has been presented on the sulfur-containing bidentate ligand such as (EtO)₂PS₂⁻ in this rotating system. In the context of our previous studies on transition metal complexes containing the anionic sulfur ligands, ^{*} Corresponding author. Fax: +886-4-6321046. Scheme 1. $C_5H_{10}NCS_2^-$, $Ph_2PCS_2^-$ and $Ph_2PC(=NPh)S^-$ [12], and in view of above-mentioned interesting results, we extended our investigation to a study of the diethyldithiophosphato, $(EtO)_2PS_2^-$, ligand. In this paper, we describe the synthesis, structures and the rotational behavior of the η^3 -allyl molybdenum complex involving the diethyldithiophosphato, $(EtO)_2PS_2^-$, ligand. ### 2. Results and discussion ## 2.1. Synthesis of anionic dithiophosphate complexes $[Et_4N][Mo(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ (1) and $[Et_4N][W(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ (2) air-sensitive compounds of the $[Cat][Mo(CO)_4L-L]$ (Cat = Na, K, NH₄; L-L = dithiocarbamto, xanthato, dithiophosphato) were prepared by heating $(60-65^{\circ}\text{C}) \text{ Mo(CO)}_{6} [8b] \text{ or } \text{M(CO)}_{4}(\text{pip})_{2}$ (M = Mo, W) [16] with ligand salt in degassed DMSO or CH₃CN, respectively. The $[Et_4N][Mo(CO)_4\{\eta^2 S_2P(OEt)_2$ complex has been prepared for use in the 95Mo-NMR experiment [8a] and these complexes were so unstable that some reports described them as nonisolable [8b]. We used the dithiophosphato ligand $NH_4S_2P(OEt)_2$ with $M(CO)_4(pip)_2$ (M = Mo, W) in refluxing CH₃CN in the presence of Et₄NBr to lead to the formation of the clean and high-yield dithiophosphate complexes $[Et_4N][M(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ (1, M = Mo; 2, M = W) (Scheme 1). The two yellow crystalline, very air-sensitive products 1 and 2 were obtained by recrystallization from CH₂Cl₂-n-hexane in 78 and 65% yield, respectively. Complexes 1 and 2 are very soluble even in diethyl ether but slightly soluble in *n*-hexane. In the FAB mass spectra, two base peaks with the typical Mo and W isotope distribution are respectively in agreement with the $[M^+ + Et_4N-CO]$ molecular masses of 1 and 2. The IR spectra of 1 and 2, respectively show two sets of four terminal carbonylstretching bands that reveal a C_{2v} (2A₁ + B₁ + B₂) symmetry of carbonyl ligands about the metal center. In the ³¹P{¹H}-NMR spectra of 1 and 2, two singlets at high field relative to the free NH₄S₂P(OEt)₂ ligand indicate the coordination of the dithiophosphato ligand. The ¹H-NMR spectra comprise the proton resonances of S₂P(OEt)₂ and Et₄N + with the integration ratio 6:4:12:8 of 1 and 2. Two singlets at lowest field in the ¹³C{¹H}-NMR spectra of **1** and **2** are attributed to the carbon atoms of the two carbonyl groups. To demonstrate the structure of the first Group VIB(0) dithiophosphate compound, complex 1 was confirmed by single-crystal X-ray diffraction study. The ORTEP diagram with atom labels is shown in Fig. 1. Fig. 1. Ortep diagram of the anionic complex [Mo(CO) $_4\{\eta^2-S_2P(OEt)_2\}]^-$ (1). Fig. 2. Ortep diagram of complex [Mo(CH₃CN)(η^3 -C₃H₅)(CO)₂{ η^2 -S₂P(OEt)₂}] (3). Bond distances and bond angles of 1 are listed in Table 3. Complex 1 consists of a cation, Et₄N⁺, and an $[Mo(CO)_4\{\eta^2-S_2P(OEt)_2\}]^-$. The geometry around the metal atom in the anion is a distorted octahedron with a small S(1)MoS(1a) angle of 75.95(5)° and a small dihedral angle of 0.38(11)° between plane MoS(1)S(1a) and MoC(4)C(4a). The structure of the anion of 1 possesses a C_2 crystallographic axis through Mo and P atoms and thus becomes C_{2v} symmetry. Complex 1 possesses two groups of Mo-CO bond distances of 1.924(4) and 2.015(4) Å due to the trans effect of the carbonyl groups. The Mo-S bond distance of 1 (2.622(1) Å) is longer than those of complex $[Et_4N][Mo(CO)_4(\eta^2-S_2CNEt_2)]$ [17] (average value of Mo-S bonds, 2.593(1) Å) and $[Et_4N][Mo(CO)_4(\eta^2 S_2CNC_5H_{10}$] (2.594(1) Å) [12f]. It reflects the $S_2CNEt_2^$ ligand with more π -acceptor ability than the $S_2P(OEt)_2^$ ligand. In fact, the S₂P(OEt)₂ ligand can be replaced by the S₂CNC₅H₁₀ ligand (described below). Compared with the Mo(0)-S₂P(OEt)₂ complex and Mo(III, V)-S₂P(OR)₂ complexes, the Mo-S distance of 1 (2.622(1) Å) is significantly longer than those observed in the dithiophosphato complexes $Mo\{S_2P(OMe)_2\}_3$ $(2.501-2.520(2) \text{ Å}) [7b] \text{ and } [\{MoOS_2P(OPr^i)_2\}_2OS]$ (2.334, 2.370(4) Å) [18] in a higher oxidation state. It seems that the higher the Mo oxidation state is, the shorter the Mo-S bond distance becomes. ## 2.2. Reaction of complex $[Et_4N][Mo(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ (1) with allyl bromide Treatment of $[Et_4N][Mo(CO)_4\{\eta^2-S_2P(OEt)_2\}]$ (1) with allyl bromide in CH₃CN afforded the acetonitrile $[Mo(CH_3CN)(\eta^3-C_3H_5)(CO)_2\{\eta^2-(\eta^3-C_3H_5)(CO)_2\}$ complex $S_2P(OEt)_2$ (3) in 82% isolate yield. Miguel and coworkers have also described the preparation of complex 3 and several molybdenum-tin, and μ-NH₂NH₂ complexes [9] containing dithiophosphato ligand. All spectroscopic data for 3 are consistent with the literature. However, solution IR spectra show the two carbonyls in equal intensity; this observation indicates that the two carbonyls are mutually cis. From an AM₂X₂ pattern of the allyl group in the ¹H-NMR spectra and one equivalent resonance of the terminal carbon of the allyl group and one resonance of carbonyl group in the ¹³C{¹H}-NMR spectra, it reveals the bidentate ligand and the two carbonyls lie in a horizontal plane, whereas the allyl group and the CH₃CN ligand lie in a trans positions above and below the plane, respectively (Scheme 1). Because the mentioned structure is incompatible with the report by Miguel and the corresponding acetonitrile allyl dithiophosphato structure still remains unknown, we have performed an X-ray diffraction study of 3 to elucidate the solid-state structure. An ORTEP plot of 3 is shown in Fig. 2. Table 5 shows the Fig. 3. Variable-temperature ${}^{1}H$ -NMR spectra of 3 in acetone- d_6 . selected bond distances and bond angles of **3**. The coordination geometry around the molybdenum atom is approximately an octahedron with the two dithiophosphato sulfur atoms, acetonitrile, two carbonyls and the allyl group occupying the six coordination sites. The structure confirms an unequivalent allyl group. One of the sulfur atoms of dithiophosphato is *trans* to the allyl: S(1)–Mo–C(10), 160.7(2)°, while the other is *trans* to one carbonyl: S(2)–Mo–C(8), 167.4(3)°. The remaining carbonyl is *trans* to the nitrogen atom of the acetonitrile: C(7)–Mo–N, 170.4(2)°. The S–Mo–S angle of 75.97(7)° in **3** is similar to 75.95(5)° in **1** within experimental errors. The Mo–C(9), C(10) and C(11) bond distances are 2.297(8), 2.226(7) and 2.339(6) Å, respectively. The Mo–S(1) distance of 2.565(2) Å (*trans* Scheme 2. to allyl) is slightly shorter than Mo–S(2) of 2.638(2) Å (*trans* to CO) because of the greater *trans* effect induced by the CO group than the allyl group. In order to resolve this apparent anomaly between the solution spectroscopy and solid-state structure, the variable-temperature ¹H-NMR experiments undertaken. By variable-temperature ¹H-NMR spectra, complex 3 in solution exhibits fluxional behavior, and the dynamic process has been examined. As depicted in Fig. 3, an AM₂X₂ pattern is observed for the allyl protons, and a single resonance for the methyl protons of the acetonitrile group. However, on cooling (CD₃)₂CO solutions of 3, the proton signals initially broaden and below 245 K the methyl resonance of CH₃CN and the syn- and anti-proton signals of the allyl moiety each begin to separate into two components. Below 233 K, 1H-NMR data are in accordance with the two possible structures of 3. A ratio of the unsymmetry and symmetry components (1.2:1) at 213 K in (CD₃)₂CO was derived from intensity measurements. The mechanism can be described as a trigonal twist, which involves the rotation of the triangular face formed by the CH₃CN and the two sulfur atoms relative to the face formed by the allyl and the two carbonyl groups. The rotation mechanism has been previously described for the trigonal twist behavior of $[Mo(pd)(\eta^3-C_3H_5)(CO)_2(py)]$ [11] and other related complexes [10]. Line-shaped analysis calculated from variable-temperature ¹H-NMR spectra of 3 yields a value of 11.6 ± 0.2 kcal mol⁻¹ for ΔG^{\ddagger} . Compared with other rearrangement complexes, the activation energy of 3 is almost the same as that of complex $Mo(\eta^3-C_3H_5)(CO)_2(dppm)I$ (11.2 kcal mol⁻¹) [10d] and is smaller than that of complex [Mo(pd)(η³-C₃H₅)(CO)₂(py)] (14.3 kcal mol⁻¹) [11b]. Attempts to prepare a similar product from the reaction of **2** with allyl bromide were unsuccessful. No reaction occurred under the similar reaction conditions and complex **2** decomposed in refluxing conditions. ## 2.3. Synthesis of complex $[Mo(\eta^3-C_3H_5)(CO)_2-\{\eta^2-S_2P(OEt)_2\}(C_5H_{10}NH)]$ (4) Complex $[Mo(\eta^3-C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}(C_5H_{10}-$ NH)] (4) was prepared by the reaction of 3 with C₅H₁₀NH at ambient temperature (Scheme 2). The vellow compound 4 is slightly air-sensitive, soluble in polar solvent, and slightly soluble in n-hexane. The FAB mass spectrum of 4 shows a parent peak corresponding to the [M+] molecular mass. Similar spectroscopic phenomena of the carbonyl group and allyl moiety in IR and ¹H-, ¹³C{¹H}-NMR spectra led us to believe that complex 4 contains the same solution rotational behavior as 3. To confirm the result, the variabletemperature ¹H-NMR experiments of 4 were carried out. The ΔG^{\ddagger} value calculated from line-shape analysis of the variable-temperature ${}^{1}\text{H-NMR}$ was 12.6 + 0.2kcal mol⁻¹ for **4**. The large activation energy of **4** compared with 3 is due to the more steric hindrance of the C₅H₁₀NH ligand than CH₃CN. In fact, this value is essentially independent of the nature of the dithiophosphato ligand, increases with increase in the size of the neutral monodentate ligand, and is greater for the substituted allyl than for the allyl complexes. Notably, the dissociation mechanism [11] of the C₅H₁₀NH ligand was neglected because when the temperature was increased to 330 K, ¹H-NMR resolved no free C₅H₁₀NH signals. Table 1 Crystal data and collection parameters for ${\bf 1}$ and ${\bf 3}$ | | 1 | 3 | |--|--|--| | Formula | C ₁₆ H ₃₀ NO ₆ PS ₂ Mo | C ₁₁ H ₁₈ NO ₄ PS ₂ Mo | | $F_{ m w}$ | 523.45 | 419.30 | | Crystal system | Monoclinic | Orthorhombic | | Crystal size (mm) | $0.60\times0.50\times0.50$ | $0.50\times0.50\times0.40$ | | Space group | C2/c | $Pna2_1$ | | a (Å) | 13.008(7) | 15.979(3) | | b (Å) | 16.271(4) | 8.613(2) | | c (Å) | 11.366(7) | 12.720(3) | | β (°) | 93.88(5) | | | $V(\mathring{A}^3)$ | 2414.9(21) | 1750.6(6) | | \boldsymbol{z} | 4 | 4 | | $D_{\rm calc}$ (g cm ⁻³) | 1.440 | 1.591 | | μ (Mo–K _{α}), mm ⁻¹ | 1.57 | 1.06 | | F(000) | 1074 | 842 | | $2\theta_{ m max}$ | 50.0 | 50.0 | | Index ranges (h,k,l) | $-15 \rightarrow 15, 0 \rightarrow 19,$ | $0 \rightarrow 18, 0 \rightarrow 10, 0 \rightarrow$ | | _ , , , , | $0 \rightarrow 13$ | 15 | | Reflections collected | 2121 | 1618 | | Observed data $[I > 2\sigma(I)]$ | 1703 | 1364 | | No. of parameters | 125 | 181 | | R a | 0.031 | 0.026 | | Rw b | 0.031 | 0.028 | | Max./min. transmission | 0.533, 0.565 | 0.588, 0.652 | | No. of atoms | 30 | 38 | | Quality-of-fit c | 1.13 | 1.48 | | Δ (D-map) max./min.
(e Å ⁻³) | -0.340, 0.300 | -0.320, 0.220 | ^a $R = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|.$ Miguel and co-workers have reported the reactions of 3 with uni- and bidentate nitrogen ligands. Other reactions of 3 with diphos and phenylacetylene will be discussed in a forthcoming paper [19]. ## 2.4. Preparation of the 16-electron dithiocarbamate complex $[Mo(\eta^3-C_3H_5)(CO)_2(\eta^2-S_2CNC_5H_{10})]$ (5) The neutral, 16-electron dithiocarbamate complexes $[Mo(\eta^3-C_3H_5)(CO)_2(\eta^2-S_2CNR_2)]$ [20] were prepared directly by replacement of CH₃CN and Br of complex $Mo(CH_3CN)_2(\eta^3-C_3H_5)(CO)_2Br$ by dithiocarbamate ligands. Other methods for synthesis of the dithiocarbamate complexes have been reported by insertion of carbon disulfide into the metal-nitrogen bond [12f,21]. $S_2P(OEt)_2$ (3) with $C_5H_{10}NC(S)SH$ in CH_2Cl_2 to lead to the formation of the clean and high-yield 16-electron dithiocarbamate complex $[Mo(\eta^3-C_3H_5)(CO)_2(\eta^2 S_2CNC_5H_{10}$] (5) with release of $(EtO)_2P(S)SH$ ligand (Scheme 2). The yellow-orange crystalline product 5 was slightly air-sensitive, insoluble in CH₂Cl₂, CH₃CN and only slightly soluble in DMSO. Because of the low solubility, we cannot obtain a good-quality single crystal of 5 for X-ray diffraction analysis. In the EI mass spectrum, one parent peak with the typical Mo isotope distribution is in agreement with the [M+] molecular mass of 5. The IR spectrum of 5 shows four terminal carbonyl stretching bands and this phenomenon is consistent with other 16-electron complexes $[Mo(\eta^3 C_3H_5)(CO)_2(\eta^2-S_2CNR_2)$ [20]. The $^{13}C\{^1H\}-NMR$ spectrum of 5 reveals two singlets at lowest field, which are assigned to the carbon atoms of the carbon disulfide and the terminal carbonyl groups, respectively. Complex 5 can also be obtained by the reaction of complex $[Mo(\eta^3-C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}(C_5H_{10}NH)]$ (4) with carbon disulfide (Scheme 2). The CS₂ insertion reaction into the M-N bond (M = Cr, Mo, W) promoted by the abstraction of a proton on the nitrogen atom of the piperidine ligand by ⁿBuLi to form the η²-dithiocarbamate ligand has been reported by us [12f]. The reaction of 4 and CS₂ is believed to be induced by the stronger π-acceptor ability of C₅H₁₀NCS₂⁻ ligand, by insertion of CS₂ into the Mo-N bond of 4 to give dithiocarbamate complex 5 with release of the (EtO)₂P(S)SH ligand. #### 2.5. Conclusions We have investigated the synthesis and structure of the air-sensitive anionic dithiophosphate tetracarbonyl Mo(0) and W(0) complexes 1 and 2, respectively. The variable-temperature ¹H-NMR experiments were used to confirm the trigonal twist behavior of both the stereochemical non-rigidity of $[Mo(CH_3CN)(\eta^3 C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}$ and $[Mo(\eta^3 -$ **(3)** $C_3H_5)(CO)_2\{\eta^2-S_2P(OEt)_2\}(C_5H_{10}NH)$] (4) at room temperature. The greater π -acceptor ability $S_2CNC_5H_{10}^-$ than $S_2P(OEt)_2^-$ induced the insertion reaction of CS2 into the Mo-N bond of 4 to yield the 16-electron complex $[Mo(\eta^3-C_3H_5)(CO)_2(\eta^2-S_2CN C_5H_{10}$] (5). ## 3. Experimental #### 3.1. Materials All manipulations were performed under nitrogen using vacuum-line, drybox, and standard Schlenk techniques. NMR spectra were recorded on a Bruker AM-200, or on an AM-300 WB FT-NMR spectrometer and are reported in units of δ (ppm) with residual protons in the solvent as an internal standard (CDCl₃, δ 7.24; CD₃CN, δ 1.93; C₆D₆, δ 7.15; C₂D₆CO, δ 2.04). IR spectra were measured on a Perkin–Elmer 983 instrument and were referenced to a polystyrene standard, using cells equipped with calcium fluoride windows. Mass spectra were recorded on a Jeol SX-102A spectrometer. Solvents were dried and deoxygenated by ^b $Rw = [\Sigma \omega (|F_o| - |F_c|)^2]^{1/2}$, where $\omega = 1/\sigma^2 (|F_o|)$. [°] Quality-of-fit = $[\Sigma \omega(|F_o| - |F_c|)^2/(N_{\text{reflections}} - N_{\text{parameters}})]^{1/2}$. refluxing over the appropriate reagents before use. *n*-Hexane, diethyl ether, THF and benzene were distilled from sodium-benzophenone. Acetonitrile and dichloromethane were distilled from calcium hydride, and methanol from magnesium. All other solvents and reagents were of reagent grade and were used as received. Metal carbonyls, allyl bromide and NH₄S₂P-(OEt)₂ were purchased from Strem, Merck and Janssen, respectively. The compounds M(CO)₄(C₅H₁₀NH)₂ (M = Mo, W) [13] were prepared according to the literature methods. Elemental analyses and X-ray diffraction studies were carried out at the Regional Center of Analytical Instrument located at the National Taiwan University. ## 3.2. [Tetraethylammonium][(tetracarbonyl)(η^2 -diethyldithiophosphato)molybdenum(0)] (1) MeCN (40 ml) was added to a flask (100 ml) containing NH₄S₂P(OEt)₂ (0.406 g, 2.0 mmol), Et₄NBr (0.535 g, 2.5 mmol) and $Mo(CO)_4(C_5H_{10}NH)_2$ (0.756 g, 2.0 mmol). The solution was refluxed for 10 min, and an IR spectrum indicated completion of the reaction. After cooling the solution and removal of the solvent in vacuo, the residue was abstracted with diethyl ether $(3 \times 20 \text{ ml})$. Upon cooling below 0°C, yellow solids of 1 were formed which were isolated by filtration (G4), washed with *n*-hexane $(2 \times 10 \text{ ml})$ and subsequently dried under vacuum yielding 0.82 g (78%) of 1. Further purification was accomplished by recrystallization from 1:10 CH₂Cl₂-n-hexane. IR (KBr) ν (CO) 1999(m), 1861(vs), 1840(vs), 1801(vs) cm⁻¹. $^{31}P\{^{1}H\}$ -NMR (80) MHz, C_2D_6CO , 298 K): δ 104.6. ¹H-NMR (200 MHz, C_2D_6CO , 298 K): δ 1.25 (t, J(HH) 7.4 Hz, 6H, OCH₂CH₃), 1.38 (tt, ³J(NH) 1.9, J(HH) 7.3 Hz, 12H, NCH₂CH₃), 3.47 (q, J(HH) 7.3 Hz, 8H, NCH₂), 4.03 $(dq, {}^{3}J(PH) 9.5, J(HH) 7.4 Hz, 4H, OCH₂). {}^{13}C{}^{1}H}$ NMR (50 MHz, CDCl₃, 298 K): δ 7.5 (s, NCH₂CH₃), 15.8 (s, OCH₂CH₃), 52.6 (s, NCH₂), 62.3 (s, OCH₂), 206.5 (s, cis-CO), 222.1 (s, trans-CO). MS (FAB, NBA) $[M^+ + Et_4N-CO]$. Anal. m/z 627 Calc. C₁₆H₃₀NO₆PS₂Mo: C, 36.71; H, 5.78; N, 2.68. Found: C, 36.90; H, 5.60; N, 2.50%. ## 3.3. [Tetraethylammonium][(tetracarbonyl)(η^2 -diethyl-dithiophosphato)tungsten(0)] (2) $NH_4S_2P(OEt)_2$ (0.406 g, 2.0 mmol) and Et_4NBr (0.535 g, 2.5 mmol) were dissolved in MeCN (20 ml) and the solution was added to a solution of $W(CO)_4(C_5H_{10}NH)_2$ (0.932 g, 2.0 mmol) in MeCN (40 ml). The solution was refluxed for 30 min, and an IR spectrum indicated completion of the reaction. After cooling the solution and removal of the solvent in vacuo, the residue was abstracted with diethyl ether (3 × 20 ml). Upon cooling below $-18^{\circ}C$ for 1 day, Table 2 Atomic parameters x, y, z, and B_{eq} for important atoms of 1 a | Atom | X | У | Z | $B_{ m eq}$ | |------|--------------|-------------|------------|-------------| | Mo | 0 | 0.31337(3) | 1/4 | 4.228(19) | | S(1) | 0.08208(9) | 0.18635(7) | 0.15031(9) | 5.69(5) | | P(1) | 0 | 0.11565(9) | 1/4 | 4.95(7) | | O(1) | -0.06698(22) | 0.05025(16) | 0.1773(3) | 6.28(13) | | C(1) | -0.1465(4) | 0.0764(3) | 0.0919(4) | 7.7(3) | | C(2) | -0.1553(5) | 0.0225(3) | -0.0051(5) | 9.5(3) | | C(3) | -0.1154(3) | 0.3177(3) | 0.1235(4) | 5.91(20) | | O(3) | -0.1797(3) | 0.3238(3) | 0.0522(3) | 9.92(21) | | C(4) | 0.0679(4) | 0.3992(3) | 0.1687(4) | 6.63(24) | | O(4) | 0.1065(4) | 0.45284(22) | 0.1221(3) | 10.46(24) | ^a Estimated S.D. values are in parentheses. Table 3 Selected interatomic distances (Å) and angles (°) for 1 | Mo-S(1) | 2.6219(13) | O-C(1) | 1.439(5) | |----------------|------------|------------------|------------| | Mo-S(1a) | 2.6219(13) | C(1)-C(2) | 1.408(7) | | Mo-C(3) | 2.015(4) | C(3)-O(3) | 1.132(5) | | Mo-C(3a) | 2.015(4) | C(4)-O(4) | 1.155(5) | | Mo-C(4) | 1.924(4) | Mo-C(4a) | 1.924(4) | | S(1)-P(1) | 1.9815(16) | P(1)-S(1a) | 1.9815(16) | | P(1)-O(1) | 1.576(3) | P(1)-O(1a) | 1.576(3) | | S(1)-Mo-S(a) | 75.95(5) | S(1)-P(1)-O(1) | 113.33(12) | | S(1)-Mo-C(3) | 91.64(12) | S(1)-P-O(1a) | 112.81(12) | | S(1)-Mo-C(3a) | 91.55(14) | Sa-P(1)-O(1) | 112.81(12) | | S(1)-Mo-C(4) | 98.55(15) | Sa-P(1)-O(1a) | 113.33(12) | | S(1)-Mo-C(4a) | 174.50(14) | O(1)-P(1)-O(1a) | 95.08(16) | | S(1a)-Mo-C(3) | 91.55(14) | P(1)-O(1)-C(1) | 120.3(3) | | S(1a)-Mo-C(3a) | 91.64(12) | O(1)-C(1)-C(2) | 111.2(4) | | S(1a)-Mo-C(4) | 174.50(14) | Mo-C(3)-O(3) | 177.0(4) | | S(1a)-Mo-C(4a) | 98.55(15) | Mo-C(4)-O(4) | 177.5(4) | | C(3)-Mo-C(3a) | 175.95(18) | C(3)-Mo- $C(4)$ | 89.84(20) | | C(3)-Mo-C(4a) | 88.23(19) | C(3a)-Mo- $C(4)$ | 88.23(19) | | C(3a)-Mo-C(4a) | 88.84(20) | C(4)-Mo-C(4a) | 86.94(20) | | Mo-S(1)-P(1) | 87.51(6) | S(1)–P(1)–S(1a) | 109.02(9) | yellow solids were formed, which were isolated by filtration (G4), washed with cold (0°C) *n*-hexane (2 \times 10 ml) and subsequently dried under vacuum to yield 0.79 g (65%) of 2. Further purification was accomplished by recrystallization from 1:20 CH₂Cl₂-n-hexane. IR (KBr) ν (CO) 1993(m), 1841(vs), 1833(vs), $1798(vs) cm^{-1}$. ${}^{31}P{}^{1}H}-NMR$ (80 MHz, C_2D_6CO , 298 K): δ 99.0. ¹H-NMR (200 MHz, CD₃CN, 298 K): δ 1.20 (tt, ${}^{3}J(NH)$ 1.9, J(HH) 7.3 Hz, 12H, NCH₂CH₃), 1.28 (t, J(HH) 7.4 Hz, 6H, OCH_2CH_3), 3.16 (q, J(HH)7.3 Hz, 8H, NC H_2), 4.06 (dq, ${}^3J(PH)$ 9.5, J(HH) 7.4 Hz, 4H, OC H_2). ¹³C{¹H}-NMR (50 MHz, CDCl₃, 298 K): δ 7.6 (s, NCH₂CH₃), 16.2 (s, OCH₂CH₃), 52.9 (s, NCH₂), 63.3 (s, OCH₂), 203.9 (s, cis-CO), 212.0 (s, trans-CO). MS (FAB, NBA) m/z 713 [M⁺+ Et₄N-CO]. Anal. Calc. for C₁₆H₃₀NO₆PS₂W: C, 31.43; H, 4.95; N, 2.29. Found: C, 31.65; H, 5.08; N, 2.57%. Table 4 Atomic parameters x, y, z, and $B_{\rm eq}$ for important atoms of 3 $^{\rm a}$ | Atom | X | у | Z | $B_{ m eq}$ | |-------|-------------|-------------|-------------|-------------| | Mo | 0.59890(3) | 0.64115(5) | 0.63243 | 3.717(25) | | S(1) | 0.72332(11) | 0.82703(23) | 0.65210(17) | 5.34(9) | | S(2) | 0.62411(12) | 0.6547(3) | 0.83715(16) | 4.76(9) | | P(1) | 0.71659(10) | 0.79941(23) | 0.80612(18) | 4.60(8) | | O(1) | 0.7102(3) | 0.9598(6) | 0.8659(4) | 6.5(3) | | C(1) | 0.6437(6) | 1.0631(13) | 0.8514(9) | 9.4(6) | | C(2) | 0.6505(6) | 1.2053(11) | 0.9038(9) | 8.4(6) | | O(2) | 0.8021(3) | 0.7495(6) | 0.8605(4) | 6.5(3) | | C(3) | 0.8384(6) | 0.6019(12) | 0.8388(10) | 8.5(6) | | C(4) | 0.9113(6) | 0.5784(12) | 0.8982(11) | 10.1(6) | | N(1) | 0.7014(3) | 0.4617(5) | 0.6369(6) | 4.5(3) | | C(5) | 0.7539(4) | 0.3747(7) | 0.6325(8) | 4.5(4) | | C(6) | 0.8233(4) | 0.2643(8) | 0.6333(9) | 6.3(3) | | C(7) | 0.5258(4) | 0.8198(7) | 0.6234(7) | 5.0(3) | | O(7) | 0.4835(3) | 0.9288(6) | 0.6156(5) | 7.1(3) | | C(8) | 0.5997(5) | 0.6648(10) | 0.4809(7) | 5.9(4) | | O(8) | 0.5987(5) | 0.6863(9) | 0.3907(5) | 9.5(4) | | C(9) | 0.5343(6) | 0.4324(11) | 0.5546(9) | 7.9(5) | | C(10) | 0.5129(5) | 0.4421(9) | 0.6603(7) | 5.7(4) | | C(11) | 0.4634(4) | 0.5717(9) | 0.6838(6) | 6.1(4) | ^a Estimated S.D. values are in parentheses. ## 3.4. (Acetonitrile)(η^3 -allyl)(dicarbonyl)(η^2 -diethyl-dithiophosphato)molybdenum(II) (3) An aliquot of C₃H₅Br (0.1 ml, 1.2 mmol) was added to a flask containing a solution of 1 (0.523 g, 1.0 mmol) in MeCN (20 ml). After stirring for 10 min, the mixture was cooled and the solution was removed in vacuo. The residue was redissolved in CH₂Cl₂ (5 ml). n-Hexane (20 ml) was added to the solution and a vellow-orange precipitate was formed. The precipitate was collected by filtration (G4) washed with n-hexane $(2 \times 10 \text{ ml})$ and then dried in vacuo yielding 0.34 g (82%) of 3. Recrystallization using a mixture of cold 20:1 MeOH-CH₂Cl₂ gave the yellow-orange crystalline product [Mo-(CH₃CN)(η^3 -C₃H₅)(CO)₂{ η^2 -S₂P- $(OEt)_2$ (3). IR (KBr) ν (CO) 1926(vs), 1841(vs) cm⁻¹. $^{31}P\{^{1}H\}$ -NMR (80 MHz, CD₃CN, 298 K): δ 100.9. ¹H-NMR (200 MHz, CD₃CN, 298 K): δ 1.26 (t, $^{3}J(HH)$ 7.4 Hz, 6H, OCH₂CH₃), 1.28 (d, J(HH) 10.0 Hz, 2H, Hanti of allyl), 1.95 (s, 3H, CH₃CN), 3.29 (d, J(HH) 5.5 Hz, 2H, Hsyn of allyl), 4.03 (dq, ${}^{3}J(PH)$ 9.5, J(HH) 7.4 Hz, 4H, OCH₂), 4.29 (m, 1H, CH of allyl). ${}^{13}C\{{}^{1}H\}$ -NMR (50 MHz, CD₃CN, 298 K): δ 3.3 (s, CH_3CN), 15.8 (s, OCH_2CH_3), 55.7 (s, $CH=CH_2$), 62.9 (s, OCH₂), 71.5 (s, CH₂=CH), 119.5 (s, CH₃CN), 225.0 (s, CO). MS (FAB, NBA): m/z 421 [M+], 380 $[M^+ - CH_3CN]$, 339 $[M^+ - CH_3CN - C_3H_5]$, 311 $[M^{+} - CH_{3}CN - C_{3}H_{5} - CO],$ 283 $[M^+ - CH_3CN C_3H_5$ -2CO]. Anal. Calc. for $C_{11}H_{18}NO_4PS_2Mo$: C, 31.51; H, 4.33; N, 3.34. Found: C, 31.70; H, 4.21; N, 3.25%. Table 5 Selected interatomic distances (Å) and angles (°) for 3 | Mo-S(1) | 2.5648(18) | P(1)-O(2) | 1.590(5) | |------------------|------------|-------------------|------------| | Mo-S(2) | 2.6377(21) | O(1)-C(1) | 1.399(11) | | Mo-N(1) | 2.253(5) | C(1)-C(2) | 1.398(15) | | Mo-C(7) | 1.936(6) | O(2)-C(3) | 1.425(11) | | Mo-C(8) | 1.939(9) | C(3)-C(4) | 1.403(13) | | Mo-C(9) | 2.297(8) | N(1)-C(5) | 1.126(7) | | Mo-C(10) | 2.226(7) | C(5)-C(6) | 1.461(8) | | Mo-C(11) | 2.339(6) | C(7) = O(7) | 1.160(8) | | S(1)-P(1) | 1.976(3) | C(8)-O(8) | 1.162(11) | | S(2)-P(1) | 1.973(3) | C(9)-C(10) | 1.390(15) | | P(1)-O(1) | 1.581(5) | C(10)-C(11) | 1.400(12) | | S(1)-Mo-S(2) | 75.97(7) | C(9)-Mo-C(10) | 35.7(4) | | S(1)-Mo-N(1) | 82.09(12) | C(9)-Mo- $C(11)$ | 60.3(3) | | S(1)-Mo-C(7) | 88.70(18) | C(10)-Mo- $C(11)$ | 35.6(3) | | S(1)-Mo-C(8) | 91.5(3) | Mo-S(1)-P(1) | 88.82(8) | | S(1)-Mo-C(9) | 151.5(3) | Mo-S(2)-P(1) | 86.84(10) | | S(1)-Mo- $C(10)$ | 160.73(20) | S(1)-P(1)-S(2) | 108.36(12) | | S(1)-Mo-C(11) | 148.19(20) | S(1)-P(1)-O(1) | 112.05(24) | | S(2)-Mo-N(1) | 83.94(20) | S(1)-P(1)-O(2) | 114.64(24) | | S(2)-Mo-C(7) | 96.6(3) | S(2)-P(1)-O(1) | 114.05(22) | | S(2)-Mo-C(8) | 167.4(3) | S(2)-P(1)-O(2) | 112.68(24) | | S(2)-Mo-C(9) | 121.9(3) | O(1)-P(1)-O(2) | 94.7(3) | | S(2)-Mo-C(10) | 88.37(23) | P(1)-O(1)-C(1) | 122.8(5) | | S(2)-Mo-C(11) | 82.94(19) | O(1)-C(1)-C(2) | 115.7(8) | | N(1)-Mo-C(7) | 170.36(21) | P(1)-O(2)-C(3) | 120.5(5) | | N(1)-Mo-C(8) | 95.3(3) | O(2)-C(3)-C(4) | 111.3(8) | | N(1)-Mo-C(9) | 78.5(3) | Mo-N(1)-C(5) | 175.4(7) | | N(1)-Mo-C(10) | 85.20(24) | N(1)-C(5)-C(6) | 176.5(10) | | N(1)-Mo-C(11) | 119.36(23) | Mo-C(7)-O(7) | 177.9(6) | | C(7)-Mo- $C(8)$ | 82.0(3) | Mo-C(8)-O(8) | 176.7(7) | | C(7)-Mo- $C(9)$ | 109.0(3) | Mo-C(9)-C(10) | 69.3(4) | | C(7)-Mo- $C(10)$ | 104.4(3) | Mo-C(10)-C(9) | 74.9(5) | | C(7)-Mo- $C(11)$ | 70.2(3) | Mo-C(10)-C(11) | 76.6(4) | | C(8)-Mo-C(9) | 69.9(4) | C(9)-C(10)-C(11) | 113.2(8) | | C(8)-Mo-C(10) | 104.1(3) | Mo-C(11)-C(10) | 67.8(4) | | C(8)-Mo-C(11) | 108.1(3) | | | | | | | | ## 3.5. $(\eta^3$ -Allyl)(dicarbonyl)(η^2 -diethyldithiophosphato)-(piperidine)molybdenum(II) (**4**) $S_2P(OEt)_2$ (3) (0.419 g, 1.0 mmol) in CH_2Cl_2 (20 ml) was treated with C₅H₁₀NH (0.1 ml, 1.2 mmol) at ambient temperature. Instantly, the reaction mixture turned yellow. After 10 min of stirring, the solution was dried in vacuo. Subsequently, n-hexane (40 ml) was added to the solution and a yellow precipitate was formed. The precipitate was collected by filtration (G4) and dried in vacuo to yield 0.35 g (76%) of 4. IR (KBr) ν (CO) 1929(vs), 1833(vs) cm⁻¹. ³¹P{¹H}-NMR (80 MHz, CDCl₃, 298 K): δ 110.4. ¹H-NMR (200 MHz, CDCl₃, 298 K): δ 1.12 (d, J(HH) 9.4 Hz, 2H, Hanti of allyl), 1.33 (t, ${}^{3}J(HH)$ 7.4 Hz, 6H, OCH₂CH₃), 1.77 (m, 6H, $NCH_2CH_2CH_2$) 3.25 (d, J(HH) 6.6 Hz, 2H, Hsyn of allyl), 3.53 (m, 4H, NCH₂), 3.90 (m, 1H, CH of allyl), 4.08 (dq, ${}^{3}J(PH)$ 9.5, J(HH) 7.4 Hz, 4H, OC H_2). ¹³C{¹H}-NMR (50 MHz, CDCl₃, 298 K): δ 16.0 (s, OCH₂CH₃), 23.8 (s, NCH₂CH₂CH₂), 28.9 (s, NCH₂CH₂), 53.0 (s, NCH₂), 57.0 (s, CH=CH₂), 63.0 (s, OCH₂), 71.4 (s, CH₂=CH), 227.0 (s, CO). MS (FAB, NBA): m/z 464 [M⁺], 436 [M⁺ – CO], 408 [M⁺ – 2CO]. Anal. Calc. for C₁₄H₂₆NO₄PS₂Mo: C, 36.28; H, 5.66; N, 3.02. Found: C, 36.25; H, 5.61; N, 3.12%. ## 3.6. $(\eta^3$ -Allyl)(dicarbonyl)(η^2 -piperidine-N-dithiocarbamato)molybdenum(II) (5) #### 3.6.1. Method A A solution of C₅H₁₀NC(S)SH (0.161 g, 1.0 mmol) in MeOH (5 ml) was added to a flask containing 3 (0.419 g, 1.0 mmol) in CH₂Cl₂ (20 ml). The solution was stirred for 1 min and a yellow-orange precipitate formed. The precipitate was collected by filtration (G4), washed with *n*-hexane $(2 \times 10 \text{ ml})$ and then dried in vacuo to yield 0.35 g (99%) of 5. IR (KBr) ν (CO) 1945(vs), 1917(vs), 1865(vs), 1847(vs) cm⁻¹. ¹H-NMR (200 MHz, DMSO-d₆, 298 K): δ 1.17 (d, J(HH) 9.8 Hz, 2H, Hanti of allyl), 1.50 (m, 6H, NCH₂CH₂CH₂), 3.13 (d, J(HH) 6.4 Hz, 2H, Hsyn of allyl), 3.83 (m, 4H, NCH_2), 4.00 (m, 1H, CH of allyl). ¹³C{¹H}-NMR (50 MHz, DMSO- d_6 , 298 K): δ 23.7 (s, NCH₂CH₂CH₂), 25.7 (s, NCH₂CH₂), 48.0 (s, NCH₂), 58.1 (s, CH=CH₂), 74.7 (s, CH₂=CH), 204.2 (s, CS₂), 230.1 (s, CO). MS (EI, 20 eV): m/z 355 [M⁺], 327 [M⁺ – CO], 299 $[M^+ - 2CO]$. Anal. Calc. for $C_{11}H_{15}NO_2S_2Mo$: C, 37.39; H, 4.28; N, 3.97. Found: C, 37.52; H, 4.42; N, 3.75%. ## 3.6.2. *Method B* An aliquot of CS_2 (0.1 ml, 1.6 mmol) was added to a solution of **4** (0.463 g, 1.0 mmol) in CH_2Cl_2 (20 ml). Instantly, the reaction was completed. A yellow–orange precipitate was formed which was isolated by filtration (G4), and was washed with *n*-hexane (2 × 10 ml) and subsequently dried under vacuum to yield 0.33 g (94%) of **5**. ## 3.7. X-ray crystallography A single crystal of 1 suitable for X-ray diffraction analysis was grown by recrystallization from 20:1 n-hexane–CH₂Cl₂. The diffraction data were collected at room temperature on an Enraf–Nonius CAD4 diffractometer equipped with graphite-monochromated Mo– K_{α} ($\lambda=0.71073$ Å) radiation. The raw intensity data were converted to structure factor amplitudes and their estimated S.D. values, after corrections for scan speed, background, Lorentz, and polarization effects. An empirical absorption correction, based on the azimuthal scan data, was applied to the data. Crystallographic computations were carried out on a Microvax III computer using the NRCC-SDP-VAX structure determination package [14]. A suitable single crystal of 1 was mounted on the top of a glass fiber with glue. Initial lattice parameters were determined from 24 accurately centered reflections with 2θ values in the range from 19.42 to 24.34°. Cell constants and other pertinent data were collected and are recorded in Table 1. Reflection data were collected using the $\theta/2\theta$ scan method. The final scan speed for each reflection was determined from the net intensity gathered during an initial prescan and ranged from 2.06 to 8.24° min⁻¹. The θ scan angle was determined for each reflection according to the equation, 0.70 + 0.35 $\tan \theta$. Three check reflections were measured every 30 min throughout the data collection and showed no apparent decay. The merging of equivalent and duplicate reflections gave a total of 2121 unique measured data in which 1703 reflections with $I > 2\sigma(I)$ were considered observed. The structure was first solved by using the heavy-atom method (Patterson synthesis), which revealed the positions of metal atoms. The remaining atoms were found in a series of alternating difference Fourier maps and least-squares refinements. The quantity minimized by the least-squares program was $\omega(|F_0| - |F_c|)^2$, where ω is the weight of a given operation. The analytical forms of the scattering factor tables for the neutral atoms were used [15]. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the structure factor calculations in their expected positions on the basis of idealized bonding geometry but were not refined in least-squares. The final residuals of this refinement were R = 0.031and Rw = 0.031. Final values of all refined atomic positional parameters and selected bond distances and angles are listed in Tables 2 and 3, respectively. The procedures for 3 were similar to those for 1. The unit cell constants were also determined from 24 accurately centered reflections. Cell constants and other pertinent data were collected in Table 1. The final residuals of this refinement were R = 0.026 and Rw = 0.028 for 3. Final values of all refined atomic positional parameters and selected bond distances and angles are listed in Tables 4 and 5, respectively. Tables of thermal parameters are given in the supplementary material. #### 4. Supplementary material Complete tables of anisotropic thermal parameters, bond distances and bond angles (six pages); listings of observed and calculated structure factors (14 pages) are available from the authors. ### Acknowledgements We thank the National Science Council of Taiwan, Republic of China for support. #### References - (a) E. Lindner, H. Berke, J. Organomet. Chem. 39 (1972) 145. (b) D.J. Cole-Hamilton, T.A. Stephenson, J. Chem. Soc. Dalton Trans. (1974) 739. - [2] (a) D.J. Cole-Hamilton, T.A. Stephenson, J. Chem. Soc. Dalton Trans. (1975) 754. (b) D.J. Cole-Hamilton, T.A. Stephenson, J. Chem. Soc. Dalton Trans. (1978) 486. (c) M.E. Nobel, J.C. Huffman, R.A.D. Wentworth, Inorg. Chem. 23 (1984) 631. - [3] (a) J.H. Burk, G.E. Whitwell II, J.T. Lemley, J.M. Burlitch, Inorg. Chem. 22 (1983) 1306. (b) M.H. Chisholm, D.M. Ho, J.C. Huffman, W.G. Van Der Sluys, Polyhedron 6 (1987) 1115. (c) R.W. Hilts, M. Cowie, Inorg. Chem. 29 (1990) 3349. - [4] (a) M. Iglesias, C. Del Pino, S. Martnez-Carrera, Polyhedron 8 (1989) 484. (b) S.G. Kukes, R.J. Hogan, D.M. Coombs, T. Davis, H.F. Efner, Eur. Pat. Appl. EP 160839, 1984; Chem. Abstr. 104 (1986) 53448z. (c) L.J. Velenyi, C. Paparizos, S.R. Dolhyj, US Patent 4262153, 1987; Chem. Abstr. 95 (1981) 80475h. - [5] (a) W. Bechmann, E. Uhlemann, M.Z. Raab, Anorg. Allg. Chem. 530 (1985) 213. (b) T.A. Udalova, Y.M. Uhlemann, Russ. J. Inorg. Chem. (Engl. Transl.) 28 (1983) 396. - [6] (a) A.W. Edelbult, K. Folting, J.C. Huffman, R.A.D. Wentworth, J. Am. Chem. Soc. 103 (1981) 1927. (b) M.E. Noble, K. Folting, J.C. Huffman, R.A.D. Wentworth, Inorg. Chem. 23 (1984) 631. (c) J.E. Pelati, J.C. Huffman, R.A.D. Wentworth, Inorg. Chem. 27 (1988) 2194. - [7] (a) I. Haiduc, Rev. Inorg. Chem. 3 (1981) 353. (b) J.R. Dilworth,J. Chem. Soc. Dalton Trans. (1983) 397. - [8] (a) S. Woodward, U. Riaz, M.D. Curtis, Organometallics 9 (1990) 2703. (b) M.R. Houchin, K. Mitsios, Inorg. Chim. Acta 65 (1982) L147. - [9] (a) G. Barrado, D. Miguel, J.A. Perez-Martinez, V. Riera, S. Garcia-Granda, J. Organomet. Chem. 463 (1993) 127. (b) G. Barrado, D. Miguel, J.A. Perez-Martinez, V. Riera, J. Organomet. Chem. 466 (1994) 147. (c) G. Barrado, D. Miguel, V. Riera, S. Garcia-Granda, J. Organomet. Chem. 489 (1995) 129 - [10] (a) S. Trofimenko, Acc. Chem. Res. 4 (1971) 17. (b) F.A. - Cotton, A.G. Stanislowski, J. Am. Chem. Soc. 96 (1974) 5074. (c) D.J. Bevan, R.J. Mawby, J. Chem. Soc. Dalton Trans. (1980) 1904. (d) J.W. Faller, D.A. Haitko, R.D. Adams, D.F. Chodosh, J. Am. Chem. Soc. 101 (1979) 865. - [11] (a) B.J. Brisdon, G.F. Griffin, J. Chem. Soc. Dalton Trans. (1975) 1999. (b) B.J. Brisdon, A.A. Woolf, J. Chem. Soc. Dalton Trans. (1978) 291. - [12] (a) K.H. Yih, Y.C. Lin, M.C. Cheng, Y. Wang, J. Chem. Soc. Chem. Commun. (1993) 1380. (b) K.H. Yih, Y.C. Lin, M.C. Cheng, Y. Wang, Organometallics 13 (1994) 1561. (c) K.H. Yih, Y.C. Lin, M.C. Cheng, Y. Wang, J. Organomet. Chem. 474 (1994) C34. (d) K.H. Yih, Y.C. Lin, G.H. Lee, Y. Wang, J. Chem. Soc. Chem. Commun. (1995) 223. (e) K.H. Yih, Y.C. Lin, M.C. Cheng, Y. Wang, J. Chem. Soc. Dalton Trans. (1995) 1305. (f) K.H. Yih, S.C. Chen, Y.C. Lin, M.C. Cheng, Y. Wang, J. Organomet. Chem. 494 (1995) 149. (g) K.H. Yih, S.C. Yeh, Y.C. Lin, G.H. Lee, Y. Wang, Organometallics 17 (1998) 513. - [13] D.J. Darensbourg, R.L. Kump, Inorg. Chem. 17 (1978) 2680. - [14] E.J. Gabe, F.L. Lee, Y. Lepage, in: G.M. Sheldrick, C. Kruger, R. Goddard (Eds.), Crystallographic Computing 3, Clarendon Press, Oxford, 1985, p. 167. - [15] (a) International Tables for X-ray Crystallography, vol. IV, Reidel, Dordrecht, 1974. (b) Y. LePage, E. Gabe, J. Appl. Crystallogr. 23 (1990) 406. - [16] K.B. Shiu, S.M. Peng, M.C. Cheng, S.L. Wang, F.L. Liao, J. Organomet. Chem. 461 (1993) 111. - [17] B. Zhuang, L. Huang, L. He, Y. Yang, J. Lu, Inorg. Chim. Acta 145 (1988) 225. - [18] M.G.B. Drew, P.C.H. Mitchell, A.R. Read, J. Chem. Soc. Chem. Commun. (1982) 238. - [19] K.H. Yih, Y.C. Lin, G.H. Lee, Y. Wang, Chem. Commun. (Cambridge), submitted for publication. - [20] K.B. Shiu, K.H. Yih, S.L. Wang, F.L. Liao, J. Organomet. Chem. 420 (1991) 359. - [21] (a) D.C. Bradley, M.H. Gitlitz, J. Chem. Soc. A (1969) 1152. (b) B.J. McCormick, R.I. Kaplan, Can. J. Chem. 48 (1970) 1876. (c) E. Roman, D. Catheline, D. Astruc, J. Organomet. Chem. 236 (1982) 229. (d) R. Rossi, A. Marchi, A. Duatti, L. Magon, J. Chem. Soc. Dalton Trans. (1988) 899.