www.elsevier.nl/locate/jorganchem Journal of Organometallic Chemistry 588 (1999) 260-267 # Syntheses and chemistry of Tris(2-pyridyl)phosphine complexes of Group VI transition metals. X-ray structural studies of the molybdenum complexes Cheng-Yi Kuo ^a, Yaw-Shyan Fuh ^a, Jay-Yun Shiue ^a, S. Joyce Yu ^{a,*}, Gene-Hsiang Lee ^b, Shie-Ming Peng ^b ^a Department of Chemistry, National Chung Cheng University, Ming Hsiung, Chia Yi 621, Taiwan, ROC ^b Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC Received 11 May 1999; received in revised form 28 June 1999 #### Abstract Keywords: Group VI transition metals; Molybdenum; X-ray #### 1. Introduction The synthesis of Tris(2-pyridyl)phosphine $(P(2-py)_3, 2-py = 2-pyridyl)$ was first reported [1] in 1944 by Davies and Mann as part of a study on the optical resolution of tertiary phosphines. Yet the complexation of $P(2-py)_3$ with metal ions was not reported until 1970 [2]. There has been an increasing usage of $P(2-py)_3$ in inorganic and organometallic chemistry primarily because of its interesting structural feature retaining both phosphorus and nitrogen atoms with versatile coordi- nation possibility. There are four coordination modes found for complexes containing P(2-py)₃, namely, P-monodentate [3,4], η^2 -P,N-chelate [5,6a], μ -P,N-bridge [7] and η^3 -N,N',N''-chelate [8]. Thus, application of P(2-py)₃ ligations affords numerous novel and useful complexes. Apart from its characteristics in coordination chemistry, the catalysis aspects of P(2-py)₃ for the reactions employing triphenylphosphine have been recently explored [6]. We have focused our interest on the η^3 -N,N',N''-P(2-py)₃ ligation, where the P(2-py)₃ ligand binds to group VI transition metals at facial position of an octahedron via three pyridyl nitrogen atoms. The η^3 -N,N',N''-chelate has been mostly observed as a π -acceptor ligand in sandwich complexes of first-row transi- ^{*} Corresponding author. Fax: +886-5-2721040. E-mail address: chejyy@ccunix.ccu.edu.tw (S. Joyce Yu) tion metals with low oxidation state. The electrochemical properties such as the σ - and π -delocalization as well as the π -accepting capability of a series of cobalt complexes containing two η^3 -N,N',N''-chelating ligands have been discussed [9]. These sandwich complexes are generally formulated as $[M(P(2-py)_3)_2]^{2+}$ (M=Mn, Co, Ni, Cu, Zn, Ru) [8a–c]. However, only two examples of half-sandwich complexes have been reported, that is, $ZnP(2-py)_3)(\eta^1-NO_3)(\eta^2-NO_3)$ [8d] and $RuCl(PPh_3)P(2-py)_3$ [8e]. In this paper, we report our research on the synthesis, characterization, and reactivity of Group VI transition-metal half-sandwich complexes supported by η^3 -N,N',N"-P(2-py)₃ ligation. Substitution of the neutral CO ligands in $P(2-py)_3M(CO)_3$ (M = Cr. 1a, Mo: **1b**, W: **1c**) by the isoelectronic NO⁺ groups affords cationic species of the type $[P(2-py)_3M(CO)_{3-}]$ $n(NO)_n$ ⁿ⁺ (n = 1, 2). The dinitrosyl complexes, [P(2 $py_3M(CO)(NO)_2](BF_4)_2$ (M = Mo: **3a**, W: **3b**), have been proven to be strong Lewis acid precursors. In solution, complexes 3a and 3b release their CO and generate 16-electron species of the type [P(2py)₃M(NO)₂]²⁺, which are capable of binding basic nitriles and aldehydes. Furthermore, 3b is also active in promoting the Diels-Alder reaction of cyclohexadiene and methyl vinyl ketone. The Diels-Alder reactions of 1,3-butadiene and methyl vinyl ketone [10] as well as the additions of silvlated C-nucleophiles to carbonyl compounds [11] have also been observed to be catalyzed by the analogues Lewis acid precursor, [HC(2py)₃W(CO)(NO)₂](SbF₆)₂, where the HC(2-py)₃ ligand is an η^3 -N,N',N'' ligand. Though catalysis using complexes containing pyridylphosphine ligands, $PPh_{3-n}(2-py)_n$ (n=1,2) has developed noticeably in the past two decades [4,12], the application of $P(2-py)_3$ in homogeneous catalysis is still limited [6]. We are therefore interested in exploring the catalytic aspects of $P(2-py)_3$ in homogeneous systems. #### 2. Experimental All manipulations were carried out either by use of standard Schlenk techniques or in a Vacuum Atmospheres glove-box unless specified otherwise. NMR spectra were recorded on a Varian Gemini-200 QNP or a Bruker AMX 400 QNP spectrometer, and chemical shifts were reported relatively to TMS for ¹H- and ¹³C-NMR spectra, 85% H₃PO₄ for ³¹P-NMR spectra, and CFCl₃ for ¹⁹F-NMR spectra in CDCl₃, CD₃NO₂, CD₃CN and DMSO-d₆. Infrared spectra were obtained with a Perkin–Elmer 682 spectrometer. Elemental analyses were performed by the Microanalytical Laboratory of South Taiwan National Science Council Instrument Center. Mass spectra were obtained on a VG TRIO-2000 spectrometer. All solvents were dried with use of standard procedures. Crotonaldehyde and methyl vinyl ketone were purified by vacuum-transferred from CaH₂. Cyclohexadiene was used as purchased. All other materials were used as received without further purification. Tris(2-pyridyl)phosphine was prepared by a modification of the reported procedure [6a]. Cr(CO)₃(CH₃CN)₃ and W(CO)₃(CH₃CN)₃ were prepared by following the literature methods [13]. #### 2.1. Synthesis of $P(2-py)_3Cr(CO)_3$ (1a) A suspension of 0.28 g Cr(CO)₆ (1.2 mmol) in 30 ml of CH₃CN was heated at reflux under N₂ for 48 h, tris-2-pyridylphosphine (0.28 g, 1.1 mmol) was then added to the yellow solution. The reaction mixture was heated at reflux for another 12 h. A purple-colored precipitate formed during reflux. After cooling, the resulting solution was concentrated, and the supernatant was decanted and the precipitate was washed with CHCl₃ and dried in vacuo overnight to afford P(2py)₃Cr(CO)₃. Yield 0.27 g (64%, based on P(2-py)₃ added). ¹H-NMR (CDCl₃, 27°C, 200 MHz): δ 7.15 (t), 7.62 (t), 8.05 (t), 9.55 (d). ³¹P-NMR (CDCl₃, 27°C, 80 MHz): $\delta - 12.4$ ppm. IR (CDCl₃,): $v_{CO} = 1901$ (s), 1777 (br) cm $^{-1}$. Anal. Calc. for $C_{18}H_{12}N_3O_3PCr$: C, 53.29; H, 3.14; N, 10.21. Found: C, 53.88; H, 3.01; N, 10.47%. #### 2.2. Synthesis of $P(2-py)_3Mo(CO)_3$ (1b) A mixture of Tris-2-pyridyl-phosphine (200 mg, 0.7 mmol) and Mo(CO)₆ (200 mg, 0.7 mmol) in 10 ml of CH₃CN was heated at reflux under N₂ for 8 h to afford a red precipitate. The crude product was filtered and washed with petroleum ether, and the solid was dried in vacuo overnight to give red P(2-py)₃Mo(CO)₃. Yield 288 mg (89%). ¹H-NMR (CDCl₃, 27°C, 200 MHz): δ 7.20 (t), 7.70 (t), 8.08 (t), 9.45 (d). ³¹P-NMR (CDCl₃, 27°C, 80 MHz): δ – 3.2 ppm. IR (CDCl₃): ν_{CO} = 1908 (s), 1797 (br) cm⁻¹. Anal. Calc. for C₁₈H₁₂N₃O₃PMo: C, 48.35; H, 2.72; N, 9.41. Found: C, 48.56; H, 2.72; N, 9.44%. #### 2.3. Synthesis of $P(2-py)_3W(CO)_3$ (1c) A suspension of W(CO)₆ (220 mg, 0.56 mmol) in 10 ml of CH₃CN was heated at reflux under N_2 for 24 h, Tris-2-pyridylphosphine (136 mg, 0.51 mmol) was then added to the yellow solution. The reaction mixture was heated at reflux for another 12 h. A maroon-colored precipitate formed during reflux. After cooling, the resulting solution was concentrated, and the supernatant was decanted and the precipitate was washed with petroleum ether and dried in vacuo overnight to afford P(2-py)₃W(CO)₃. Yield 300 mg (61%, based on P(2-py)₃ added). ¹H-NMR (CDCl₃, 27°C, 200 MHz): δ 7.15 (t), 7.75 (t), 8.15 (t), 9.45 (d). ³¹P-NMR (CDCl₃, 27°C, 80 MHz): δ –4.5 ppm. IR (CDCl₃): ν_{CO} = 1899 (s), 1784 (br) cm⁻¹. Anal. Calc. for C₁₈H₁₂N₃O₃PW: C, 40.49; H, 2.33; N, 7.89. Found: C, 40.55; H, 2.27; N, 7.88%. #### 2.4. Synthesis of $[P(2-py)_3Mo(CO)_2(NO)](BF_4)$ (2a) To a suspension of P(2-py)₃Mo(CO)₃ (100 mg, 0.225 mmol) in 10 ml of CH₂Cl₂ was added 1 equiv. of NOBF₄ (26 mg, 0.222 mmol). An immediate vigorous gas evolution was observed upon addition of NOBF₄. The reaction mixture was allowed to stir at ambient temperature for 1 h. The unreacted P(2-py)₃Mo(CO)₃ was filtered off from the dark red solution, and the solvent was removed from the filtrate to give an orange-red solid. The solid was then dried in vacuo overnight to give orange-red [P(2-py)₃Mo(CO)₂-(NO)](BF₄). Yield 95 mg (79%). ¹H-NMR (CD₃CN, 27°C, 200 MHz): δ 7.55–7.65 (m), 8.06–8.18 (m), 8.28-8.41 (m), 8.97 (d, J = 5.12 Hz), 9.20 (d, J = 4.76Hz). 13 C-NMR (d_6 -DMSO, 27°C, 100 MHz): δ 222.0 (CO). ³¹P-NMR (CD₃CN, 27°C, 80 MHz): δ – 4.75. ¹⁹F-NMR (CD₃CN, 27°C, 376 MHz): δ – 151.3 ppm. IR (KBr): $v_{CO} = 2046$ (s), 1940 (br); $v_{NO} = 1668$ (s); $v_{\rm BF} = 1060$ cm^{-1} . (br) Anal. for $C_{17}H_{12}BF_4N_4O_3PMo:$ C, 38.23; H, 2.30; N, 10.41. Found: C, 38.24; H, 2.26; N, 10.49%. #### 2.5. Synthesis of $[P(2-py)_3W(CO)_2(NO)](BF_4)$ (2b) To a suspension of P(2-py)₃W(CO)₃ (100 mg, 0.188 mmol) in 10 ml of CH₂Cl₂ was added 1 equiv. of NOBF₄ (22 mg, 0.188 mmol). An immediate vigorous gas evolution was observed upon addition of NOBF₄. The reaction mixture was allowed to stir at ambient temperature for 1 h. The suspended impurities were filtered off from the dark purple solution, and the solvent was removed from the filtrate to give a purple solid. The solid was then dried in vacuo overnight to give [P(2-py)₃W(CO)₂(NO)](BF₄). Yield 89 mg (76%). ¹H-NMR (CD₃CN, 27°C, 200 MHz): δ 7.55–7.65 (m), 8.02–8.20 (m), 8.32–8.46 (m), 9.05 (d, J = 5.12 Hz), 9.28 (d, J = 5.12 Hz). ¹³C-NMR (d₆-DMSO, 27°C, 100 MHz): δ 222.1 (CO). ³¹P-NMR (CD₃CN, 27°C, 80 MHz): δ –8.07. ¹⁹F-NMR (CD₃CN, 27°C, 376 MHz): δ –151.3 ppm. IR (KBr): ν _{CO} = 2012 (s), 1912 (br); ν _{NO} = 1650 (s); ν _{BF} = 1060 (br) cm⁻¹. Anal. Calc. for C₁₇H₁₂BF₄N₄O₃PW: C, 38.81; H, 1.91; N, 9.01. Found: C, 32.83; H, 1.94; N, 9.01%. #### 2.6. Synthesis of $[P(2-py)_3Mo(CO)(NO)_2](BF_4)_2$ (3a) To a suspension of $[P(2-py)_3Mo(CO)_3$ (100 mg, 0.225 mmol) in 5 ml of CH_3NO_2 was added 2 equiv. of $NOBF_4$ (53 mg, 0.454 mmol). An immediate vigorous gas evolution was observed upon addition of $NOBF_4$. The reaction mixture was allowed to stir at ambient temperature for 10 min. The suspended impurities were filtered off from the dark green solution, and dried in vacuo overnight to give green solids of $[P(2-py)_3Mo(CO)(NO)_2](BF_4)$ 2. Yield 90 mg (90%). ¹H-NMR (CD_3NO_2 , 27°C, 200 MHz): δ 7.87 (m), 8.37 (m), 8.58 (*m*), 9.08 (d), 9.18 (d). ³¹P-NMR (CD_3NO_2 , 27°C, 80 MHz): δ – 5.8 ppm. IR (CD_3NO_2): ν_{CO} = 2037 (br); ν_{NO} = 1839 (s), 1738 (s); ν_{BF} = 1026 (br) cm⁻¹. #### 2.7. Synthesis of $[P(2-py)_3W(CO)(NO)_2](BF_4)_2$ (3b) To a suspension of $P(2-py)_3W(CO)_3$ (100 mg, 0.188) mmol) in 5 ml of CH₃NO₂ was added 2 equiv. of NOBF₄ (44 mg, 0.376 mmol). An immediate vigorous gas evolution was observed upon addition of NOBF₄. The reaction mixture was allowed to stir at ambient temperature for 30 min. The suspended impurities were filtered off from the dark green solution. Recrystallizations of the crude product from CH₃NO₂-ether solution at -18° C for 24 h gave green crystals of $[P(2-py)_3W(CO)(NO)_2](BF_4)_2$. Yield 75 mg (56%). ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 7.89–7.96 (m), 8.43-8.50 (m), 8.64-8.74 (m), 9.25-9.43 (m). 13 C-NMR (CD₃NO₂, 27°C, 50 MHz): δ 192.2 (CO). ³¹P-NMR (CD₃NO₂, 27°C, 80 MHz): $\delta - 10.58$. ¹⁹F-NMR $(CD_3NO_2, 27^{\circ}C, 188 \text{ MHz}): \delta - 151.7 \text{ ppm. IR (KBr)}:$ $v_{\text{CO}} = 2148 \text{ (br)}; \ v_{\text{NO}} = 1844 \text{ (s)}, \ 1758 \text{ (s)}; \ v_{\text{BF}} = 1030$ (br) cm $^{-1}$. Anal. Calc. for $C_{16}H_{12}B_2F_8N_5O_3PW$: C, 26.74; H, 1.78; N, 9.70. Found: C, 27.04; H, 1.70; N, 9.85%. ## 2.8. Synthesis of $[P(2-py)_3M(L)(NO)_2](BF_4)_2$, where M = Mo and W; $L = CH_3CN$ and CH_3CH_2CN A typical procedure for the synthesis of $[P(2-py)_3M(L)(NO)_2](BF_4)_2$ is described as follows. To a suspension of $P(2-py)_3Mo(CO)_3$ (50 mg, 0.112 mmol) in 5 ml of CH_3CN was added 2 equiv. of $NOBF_4$ (26 mg, 0.222 mmol). An immediate vigorous gas evolution was observed upon addition of $NOBF_4$. The reaction mixture was allowed to stir at ambient temperature for 30 min. The suspended impurities were filtered off from the dark green solution, and 5 ml of dry diethyl ether (5 ml) was added to the filtrate. The resulting solution was allowed to sit at $-18^{\circ}C$ for 24 h to give green crystalline solids of $[P(2-py)_3Mo(CH_3CN)(NO)_2](BF_4)_2$. Spectroscopic data are given below. #### 2.8.1. $[P(2-py)_3Mo(CH_3CN)(NO)_2](BF_4)_2$ (4a) ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 7.81–7.91 (m), 8.30–8.40 (m), 8.56–8.72 (*m*), 9.08 (d, J = 5.12 Hz), 9.28 (d, J = 5.20 Hz), 2.62 (s, CH₃CN). ¹³C-NMR (CD₃NO₂, 27°C, 50 MHz): δ 136.5 (CH₃CN), 4.3 (CH₃CN). ³¹P-NMR (CD₃NO₂, 27°C, 80 MHz): δ – 6.26. ¹⁹F-NMR (CD₃NO₂, 27°C, 188 MHz): δ – 151.5 ppm. IR (KBr): ν _{CN} = 2294 (br); ν _{NO} = 1834 (s), 1732 (s) cm⁻¹. Anal. Calc. for C₁₇H₁₅B₂F₈N₆O₂PMo: C, 28.20; H, 2.10; N, 11.52. Found: C, 28.21; H, 2.09; N, 11.61%. $$\begin{array}{c|c} & P & \\ & N & N \\ & N & \\$$ $\begin{array}{l} \textbf{4a}, \ M = Mo; \ L = CH_3CN \\ \textbf{4b}, \ M = Mo; \ L = C_2H_5CN \\ \textbf{4c}, \ M = Mo; \ L = CH_3CH=CHCH=O \\ \textbf{5a}, \ M = W; \ L = CH_3CN \\ \textbf{5b}, \ M = W; \ L = CH_3CN \\ \textbf{5c}, \ M = W; \ L = CH_3CH=CHCH=O \\ \textbf{5d}, \ M = W; \ L = (C_6H_3)CH=O \\ \end{array}$ #### 2.8.2. $[P(2-py)_3Mo(CH_3CH_2CN)(NO)_2](BF_4)_2$ (4b) ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 7.81–7.92 (m), 8.29–8.41 (m), 8.52–8.67 (m), 9.08 (d, J = 5.22 Hz), 9.17 (d, J = 5.20 Hz), 2.98 (q, J = 7.40 Hz, CH₃CH₂CN), 1.36 (t, J = 7.62 Hz, CH₃CH₂CN). ¹³C-NMR (CD₃NO₂, 27°C, 50 MHz): δ 139.5 (CH₃CH₂CN), 13.8 (CH₃CH₂CN), 9.4 (CH₃CH₂CN). ³¹P-NMR (CD₃NO₂, 27°C, 80 MHz): δ – 5.91. ¹⁹F-NMR (CD₃NO₂, 27°C, 188 MHz): δ – 151.7 ppm. IR (KBr): ν _{CN} = 2294 (br); ν _{NO} = 1830 (s), 1728 (s) cm⁻¹. Anal. Calc. for C₁₉H₂₀B₂F₈N₇O₄PMo: C, 31.93; H, 2.83; N, 13.57. Found: C, 32.07 H, 2.81; N, 13.78%. #### 2.8.3. $[P(2-py)_3W(CH_3CN)(NO)_2](BF_4)_2$ (5a) ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 7.82–7.95 (m), 8.33–8.45 (m), 8.58–8.71 (*m*), 9.17–9.22 (m), 2.66 (s, CH_3CN). ¹³C-NMR (CD_3NO_2 , 27°C, 50 MHz): δ 138.1 (CH_3CN), 4.8 (CH_3CN). ³¹P-NMR (CD_3NO_2 , 27°C, 80 MHz): δ – 10.75. ¹⁹F-NMR (CD_3NO_2 , 27°C, 188 MHz): δ – 151.3 ppm. IR (KBr): ν_{CN} = 2296 (br); ν_{NO} = 1802 (s), 1716 (s) cm ⁻¹. Anal. Calc. for $C_{17}H_{15}B_2F_8N_6O_2PW$: C, 28.20; H, 2.10; N, 11.52. Found: C, 28.21; H, 2.09; N, 11.61%. #### 2.8.4. $[P(2-py)_3W(CH_3CH_2CN)(NO)_2](BF_4)_2$ (5b) ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 7.82–7.96 (m), 8.34–8.46 (m), 8.52–8.72 (m), 9.16–9.22 (m), 3.00 (q, J = 7.52 Hz, CH₃CH₂CN), 1.37 (t, J = 7.50 Hz, CH₃CH₂CN). ¹³C-NMR (CD₃NO₂, 27°C, 50 MHz): δ 141.0 (CH₃CH₂CN), 14.1 (CH₃CH₂CN), 9.2 (CH₃CH₂CN). ³¹P-NMR (CD₃NO₂, 27°C, 80 MHz): δ – 10.71. ¹⁹F-NMR (CD₃NO₂, 27°C, 188 MHz): δ – 151.3 ppm. IR (KBr): ν _{CN} = 2284 (br); ν _{NO} = 1790 (s), 1688 (s) cm⁻¹. Anal. Calc. for C₁₈H₁₇B₂F₈N₆O₂PW: C, 29.37; H, 2.29; N, 11.16. Found: C, 29.30; H, 2.32; N, 11.39%. ## 2.9. Reactions of $[P(2-py)_3M(CO)(NO)_2](BF_4)_2$ with aldehydes, where M=Mo and W; aldehyde = $CH_3CH=CHCHO$ and C_6H_5CHO A typical procedure for the synthesis of [P(2-py)₃M(L)(NO)₂](BF₄)₂ is described as follows. A solution of P(2-py)₃Mo(CO)₃ (50 mg, 0.112 mmol) and NOBF₄ (9 mg, 0.084 mmol) in 0.5 ml of CD₃NO₂ was allowed to react for 20 min in a 5 mm Wilmad 528 pp NMR tube equipped with an air-free J. Young Valve. A slight excess of crotonaldehyde (50 μ l) was then added into the reaction tube. The solution was allowed to react at room temperature for one day until no starting metal material resonances were observed by the ¹H-NMR. Spectroscopic data is given below. ### 2.9.1. $[P(2-py)_3Mo(CH_3CH=CHCHO)(NO)_2](BF_4)_2$ (4c) ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 7.81–7.95 (m), 8.30–8.45 (m), 8.54–8.69 (m), 8.90–9.05 (m), 9.91 (d, J = 8.70 Hz, CH₃CH=CHCHO), 7.98–8.15 (m, CH₃CH=CHCHO), 6.64–6.76 (m, CH₃CH=CHCHO), 2.34 (d, J = 6.50 Hz, CH₃CH=CHCHO). ¹³C-NMR (CD₃NO₂, 27°C, 50 MHz): δ 211.5 (CH₃CH=CHCHO), 177.6 (CH₃CH=CHCHO), 134.4 (CH₃CH=CHCHO), 21.7 ppm (CH₃CH=CHCHO). 2.9.2. $[P(2-py)_3W(CH_3CH=CHCHO)(NO)_2](BF_4)_2$ (5c) $^1\text{H-NMR}$ (CD₃NO₂ 27°C, 200 MHz): δ 7.75–8.00 (m), 8.30–8.45 (m), 8.55–8.72 (m), 8.87 (d, J=5.80 Hz), 9.10 (d, J=5.76 Hz), 9.16–9.22 (m), 9.96 (d, J=8.90 Hz, CH₃CH=CHCHO), 8.11–8.29 (m, CH₃CH=CHCHO), 6.70–6.82 (m, CH₃CH=CHCHO), 2.37 (d, J=6.88 Hz, CH₃CH=CHCHO). $^{13}\text{C-NMR}$ (CD₃NO₂, 27 °C, 50 MHz): δ 211.1 (CH₃CH=CH*C*HO), 180.7 (CH₃*C*H=CH*C*HO), 134.8 (CH₃CH=*C*HCHO), 22.2 ppm (*C*H₃CH=CHCHO). 2.9.3. $[P(2-py)_3W(C_6H_5CHO)(NO)_2](BF_4)_2$ (**5d**) ¹H-NMR (CD₃NO₂, 27°C, 200 MHz): δ 10.60 (s, C₆H₅CHO), 8.00–8.20 ppm (m, C₆H₅CHO). ## 2.10. Catalytic Diels-Alder reactions of cyclohexadiene and methyl vinyl ketone All Diels-Alder reactions were carried out in the same manner. In a typical procedure, 10 mg (14.0 μ mol) of $[P(2-py)_3W(CO)(NO)_2](BF_4)_2$ (3b) in 10 ml of CH₂Cl₂ was placed in a 25-ml flask. The flask was cooled to 0°C before the addition of 0.4 ml of methyl vinyl ketone (4.8 mmol). Cyclohexadiene (0.53 ml, 5.6 mmol) was then added dropwise to the reaction mixture over 2-3 min. After 24 h, the solution was subjected to a rotary evaporator to remove all volatiles. The crude products were then purified by column chromatography using 20:1 hexane-ethylacetate as eluent. Yield 0.61 g (85%). All Diels-Alder products were identified by NMR comparison to authentic material made as described in the literature. The percentage conversion and isomer ratios were determined by ¹H-NMR integration of the enone aldehydic proton and methyl protons of the cyclohexadiene adducts. ## 2.11. X-ray crystallographic analyses of $P(2-py)_3Mo(CO)_3 \cdot CH_2Cl_2$ and $[P(2-py)_3Mo(CH_3CH_2CN)(NO)_2](BF_4)_2 \cdot CH_3NO_2$ General operation procedures have been reviewed. Some selected crystallographic data and data collection parameters are summarized in Tables 1 and 2. Suitable single crystals of P(2-py)₃Mo(CO)₃·CH₂Cl₂ and [P(2py)₃Mo(CH₃CH₂CN)(NO)₂](BF₄)₂·CH₃NO₂ grown at -18°C from CH₂Cl₂ and CH₃CH₂CN-CH₃NO₂ solutions, respectively, for X-ray single-crystal structure determination. Α crystal py)₃Mo(CO)₃·CH₂Cl₂ with dimensions of $0.40 \times 0.50 \times$ 0.55 mm³ and a crystal of [P(2-py)₃Mo(CH₃CH₂CN)- $(NO)_2[(BF_4)_2:CH_3NO_2]$ with dimensions of $0.15 \times$ $0.25 \times 0.35 \text{ mm}^3$ were mounted in capillary tubes under a nitrogen atmosphere. Data were recorded at ambient temperature on an Enraf-Nonius CAD4 diffractometer using graphite-monochromatized Mo-K_{\alpha} radiation. Unit-cell dimensions were determined from 25 well-cen- $(20.84 \le 2\theta \le 38.10^{\circ})$ tered reflections for py)₃Mo(CO)₃·CH₂Cl₂, and from 25 well-centered reflections $(14.74 \le 2\theta \le 29.36^{\circ})$ for $[P(2-py)_3Mo-$ (CH₃CH₂CN)(NO)₂](BF₄)₂·CH₃NO₂. Three intensity standards were measured for every 1 h of exposure time and declined systematically by 2% during the course of the measurements. Both structures were solved using the Patterson heavy-atom method [14] and refined by a full-matrix least-square procedure using NRCVAX [15] to reveal the positions of molybdenum atoms. Systematic absences and subsequent least-squares refinement indicated a monoclinic C2/c space group for P(2-py)₃Mo(CO)₃·CH₂Cl₂ and a monoclinic $P2_1/c$ space group for [P(2-py)₃Mo(CH₃CH₂CN)(NO)₂](BF₄)₂·CH₃NO₂. The remaining atoms were located in suc- Table 1 Crystallographic data for P(2-py)₃Mo(CO)₃·CH₂Cl₂ and [P(2-py)₃Mo(CH₃CH₂CN)(NO)₂](BF₄)₂·CH₃NO₂ | Formula | $C_{19}H_{14}N_3O_3MoPCl_2$ | | |-------------------------------------------|-----------------------------------------------|------------------------------------| | FW | 530.15 | 710.93 | | Diffractometer | Nonius | Nonius | | Space group | Monoclinic, $C2/c$ | Monoclinic, $P2_{1/c}$ | | a (Å) | 26.304 (6) | 17.754 (4) | | b (Å) | 10.8570 (20) | 11.204 (3) | | c (Å) | 17.087 (6) | 16.025 (3) | | β (°) | 121.53 (3) | 115.292 (18) | | $V(\mathring{A}^3)$ | 4159.6 (19) | 2882.2 (12) | | Z | 8 | 4 | | $D_{\rm calc.}$ (g cm ⁻³) | 1.693 | 1.638 | | λ (Å) | 0.7107 | 0.7107 | | F(000) | 2101 | 1410 | | Unit cell detn: # | 25 (20.84–38.10°) | 25 (14.74–29.36°) | | $(2\theta \text{ range})$ | , | , | | Scan type | θ /2 θ | $\theta/2\theta$ | | Scan width (°) | 2 (0.65+ | 2 (0.60+ | | () | $0.35 \tan \theta$ | $0.35 \tan \theta$) | | Scan speed (° min ⁻¹) | 2.06–8.24 | 2.06–8.24 | | 2θ (max) | 50.0 | 50.0 | | h, k, l ranges | (-31; 26), | ((21; 19), (0; 13), | | n, k, i langes | (0; 12), (0; 20) | (0; 18) | | $\mu \text{ (cm}^{-1})$ | 6.319 | 5.713 | | Crystal size (mm) | $0.40 \times 0.50 \times 0.55$ | $0.15 \times 0.25 \times 0.35$ | | Transmission | 0.881; 1.000 | 0.965; 1.000 | | Temperature (K) | 298 | 298 | | Number of meas | 3730 | 5064 | | reflections | 3/30 | 3004 | | Number of obsed | 3105 | 2326 | | reflections $(I > 2.0\sigma(I))$ | | | | Number of unique reflections ^a | 3645 | 5064 | | R_f ; $R_w (I > 2.0\sigma(I))^{b}$ | 0.029; 0.030 | 0.064; 0.063 | | R_f ; R_w (all reflections) | 0.037; 0.036 | 0.147; 0.067 | | Goodness of-fit c | 1.47 | 2.88 | | Refinement program | NRCVAX | NRCVAX | | Number of atoms | 47 | 62 | | Number of refined | 272 (3105 out of | 380 (2326 out of | | parameters | 3645) | 5064) | | Minimize function | $\Sigma(w \mid F_{\rm o} - F_{\rm c} \mid^2)$ | $\Sigma(w F_{\rm o}-F_{\rm c} ^2)$ | | (Δ/σ) max | $2(W \mid F_0 - F_{c} \mid)$ 0.0117 | $2(W T_0 - T_{c })$
0.0372 | | Residual in final D -map | | (0.690; 0.810 | | max min (e \mathring{A}^3) | -0.730, 0.770 | (0.030, 0.010 | ^a Three standard reflns monitored every 3600 s, intensity variation <2%, solvent: CH₂Cl₂ (disorder) for [P(2-py)₃Mo(CO)₃]·CH₂Cl₂. Anion: 2BF₄, Solvent: CH₃NO₂ for [P(2-py)₃Mo(CH₃CH₂CN)(NO)₂]-(BF₄)₂·CH₃NO₂. ^b $R_f = \Sigma (F_o - F_c) / \Sigma (F_o); \ R_w = [\Sigma (w(F_o - F_c)^2) / \Sigma (wF_o^2)]^{1/2}.$ ^c Goodness of-fit $[\Sigma(w(F_o - F_c)^2)/(\text{number of reflections} - \text{number of parameters})]^{1/2}$. Table 2 Selected bond distances (Å) and angles (°) for P(2-Py)₃Mo(CO₃)·CH₂Cl₂ | Bond distances | | | | |-----------------|------------|-----------------|------------| | Mo-N(1) | 2.279(3) | Mo-N(2) | 2.282(3) | | Mo-N(3) | 2.266(3) | Mo-C(1) | 1.951(4) | | Mo-C(2) | 1.928(4) | Mo-C(3) | 1.938(4) | | C(1)-O(1) | 1.158(4) | C(2)-O(2) | 1.170(4) | | C(3)-O(3) | 1.165(4) | | | | Bond angles | | | | | N(1)-Mo- $N(2)$ | 84.56(10) | N(1)-Mo-N(3) | 84.12(10) | | N(2)-Mo-N(3) | 83.74(10) | N(1)-Mo-C(1) | 95.89(12) | | N(1)-Mo-C(2) | 92.84(12) | N(2)-Mo-C(1) | 93.39(13) | | N(2)-Mo-C(3) | 97.49(13) | N(3)-Mo-C(2) | 96.56(12) | | N(3)-Mo-C(3) | 92.51(12) | N(1)-Mo-C(3) | 175.85(12) | | N(2)-Mo-C(2) | 177.35(12) | N(3)-Mo-C(1) | 177.12(13) | | C(1)-Mo- $C(2)$ | 86.32(15) | C(1)-Mo- $C(3)$ | 87.60(14) | | C(2)-Mo- $C(3)$ | 85.13(15) | | ` ' | ceeding difference Fourier syntheses. Hydrogen atoms were located and added to the structures, but their position were not refined. #### 3. Results and discussion ### 3.1. Synthesis and characterization of $P(2-py)_3M(CO)_3$, where M = Cr (1a), Mo (1b) and W (1c) The reactions of $P(2-py)_3$ and 1 equiv. of $M(CO)_3(CHCN)_3$, where M = Cr and W, or $Mo(CO)_6$ in CH_3CN resulted in the formation of complexes $P(2-py)_3M(CO)_3$ (1a-c). The infrared spectra of 1a-c showing two v_{CO} bands (1a: 1901, 1777; 1b: 1908, 1797, and 1c: 1899, 1784 cm⁻¹) suggested that complexes 1a-c held a C_{3v} symmetry. As compared with the CO stretching frequency for CO gas (2143 cm $^{-1}$), the $v_{\rm CO}$ found for 1a-c were lower in energy due to a certain degree of metal-to-ligand π -back bonding. Only one set of pyridyl protons (between δ 7.15–9.55 ppm) with a ratio of 1:1:1:1 in the ¹H-NMR spectra of **1a-c** indicated a η^3 -N,N',N"-P(2-py)₃ coordination. Complexes 1a-c gave only one phosphorus resonance in their 31 P-NMR spectra. The phosphorus chemical shift at δ -4.5 ppm for 1c indicated no sign of P-W interaction. **Transparent** purple crystals of P(2py)₃Mo(CO)₃·CH₂Cl₂ suitable for X-ray crystalloanalysis were obtained from recrystallization of **1b** in CH₃CN + CH₂Cl₂ solution. The ORTEP drawing of P(2-py)₃Mo(CO)₃·CH₂Cl₂ (Fig. 1) shows an almost perfect octahedral arrangement around the Mo center, and the P(2-py)₃ ligand is occupying at the facial position of the octahedron through the coordination of three pyridyl nitrogen atoms with three N-Mo-C angles of 175.85, 177.35, and 177.12° and three Mo-N bonds of 2.279, 2.282 and 2.266 A in length (Table 2). 3.2. Synthesis and characterization of $[P(2-py)_3M(CO)_2(NO)](BF_4)$, where M=Mo (2a) and W (2b) The reaction of NO+ with low-valent transitionmetal complexes has been widely employed in the synthesis of nitrosyl complexes of both molybdenum and tungsten [16,17]. The treatment of 1a and 1b with 1 equiv. of NOBF₄ in CH₂Cl₂ resulted in immediate gas evolution to afford complexes 2a and 2b. The ¹H-NMR spectra of both 2a and 2b showing two sets of pyridyl protons with a ratio of 2:1 indicated that the C_{3v} symmetry was no longer present. The higher CO stretching frequencies (2a: 2046, 1940 and 2b: 2012, 1912 cm⁻¹) than those found for complexes 1a-csuggested a weaker M-CO interaction. However, complexes 2a and 2b still possessed rather high stability against further CO ligand replacement in most coordinating solvent systems. In addition to the CO stretching bands, the strong NO stretching bands at 1668 and 1650 cm⁻¹ for **2a** and **2b** respectively were typical for linear M-N-O bonding mode [18]. ## 3.3. Synthesis and characterization of $[P(2-py)_3M(CO)(NO)_2](BF_4)_2$, where M=Mo (3a) and W (3b) Subsequent substitution of the second CO ligand can be achieved by treating complexes 2a and 2b with a further 1 equiv. of NOBF₄ in CH₃NO. Alternatively, complexes 3a and 3b can also be synthesized by the direct reaction of 1a-b and 2 equiv. of NOBF₄ in CH₃NO₂. The ¹H-NMR spectra of both 3a and 3b showing two sets of pyridyl protons with a ratio of 2:1 indicated that the C_{3v} symmetry was no longer present. Fig. 1. ORTEP drawing of $P(2-py)_3Mo(CO)_3\cdot CH_2Cl_2$ showing the atom-labeling scheme used. Note that the CH_2Cl_2 molecule has been omitted for clarity. The only infrared v_{CO} band at 2037 and 2148 cm⁻¹ for 3a and 3b, respectively, was very close to that of free CO, and was higher in energy than those found for 1a, 1b, 2a, and 2b. Apparently, these high CO stretching frequencies were attributed to the coordination of two NO⁺ ligands. Thus, an expected weak M-CO interaction could facilitate the loss of CO in the presence of a suitable coordinating ligand. In addition to the CO stretching bands, two strong NO stretching bands at 1839, 1738 cm⁻¹ and 1844, 1785 cm⁻¹ for **3a** and **3b**, respectively, were typical for cis dinitrosyl complexes with linear M-N-O bonding modes [17,18]. As implied in the infrared spectral data, complexes 3a and 3b possessed a characteristic feature of strong CO lability when dissolving in donor solvents. Presumably, the loss generated a 16-electron species, [P(2 $py_3M(NO)_2$]²⁺; the metal-anion interaction, therefore, became possible without the presence of coordinating solvent. Many examples of organometallic complexes of weakly coordinating anions, e.g. BF₄, PF₆⁻, AsF₆⁻ and SbF₆⁻, have been reported [19,20]. However, the infrared absorption bands of v_{BF} at 1026 and 1030 cm⁻¹ for 3a and 3b, respectively, indicated no asymmetric broadening of the BF₄⁻. Moreover, subsequent ¹⁹F-NMR studies for 3b showing two equivalent BF₄⁻ anions (δ –151.7 ppm) at room temperature suggested no direct M-F-BF₃ interaction [10]. Apparently, the hard BF₄⁻ anions in 3a and 3b did not bind to soft metal centers in the presence of coordinating solvents. The CO lability in complexes 3a and 3b enables the of a series isolation of complexes, $py_3M(L)(NO)_2](BF_4)_2$ (L = nitriles, aldehydes). At ambient temperature, the facile CO loss of 3a and 3b in the presence of nitriles resulted in the formation of complexes $[P(2-py)_3M(CH_3CN)(NO)_2](BF_4)_2$ (4a, M = Mo; **5a**, M = W) and $[P(2-py)_3M(CH_3CH_2CN)(NO)_2](BF_4)_2$ (4b, M = Mo; 5b, M = W). A total conversion of 4a and 5a to 4b and 5b can be accomplished within hours in the presence of a stoichiometric amount of CH₃CN. Transparent green crystals of [P(2-py)₃Mo(CH₃-CH₂CN)(NO)₂|(BF₄)₂·CH₃NO₂ suitable for X-ray crystallographic analysis were obtained from the recrystallization of 3a in CH₃CH₂CN/CH₃NO₂ (1:1) solutions. The ORTEP drawing of [P(2-py)₃Mo(CH₃CH₂CN)-(NO)₂|(BF₄)₂·CH₃NO₂ (Fig. 2) shows an almost perfect octahedral arrangement around the Mo center, and the P(2-py)₃ ligand occupies the facial position of the octahedron through the coordination of three pyridyl nitrogen atoms. The almost linear Mo-N-O arrangement with the angles M-N-O of 175.0 and 177.0° (Table 3) indicates the two NO⁺ ligands are cis to each other. A similar chemistry has also been observed when 3a and 3b were treated with Lewis basic organic carbonyl compounds. In the presence of excess amounts of alde- Fig. 2. ORTEP drawing of $[P(2-py)_3Mo(CH_3CH_2CN)-(NO)_2](BF_4)_2\cdot CH_3NO_2$ showing the atom-labeling scheme used. Note that CH_3NO_2 and BF_4^- have been omitted for clarity. hydes, the $[P(2-py)_3M(NO)_2](BF_4)_2$ -crotonaldehyde adducts $\bf 4c$ (M = Mo) and $\bf 5c$, (M = W) as well as $[P(2-py)_3W(NO)_2](BF_4)_2$ -benzaldehyde adduct $\bf 5d$ can be spectroscopically analyzed by NMR. Attempts to isolate these aldehyde adducts failed, probably because the relative basicities of these aldehydes were not strong enough, as can be seen in the isolated $[P(2-py)_3M(NO)_2](BF_4)_2$ -nitrile adducts $\bf 4a-b$ and $\bf 5a-b$. ### 3.4. Lewis acidity and reactivity of $[P(2-py)_3W(CO)(NO)_2](BF_4)_2$ (3b) Organometallic Lewis acids are of great importance in the catalysis of carbon–carbon bond formation reactions because the steric bulk of the supporting ligands Table 3 Selected bond distances (Å) and angles (°) for [P(2-py) $_3$ Mo(CH $_3$ CH $_2$ CN)(NO) $_2$](BF $_4$) $_2$ ·CH $_3$ NO $_2$ | Bond distances | | | | |-----------------|-----------|--------------|-----------| | Mo-N(1) | 1.820(9) | Mo-N(2) | 1.819(9) | | Mo-N(3) | 2.149(8) | Mo-N(4) | 2.202(9) | | Mo-N(5) | 2.206(8) | Mo-N(6) | 2.160(8) | | N(1)-O(1) | 1.155(12) | N(2)-O(2) | 1.147(13) | | N(3)-C(1) | 1.112(13) | C(1)-C(2) | 1.464(16) | | C(2)-C(3) | 1.59(3) | | | | Bond angles | | | | | N(1)-Mo- $N(2)$ | 90.6(5) | N(1)-Mo-N(3) | 94.3(4) | | N(1)-Mo- $N(4)$ | 89.1(4) | N(1)-Mo-N(5) | 175.0(4) | | N(1)-Mo- $N(6)$ | 93.1(3) | N(2)-Mo-N(3) | 92.9(4) | | N(2)-Mo-N(4) | 178.1(3) | N(2)-Mo-N(5) | 94.4(4) | | N(2)-Mo-N(6) | 94.0(4) | N(3)-Mo-N(4) | 85.2(3) | | N(3)-Mo-N(5) | 85.8(3) | N(3)-Mo-N(6) | 169.8(3) | | N(4)-Mo-N(5) | 85.9(3) | N(4)-Mo-N(6) | 87.9(3) | | N(5)-Mo-N(6) | 86.2(3) | Mo-N(1)-O(1) | 177.0(10) | | Mo-N(2)-O(2) | 178.5(9) | Mo-N(3)-C(1) | 178.5(9) | | Catalyst loading (3b, mol %) | Solvent | Time
(hrs) | endo : exo | % conversion | Yield
(%) | |------------------------------|---------------------------------|---------------|------------|--------------|--------------| | 0.3 | CH ₂ Cl ₂ | 24 | 99 : 1 | 95 | 85 | | | CH ₃ NO ₂ | 15 | 99 : 1 | 93 | 81 | Scheme 1 and the electronic character of the metals can offer influential effects on the rate and selectivity. The Lewis acidities of complexes 3a and 3b are reflected in their facile formation of nitrile (4a, 4b, 5a, 5b) and aldehyde adducts (4c, 5c, 5d). The method developed by Childs et al. [21a] and Hersh and co-workers [21b] took the ¹H-NMR chemical shift differences of the 3-position hydrogen of crotonaldehyde before and after coordinated to a Lewis acid as a relative scale to determine the acid strength. In our system, the complexation of crotonaldehyde provided downfield shifts of $\Delta\delta$ 1.01 ppm and $\Delta\delta$ 1.18 ppm for **3a** and **3b**, respectively, and the acidities of 3a and 3b were found to be comparable to those of TiCl₄ ($\Delta\delta$ 1.03 ppm) and BF₃ ($\Delta\delta$ 1.17 ppm) and AlCl₃ ($\Delta\delta$ 1.23 ppm), respectively. Accordingly, we looked into the study of Lewis acid reactivity of complex 3b for the classical Diels-Alder catalysis. As indicated in Scheme 1, complex 3b has shown potential activity in promoting the cycloaddition reaction of cyclohexadiene and methyl vinyl ketone. With a loading of 0.3 mol\% of 3b, the cycloaddition reactions provided an average of 94% conversion with a 99% endo-selectivity, while the corresponding thermal reaction only afforded a less than 5% conversion at 0°C. An average 83% isolated yield of the Diels-Alder adduct was obtained when the reaction mixtures were purified by column chromatography. The polydiene is often observed as a potential sideproduct of Lewis acid-catalyzed Diels-Alder reactions. However, at a reaction temperature of 0°C, no polymeric materials were observed in the NMR spectroscopic analysis nor insoluble precipitates formed during the course of **3b**-catalyzed Diels-Alder reactions of cyclohexadiene and methyl vinyl ketone. The reactivities, kinetic and mechanistic insights of the catalysis will be subjected to further investigation. #### 4. Supplementary information Tables of crystal data, complete bond angles and distances, atomic coordinates, and equivalent displacement coefficients for P(2-py)₃Mo(CO)₃·CH₂Cl₂ (17 pages) and [P(2-py)₃Mo(CH₃CH₂CN)(NO)₂](BF₄)₃· CH₃NO₂ (23 pages). Ordering information is given on any current masthead page. #### Acknowledgements Financial supports from the National Science Council (NSC88-2113-M-194-018) and National Chung Cheng University are gratefully acknowledged. #### References - [1] W.C. Davies, F.G. Mann, J. Chem. Soc. (1944) 276. - [2] J.E. Parker, B.E. Wagner, R.H. Holm, J. Am. Chem. Soc. 92 (1970) 3500. - [3] C.J.L. Lock, M.A. Turner, Acta. Cryst. Sect. C 43 (1987) 2096. - [4] Y. Xie, B.R. James, J. Organomet. Chem. 417 (1991) 277. - [5] (a) Y. Xie, C.-L. Lee, Y. Yang, S.J. Rettig, B.R. James, Can. J. Chem. 70 (1992) 751. (b) R.P. Schutte. Ph.D. Dissertation, University of British Columbia, 1995. - [6] (a) K. Kurtev, D. Ribola, R.A. Jones, D.J. Cole-Hamulton and G.J. Wilkinson, J. Chem. Soc. Dalton Trans. (1980) 55. (b) I.R. baird, M.B. Smith, B.R. James, Inorg. Chim. Acta. 235 (1995) 291, and references therein. - [7] (a) A.J. Deeming, M.B. Smith, J. Chem. Soc. Chem. Commun. (1993) 844. (b) L.Y. Xie, B.R. James, Inorg. Chim. Acta. 217 (1994) 209. - [8] (a) R.K. Boggess, D.A. Zatko, J. Coord. Chem. 4 (1975) 217. (b) F.R. Keene, M.R. Snow, P.J. Stephenson, E.R.T. Tiekink, Inorg. Chem. 27 (1988) 2040. (c) P.S. Moritz, A.A. Diamantis, F.R. Keene, M.R. Snow, E.R. T. Tiekink, Aust. J. Chem. 41 (1988) 1353. (d) R. Gregorzik, J. Wirbser, H. Vahrenkamp, Chem. Ber. 125 (1992) 1575. (e) R.P. Schutte, S.J. Rettig, B. R. James, Can. J. Chem. 74 (1996) 2064. - [9] (a) R.K. Boggess, D.A. Zatko, Inorg. Nucl. Chem. Lett. 12 (1976) 7. (b) R.K. Boggess, D.A. Zatko, Inorg. Chem. 15 (1976) 626. (c) R.A. Kenneth, P.A. Anderson, T. Astley, I.M. Atkinson, J.M. Charnock, C.D. Garner, J.M. Gulbis, T.W. Hambley, M.A. Hitchman, F.R. Keene, E.R.T. Tiekink, J. Chem. Soc. Dalton Trans. (1997) 519. - [10] J.W. Faller, Y. Ma, J. Am. Chem. Soc. 113 (1991) 1579. - [11] J.W. Faller, L.-L. Gundersen, Tetrahedron Lett. 34 (1993) 2275. - [12] (a) E. Lindner, H. Rauleder, P. Wegner, Z. Naturforsch. Teil B 39 (1984) 1224. (b) G.R. Newkome, Chem. Rev. 93 (1993) 2067, and references therein. - [13] D.P. Tate, W.R. Knipple, J.M. Augl, Inorg. Chem. 1 (1962) 433. - [14] For detailed references, see supplementary material of crystallographic analyses. - [15] E.J. Gabe, Y. Le Page, J.-P. Charland, F.L. Lee, P.S. White, J. Appl. Cryst. 22 (1989) 384. - [16] (a) M. Green, S.H. Taylor, J. Chem. Soc. Dalton, Trans. (1972)2629. (b) A. Sen, R. Thomas, Organometallics 1 (1982) 1251. - [17] R.P. Stewart Jr., G.T. Moore, Inorg. Chem. 14 (1975) 2699. - [18] (a) J.H. enemark, R.D. Feltham, Coord. Chem. Rev., 13 (1974)329. (b) T.W. Hawkins, M.B. Hall, Inorg. Chem. 19 (1980) 1735. - [19] W. Beck, K. Sünkel, Chem. Rev. 88 (1988) 1405, and references therein. - [20] (a) W.H. Hersh, J. Am. Chem. Soc. 107 (1985) 4599. (b) R.V. Honeychuck, P.V. Bonnesen, J. Farahi, W.H. Hersh, J. Org. Chem. 52 (1987) 5293. (c) P.V. Bonnesen, C.L. Puckett, R.V. Honeychuck, W.H. Hersh, J. Am. Chem. Soc. 111 (1989) 6070. (d) S. Sato, I. Matsuda, Y. Izumi, Terahedron Lett. 27 (1986) 5517. - [21] (a) R.F. Childs, D.L. Mulholland, A. Nixon, Can. J. Chem. 60 (1982) 801. (b) P.V. Bonnesen, C.L. Puckett, R.V. Honeychuck, W.H. Hersh, J. Am. Chem. Soc. 111 (1989) 6070.