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Abstract

We wish to report a new high-yield synthesis of perfluorotetra-n-propyl and perfluorotetra-n-butyl germanes from their
hydrocarbon analogues. This technique will likely develop into a new general synthesis for perfluorinated organometallic

compounds. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The first perfluorinated main group and metal alkyls
were reported by Emeléus and co-workers in the year
1948 [1-5]. Emeléus reported compounds such as
Hg(CF;),, Hg(CF,CF;),, P(CF;);, As(CF;);, and
Sb(CF;);. Important contributions to the synthesis and
literature of trifluoromethyl organometallic compounds
have also been made by Burton and MacNeil [6].
Burton and co-workers have also reported a general
route to fluorovinyl and perfluorovinyl organometallic
compounds [7], as well as a number of perfluoro
isopropyl organometallic compounds [8]. The forma-
tion of tetrakis(perfluoroalkyl)tellurium compounds by
Naumann et al. has also been reported [9].

While the Lagow group has developed several new
syntheses for metal trifluoromethyl and trifluorosilyl
organometallic compounds [10,11], there has not been a
general synthesis for metal alkyls with saturated per-
fluorocarbon chains, linear or branched, of three to
four carbon atoms in length using elemental fluorine.

* Corresponding author.

Utilizing continuous liquid-phase fluorination reac-
tion technology [12], we have been successful with
high-yield synthesis of higher-molecular-weight pe-
rfluoro germanium alkyls using the hydrocarbon metal
alkyls as starting materials and treating these alkyls
with fluorine in chlorofluorocarbon solvents, such as
1,1,2-trichlorotrifluoroethane (Freon 113).

2. Experimental

Tetra-n-propylgermane and tetra-n-butylgermane
were purchased from Gelest Inc. Perfluorinated prod-
ucts were purified by vacuum distillation. Low-resolu-
tion mass spectroscopy was performed on a MAT
TSQ-70 spectrometer. High-resolution mass spectra
were obtained from a VG analytical ZAB2-E mass
spectrometer. '"F-NMR was performed using a Varian
Unity plus-300 NMR spectrometer. YF-NMR spectra
were recorded at 282 MHz using CDCI, as the lock
solvent and CFCl, as the internal standard.

The direct fluorination reactions were performed in a
similar manner to the reactions that have been de-
scribed in the literature [11].
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3. Synthesis of perfluorotetra-n-propyl germane

/

He/F,
Ge(C3Hy)y B 25_’ OOCGe(C3F7)4

Tetra-n-propylgermane (1.5 ml) was added to a
round-bottom flask and diluted with 250 ml of 1,1,2-
trichlorotrifluoroethane. This solution was then
pumped (rate =25 ml h~') into a stainless steel reactor
that had been cooled to — 25°C in an isopropyl alcohol
bath and which contained 500 ml of 1,1,2-trichlorotrifl-
uoroethane and 69 g of NaF.

During the addition of tetra-n-propylgermane to the
stainless steel reactor, a mixture of helium and fluorine
was bubbled through the reactor at a rate of 400/100 cc
min ~', respectively. After the tetra-n-propylgermane
solution had been pumped into the reactor, the helium
to fluorine flow rate was turned down to 10/10 cc
min !, respectively. The reactor was kept at — 25°C
with a helium—fluorine flow rate of 10/10 cc min~' for
24 h. After 24 h, the reactor was warmed to — 10°C

and the reactor was allowed to purge for 4 h. The
solution in the reactor was then filtered to remove NaF
and any NaHF, formed during the reaction. 1,1,2-
Trichlorotrifluorethane was removed by simple distilla-
tion. Perfluorotetra-n-propylgermane was then purified
by vacuum distillation (b.p. =45-6°C/1.7 mmHg) and
was obtained in an isolated yield of 76%.

Chemical ionization mass spectral analysis (negative
mode): m/z (formula, identification, intensity) 750
(C,F»Ge, (M)~, 1.83) relative to 581 (CyF,,Ge,
(M-C,F;)~, 100). Elemental compositions were studied
by high resolution mass spectroscopy in chemical ion-
ization negative mode. Results were consistent with
C,,F»sGe (Anal. Calc.: 749.876; Found: 749.878). '°F-
NMR (CFCly) 6 —80.40 (s, 12F), —106.88 (s, 8F),
—120.78 (t, 8F) (Fig. 1).

3.1. High-resolution mass spectrometry of
perfluoro-tetra-n-propylgermane

and kept at this temperature for another 24 h. The Measured Calculated
helium and fluorine flow rates were not changed at this Ge(CF,CF,CF;)~ 243.918 243.918
time. After 24 h at — 10°C, the reactor was warmed to Ge(CF,CF,CF5); 412.907 412.907
0°C; again the helium and fluorine flow rates were not Ge(CF,CF,CF5); 580.888 580.887
changed. After 24 h at 0°C, the fluorine was turned off, Ge(CF,CF,CF,), 749.878 749.876
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Fig. 1. ""F-NMR spectrum of perfluoro-tetra-n-propylgermane.
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Fig. 2. ""F-NMR spectrum of perfluoro-tetra-n-butylgermane.

4. Synthesis of perfluorotetra-n-butylgermane

He/F»
Ge(CyHo)y  —  Ge(CyFo),
—25-0°C

Tetra-n-butylgermane (1.62 ml) was added to a
round-bottom flask and diluted with 250 ml of 1,1,2-
trichlorotrifluoroethane. This solution was then
pumped (rate =25 ml h—!) into a stainless steel reactor
that had been cooled to — 25°C in an isopropyl alcohol
bath and which contained 500 ml of 1,1,2-trichlorotrifl-
uoroethane and 75 g of NaF.

During the addition of tetra-n-butylgermane to the
stainless steel reactor, a mixture of helium and fluorine
was bubbled through the reactor at a rate of 400/100 cc
min !, respectively. After the tetra-n-butylgermane so-
lution had been pumped into the reactor, the helium to
fluorine flow rate was turned down to 10/10 cc min ',
respectively. The reactor was kept at — 25°C with a
helium—fluorine flow rate of 10/10 cc min—! for 24 h.
After 24 h the reactor was warmed to — 10°C and kept
at this temperature for another 24 h. The helium and
fluorine flow rates were not changed at this time. After
24 h at — 10°C the reactor was warmed to 0°C; again
the helium and fluorine flow rates were not changed.

After 24 h at 0°C the fluorine was turned off, and the
reactor was allowed to purge for 4 h. The solution in
the reactor was then filtered to remove NaF and any
NaHF, formed during the reaction. 1,1,2-Trichlorotrifl-
uorethane was removed by simple distillation. Pe-
rfluorotetra-n-butylgermane was then purified by
vacuum distillation (b.p. =73-75°C/1.7 mmHg) and
was obtained in an isolated yield of 72%.

Chemical ionization mass spectral analysis (negative
mode): m/z (formula, identification, intensity) 948
(Cy6F36Ge, (M)—, 2.18) relative to 730 (C,,F,,Ge,
(M-C,F,)~, 100). Elemental compositions were studied
by high-resolution mass spectroscopy in chemical ion-
ization negative mode. Results were consistent with
C,4F3cGe (Anal. Calc.: 949.863; Found: 949.868). '°F-
NMR (CFCly) 6 —81.51 (t, 12F), —122.38 (s, 8F),
—123.20 (s, 8F), —126.70 (s, 8F) (Fig. 2).

4.1. High-resolution mass spectrometry of
perfluoro-tetra-n-butylgermane

Measured Calculated
Ge(CF,CF,CF,CF;); 949.868 949.863
Ge(CF,CF,CF,CF;); 732.890 732.893



R.P. Callahan et al. / Journal of Organometallic Chemistry 596 (2000) 6—9 9

512.900
292.907

Ge(CF,CF,CF,CF3),
Ge(CF,CF,CF,CF;)~

512.899
292.907

5. Results and discussion

The fluorination of organogermanium compounds
using elemental fluorine has produced the perfluori-
nated analogues in surprising yields (greater than 70%
in each case). The perfluorinated analogues of tetra-n-
propyl and tetra-n-butylgermanes are semi-viscous lig-
uids that boil at 45-66°C/1.7 mmHg and 73-75°C/1.7
mmHg, respectively and are stable in air.

We believe that the synthesis of these compounds will
give us not only a general route to perfluorinated
organogermanium compounds, but will also lead to-
ward a general synthesis for perfluorocarbon analogues
of many main group and transition metal alkyls.

Acknowledgements

We would like to thank the Robert A. Welch Foun-

dation and the National Science Foundation for their
support, Grant no. CHE-997288.

References

[1] H.J. Emeléus, A.A. Banks, R.N. Haszeldine, V. Kerrigan, J.
Chem. Soc. 2188 (1948).

[2] H.J. Emeléus, R.N. Haszeldine, J. Chem. Soc. 2948 (1949).

[3] G.R.A. Brandt, H.J. Emeléus, R.N. Haszeldine, J. Chem. Soc.
2552 (1952).

[4] F.W. Bennett, H.J. Emeléus, R.N. Haszeldine, J. Chem. Soc.
1565 (1953).

[5] J.W. Dale, H.J. Emeléus, R.N. Haszeldine, J.H. Moss, J. Chem.
Soc. 3708 (1957).

[6] D.J. Burton, J.G. MacNeil, J. Fluor. Chem. 55 (1991) 225.

[7] D.J. Burton, Z. Yang, P.A. Morken, Tetrahedron 50 (1994)
2993.

[8] D.J. Burton, H.K. Nair, J. Fluor. Chem. 56 (1992) 341.

[9] D. Naumann, H. Butler, J. Fischer, J. Hanke, J. Mogais, B.
Wilkes, Z. Anorg. Allg. Chem. 608 (1992) 69.

[10] R.J. Lagow, T.J. Juhlke, R.W. Braun, T.R. Bierschenk, J. Am.
Chem. Soc. 101 (1979) 3229.

[11] RJ. Lagow, T.R. Bierschenk, T.J. Juhlke, J. Am. Chem. Soc.
103 (1981) 7340.

[12] T.R. Bierschenk, T.J. Juhlke, H. Kawa, R.J. Lagow, US Patent
No. 5093432, 1992.



