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Abstract

We wish to report a new high-yield synthesis of perfluorotetra-n-propyl and perfluorotetra-n-butyl germanes from their
hydrocarbon analogues. This technique will likely develop into a new general synthesis for perfluorinated organometallic
compounds. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The first perfluorinated main group and metal alkyls
were reported by Emeléus and co-workers in the year
1948 [1–5]. Emeléus reported compounds such as
Hg(CF3)2, Hg(CF2CF3)2, P(CF3)3, As(CF3)3, and
Sb(CF3)3. Important contributions to the synthesis and
literature of trifluoromethyl organometallic compounds
have also been made by Burton and MacNeil [6].
Burton and co-workers have also reported a general
route to fluorovinyl and perfluorovinyl organometallic
compounds [7], as well as a number of perfluoro
isopropyl organometallic compounds [8]. The forma-
tion of tetrakis(perfluoroalkyl)tellurium compounds by
Naumann et al. has also been reported [9].

While the Lagow group has developed several new
syntheses for metal trifluoromethyl and trifluorosilyl
organometallic compounds [10,11], there has not been a
general synthesis for metal alkyls with saturated per-
fluorocarbon chains, linear or branched, of three to
four carbon atoms in length using elemental fluorine.

Utilizing continuous liquid-phase fluorination reac-
tion technology [12], we have been successful with
high-yield synthesis of higher-molecular-weight pe-
rfluoro germanium alkyls using the hydrocarbon metal
alkyls as starting materials and treating these alkyls
with fluorine in chlorofluorocarbon solvents, such as
1,1,2-trichlorotrifluoroethane (Freon 113).

2. Experimental

Tetra-n-propylgermane and tetra-n-butylgermane
were purchased from Gelest Inc. Perfluorinated prod-
ucts were purified by vacuum distillation. Low-resolu-
tion mass spectroscopy was performed on a MAT
TSQ-70 spectrometer. High-resolution mass spectra
were obtained from a VG analytical ZAB2-E mass
spectrometer. 19F-NMR was performed using a Varian
Unity plus-300 NMR spectrometer. 19F-NMR spectra
were recorded at 282 MHz using CDCl3 as the lock
solvent and CFCl3 as the internal standard.

The direct fluorination reactions were performed in a
similar manner to the reactions that have been de-
scribed in the literature [11].* Corresponding author.
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3. Synthesis of perfluorotetra-n-propyl germane

Ge(C3H7)4 �
He/F2

−25�0°C
Ge(C3F7)4

Tetra-n-propylgermane (1.5 ml) was added to a
round-bottom flask and diluted with 250 ml of 1,1,2-
trichlorotrifluoroethane. This solution was then
pumped (rate=25 ml h−1) into a stainless steel reactor
that had been cooled to −25°C in an isopropyl alcohol
bath and which contained 500 ml of 1,1,2-trichlorotrifl-
uoroethane and 69 g of NaF.

During the addition of tetra-n-propylgermane to the
stainless steel reactor, a mixture of helium and fluorine
was bubbled through the reactor at a rate of 400/100 cc
min−1, respectively. After the tetra-n-propylgermane
solution had been pumped into the reactor, the helium
to fluorine flow rate was turned down to 10/10 cc
min−1, respectively. The reactor was kept at −25°C
with a helium–fluorine flow rate of 10/10 cc min−1 for
24 h. After 24 h, the reactor was warmed to −10°C
and kept at this temperature for another 24 h. The
helium and fluorine flow rates were not changed at this
time. After 24 h at −10°C, the reactor was warmed to
0°C; again the helium and fluorine flow rates were not
changed. After 24 h at 0°C, the fluorine was turned off,

and the reactor was allowed to purge for 4 h. The
solution in the reactor was then filtered to remove NaF
and any NaHF2 formed during the reaction. 1,1,2-
Trichlorotrifluorethane was removed by simple distilla-
tion. Perfluorotetra-n-propylgermane was then purified
by vacuum distillation (b.p.=45–6°C/1.7 mmHg) and
was obtained in an isolated yield of 76%.

Chemical ionization mass spectral analysis (negative
mode): m/z (formula, identification, intensity) 750
(C12F28Ge, (M)−, 1.83) relative to 581 (C9F21Ge,
(M�C3F7)−, 100). Elemental compositions were studied
by high resolution mass spectroscopy in chemical ion-
ization negative mode. Results were consistent with
C12F28Ge (Anal. Calc.: 749.876; Found: 749.878). 19F-
NMR (CFCl3) d −80.40 (s, 12F), −106.88 (s, 8F),
−120.78 (t, 8F) (Fig. 1).

3.1. High-resolution mass spectrometry of
perfluoro-tetra-n-propylgermane

CalculatedMeasured
243.918Ge(CF2CF2CF3)− 243.918
412.907 412.907Ge(CF2CF2CF3)2

−

580.888Ge(CF2CF2CF3)3
− 580.887

749.876Ge(CF2CF2CF3)4
− 749.878

Fig. 1. 19F-NMR spectrum of perfluoro-tetra-n-propylgermane.
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Fig. 2. 19F-NMR spectrum of perfluoro-tetra-n-butylgermane.

4. Synthesis of perfluorotetra-n-butylgermane

Ge(C4H9)4 �
He/F2

−25�0°C
Ge(C4F9)4

Tetra-n-butylgermane (1.62 ml) was added to a
round-bottom flask and diluted with 250 ml of 1,1,2-
trichlorotrifluoroethane. This solution was then
pumped (rate=25 ml h−1) into a stainless steel reactor
that had been cooled to −25°C in an isopropyl alcohol
bath and which contained 500 ml of 1,1,2-trichlorotrifl-
uoroethane and 75 g of NaF.

During the addition of tetra-n-butylgermane to the
stainless steel reactor, a mixture of helium and fluorine
was bubbled through the reactor at a rate of 400/100 cc
min−1, respectively. After the tetra-n-butylgermane so-
lution had been pumped into the reactor, the helium to
fluorine flow rate was turned down to 10/10 cc min−1,
respectively. The reactor was kept at −25°C with a
helium–fluorine flow rate of 10/10 cc min−1 for 24 h.
After 24 h the reactor was warmed to −10°C and kept
at this temperature for another 24 h. The helium and
fluorine flow rates were not changed at this time. After
24 h at −10°C the reactor was warmed to 0°C; again
the helium and fluorine flow rates were not changed.

After 24 h at 0°C the fluorine was turned off, and the
reactor was allowed to purge for 4 h. The solution in
the reactor was then filtered to remove NaF and any
NaHF2 formed during the reaction. 1,1,2-Trichlorotrifl-
uorethane was removed by simple distillation. Pe-
rfluorotetra-n-butylgermane was then purified by
vacuum distillation (b.p.=73–75°C/1.7 mmHg) and
was obtained in an isolated yield of 72%.

Chemical ionization mass spectral analysis (negative
mode): m/z (formula, identification, intensity) 948
(C16F36Ge, (M)−, 2.18) relative to 730 (C12F27Ge,
(M�C4F9)−, 100). Elemental compositions were studied
by high-resolution mass spectroscopy in chemical ion-
ization negative mode. Results were consistent with
C16F36Ge (Anal. Calc.: 949.863; Found: 949.868). 19F-
NMR (CFCl3) d −81.51 (t, 12F), −122.38 (s, 8F),
−123.20 (s, 8F), −126.70 (s, 8F) (Fig. 2).

4.1. High-resolution mass spectrometry of
perfluoro-tetra-n-butylgermane

CalculatedMeasured
Ge(CF2CF2CF2CF3)4

− 949.868 949.863
Ge(CF2CF2CF2CF3)3

− 732.890 732.893
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512.900512.899Ge(CF2CF2CF2CF3)2
−

292.907Ge(CF2CF2CF2CF3)− 292.907

5. Results and discussion

The fluorination of organogermanium compounds
using elemental fluorine has produced the perfluori-
nated analogues in surprising yields (greater than 70%
in each case). The perfluorinated analogues of tetra-n-
propyl and tetra-n-butylgermanes are semi-viscous liq-
uids that boil at 45–66°C/1.7 mmHg and 73–75°C/1.7
mmHg, respectively and are stable in air.

We believe that the synthesis of these compounds will
give us not only a general route to perfluorinated
organogermanium compounds, but will also lead to-
ward a general synthesis for perfluorocarbon analogues
of many main group and transition metal alkyls.
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[1] H.J. Emeléus, A.A. Banks, R.N. Haszeldine, V. Kerrigan, J.
Chem. Soc. 2188 (1948).
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