Formation and characterization of cyclic and polycyclic silthianes containing $\mathrm{Si}-\mathrm{Si}$ bonds

U. Herzog ${ }^{\text {a,* }}$, U. Böhme ${ }^{\text {a }}$, G. Roewer ${ }^{\text {a }}$, G. Rheinwald ${ }^{\text {b }}$, H. Lang ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Anorganische Chemie der TU Bergakademie Freiberg, Leipziger Straße 29, D-09596 Freiberg, Germany
${ }^{\mathrm{b}}$ Institut für Chemie der TU Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany

Received 13 January 2000; accepted 29 February 2000

Abstract

The reactions of several organochlorosilanes and -oligosilanes with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} have been investigated. Different bicyclic silthianes with bis-cyclopentyl, bicyclo-[3,3,0]-octane, bicyclo-[2,2,1]-heptane (norbornane), bicyclo-[3,2,1]-octane, bicyclo-[2,2,2]octane and bicyclo-[3,2,1]-nonane skeletons were formed and have been characterized by MS and ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{29} \mathrm{Si}$-NMR. The reaction of 1,1,2,2-tetrachlorodimethyldisilane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} yields 1,3,5,7,9,11-hexamethyl-1,3,5,7,9,11-hexasila-2,4,6,8,10,12-hexathiatetracyclo-[5,5, $\left.,^{3,11}, 0^{5,9}\right]$-dodecane (4c) containing three disilane units. Density functional theory calculations proved the general observation that compounds with $\mathrm{Si}_{3} \mathrm{~S}_{2}$ five-membered rings are preferred. The crystal structures of $\mathbf{4 c}$, 1,3,3,5,7,7-hexamethyl-1,3,5,7-tetrasila-2,4,6,8-tetrathiabicyclo-[3,3,0]-octane (6) and 1,2,2,4,4,5,6,6,8,8-decamethyl-1,2,4,5,6,8-hex-asila-3,7-dithiabicyclo-[3,3,0]-octane (9) have been determined. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Silane; Oligosilane; Silthiane; ${ }^{29}$ Si-NMR; X-ray structure

1. Introduction

Cyclic and polycyclic silthianes have been investigated for some time but most research has been concentrated on silthianes derived from monosilanes $\mathrm{R}_{4-n} \mathrm{SiCl}_{n}$. Starting from dichlorosilanes the four- and six-membered ring compounds $\left(\mathrm{R}_{2} \mathrm{SiS}\right)_{2,3}$ can be synthesized, and trichlorosilanes yield silsesquithianes $\left(\mathrm{RSiS}_{3}\right.$ 2_{4} which usually possess an adamantane-like structure (I) [1], but in cases of sterically more demanding substituents ($\mathrm{R}=1,1,2$-trimethylpropyl) a double-deckerlike structure (II) has also been observed [2] (Scheme 1).

Attempts to build a bis-noradamantane-like structure (III) by reacting ${ }^{t} \mathrm{BuSiCl}_{2}{ }^{-}{ }^{t} \mathrm{BuSiCl}_{2}$ with $\mathrm{Li}_{2} \mathrm{~S}$ in THF resulted in extensive insertion of sulfur into $\mathrm{Si}-\mathrm{Si}$ bonds and formation of $\left({ }^{(} \mathrm{BuSi}\right)_{4} \mathrm{~S}_{5}$ with a noradamantane structure (IV) in 20\% yield [3] (Scheme 2).

Only a few reports deal with cyclic silthianes containing $\mathrm{Si}-\mathrm{Si}$ bonds. Cyclo-($\left.\mathrm{SiMe}_{2}\right)_{x} \mathrm{~S}(x=4,5,6)$ have been prepared by reaction of α, ω-dichlorooligosilanes

[^0]$\mathrm{Cl}\left(\mathrm{SiMe}_{2}\right)_{x} \mathrm{Cl}$ with $\mathrm{Li}_{2} \mathrm{~S}$ in THF [4]. 1,2-Dichlorotetramethyldisilane reacts with $\mathrm{H}_{2} \mathrm{~S}$ in the presence of pyridine to form the six-membered ring compound $\mathrm{S}\left(\mathrm{Si}_{2} \mathrm{Me}_{4}\right)_{2} \mathrm{~S}(\mathbf{1})$ [5]. If $\mathbf{1}$ is heated with $\left(\mathrm{Me}_{2} \mathrm{SiS}\right)_{3}(\mathbf{2 a})$

(I)

(II)
Scheme 1.

(III)

(IV)

Scheme 2.

Table 1
NMR chemical shifts (ppm) and ${ }^{1} J_{\mathrm{SiC}}(\mathrm{Hz})$ data of silthianes 3a-c, 4c and 5a

compound			$\delta_{\text {Si }}$	${ }^{1} \mathrm{~J}_{\text {SiC }}$	$\delta_{C}(\mathrm{SiMe})$	$\delta_{\mathrm{H}}(\mathrm{SiMe})$
	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{A}-\mathrm{S}}$			46.5	1.09	0.48
	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{A}}-\mathrm{S}^{\prime}$			58.3	8.46	0.62
3b	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{A}}-\mathrm{S}$			46.7	0.84/1.05	$0.35 / 0.51$
	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{A}}-\mathrm{S}^{\prime}$	B:	25.5	60.3 (Me)	$1.91{ }^{\text {a }}$	$0.84{ }^{\text {a }}$
	$\mathrm{Me}_{2} \mathrm{SA}-\mathrm{S}$			76.8 (Ph)		
3c	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{A}-\mathrm{S}}$			46.7	$0.88{ }^{\text {b }}$	$0.40{ }^{\text {b }}$
	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{A}}-\mathrm{S}^{\prime}$					
4 c			$28.5{ }^{\text {c) }}$		$4.14{ }^{\text {c) }}$	$0.71{ }^{\text {c) }}$
			$14.1{ }^{\text {c) }}$		$4.88{ }^{\text {c) }}$	$0.78{ }^{\text {c) }}$
5a	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{B}}$-S		20.25	48.6	7.17	0.73
	$\mathrm{Me}_{2} \mathrm{Si}^{\mathrm{B}}-\mathrm{S}^{\prime}$	B:	12.55	46.2	$1.41 / 0.90$	0.49 / 0.50

${ }^{\text {a) }} \mathrm{Ph}:{ }^{13} \mathrm{C}: \mathrm{i}: 138.5$, o: $133.6, \mathrm{~m}: 127.7, \mathrm{p}: 129.9,{ }^{1} \mathrm{H}: 7.36(3 \mathrm{H}), 7.73(2 \mathrm{H})$
${ }^{\text {b) }} \mathrm{Ph}:{ }^{13} \mathrm{C}:$ i: 136.6, o: 134.7, m: 127.7, p: 130.1, ${ }^{1} \mathrm{H}: 7.35(3 \mathrm{H}), 7.72(2 \mathrm{H})$
${ }^{\text {c) }}$: in $\mathrm{C}_{6} \mathrm{D}_{6}$
for 3 days $\left(70^{\circ} \mathrm{C}\right)$ in the presence of pyridine, the five-membered ring compound $\mathrm{Si}_{2} \mathrm{Me}_{4}\left(\mathrm{~S}_{2} \mathrm{SiMe}_{2}\right.$ (3a) is formed in 75% yield [6], which suggests that a fivemembered $\mathrm{Si}_{3} \mathrm{~S}_{2}$ ring is the most stable ring size in this system.

1,4-Dichlorodecamethylcyclohexasilane forms on treatment with $\mathrm{H}_{2} \mathrm{~S}$ in the presence of NEt_{3} decamethyl-hexasila-7-thianorbornane in a surprisingly clean reaction [7]:

The crystal structure of the norbornane has an SiS bond length of $2.169(3) \AA$ and a relatively small SiSSi
angle of 94.9° as a result of the topology of this bicyclic skeleton.

2. Results and discussion

In this work we report on the formation of cyclic, bicyclic and tetracyclic silthianes from methylchlorooligosilanes by treatment with hydrogen sulfide and triethylamine.

2.1. 1,2,4-Trisila-3,5-dithiacyclopentanes

Based on the observation made in Ref. [6] that five-membered rings $\mathrm{Si}_{3} \mathrm{~S}_{2}$ appear to be the most stable ring size, we tried to synthesize such compounds directly by mixing a dichloromonosilane with 1,2dichlorotetramethyldisilane in a $1: 1$ molar ratio and subsequently treating this mixture with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} in hexane solution. NMR investigations showed that indeed the five-membered ring compounds $\mathbf{3 a - c}$ are

Scheme 3.
formed in a $55 \mathrm{~mol} \%$ amount, but the six-membered ring compounds $\mathbf{1}$ and $\mathbf{2 a - c}$ are also present. The NMR data of $\mathbf{3 a - c}$ are summarized in Table 1 (Scheme 3).

Compared with the acyclic thiobutyl substituted compounds $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{SBu})_{2}$ and $\mathrm{BuS}\left(\mathrm{SiMe}_{2}\right)_{2} \mathrm{SBu}[8]$ containing the same silyl units, the six-membered rings 1 and $\mathbf{2 a}$ show a ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shift to higher field ($\mathbf{1}:-3.2$ ppm relative to $\mathrm{BuS}\left(\mathrm{SiMe}_{2}\right)_{2} \mathrm{SBu}$ and 2a: -3.7 ppm relative to $\left.\mathrm{Me}_{2} \mathrm{Si}(\mathrm{SBu})_{2}\right)$, whereas the resonances of the same silyl groups in the five-membered ring 3a are shifted significantly to lower field, the $\mathrm{S}_{2} \mathrm{SiMe}_{2}$ unit by 9.3 ppm and the $\mathrm{Si}_{2} \mathrm{Me}_{4}$ unit by 12.6 ppm . The fivemembered ring compounds $\mathbf{3 b}$ and $\mathbf{3 c}$ behave similarly in comparison with the acyclic silanes $\mathrm{PhMeSi}(\mathrm{SBu})_{2}$ and $\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{SBu})_{2}[8]$ and the six-membered rings (PhMe $\mathrm{SiS})_{3}$ and $\left(\mathrm{Ph}_{2} \mathrm{SiS}\right)_{3}$ [9].

Density functional theory (DFT) calculations on compounds 1, 2a and 3a (see Table 2) indicate that six molecules of $\mathbf{3 a}$ are $36.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy than three molecules of $\mathbf{1}$ and two molecules of $\mathbf{2 a}$ according to the redistribution (Eq. (2)):
$6 \mathbf{3 a} \rightleftharpoons 31+2 \mathbf{2 a}$
2.2. 1,3,5,7,9,11-Hexamethyl-1,3,5,.7,9,11-hexasila-

2,4,6,8,10,12-hexathiatetracyclo-[5,5,0,0 $\left.0^{3,11}, 0^{5,9}\right]$ dodecane (4c)

The treatment of 1,1,2,2-tetrachlorodimethyldisilane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} yielded no hexane soluble products,

Fig. 1. The molecular structure of $\mathbf{4 c}$.

$4 a$

4b

$4 c$

Scheme 4.
and therefore the reaction was carried out in toluene. Colorless crystals were obtained after filtration from precipitated $\mathrm{HNEt}_{3} \mathrm{Cl}$ and evaporation of the solvent. Initially we expected the formation of a bis-noradaman\tan structure (4a) or a bis-nordoubledecker structure (4b), but ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectroscopy revealed two signals in a 2:1 ratio, which can only be explained by a structure with at least three disilane units. A crystal structure analysis of the product confirmed that three disilane units are indeed present, forming a tetra-cyclo-[5,5,0,0 $0^{3,11}, 0^{5,9}$]-dodecane cage, 4c (Fig. 1, Scheme 4).

The observed SiS as well as SiSi bond lengths in $\mathbf{4 c}$ (Table 3) are in the usual range of $2.11-2.18 \AA[10]$ for SiS single bonds and 2.33-2.38 \AA [11] for Si-Si single bonds. The SiSSi bond angles at $\mathrm{S}(1)$ and $\mathrm{S}(4)$, which

Table 2
Calculated geometry parameters and total energies (B3LYP/6-31G*) of the compounds $\mathbf{1}, \mathbf{2 a}$ and 3a

Compound	$d(\mathrm{SiSi})(\AA)$	$d(\mathrm{SiS})(\AA)$	$\angle \mathrm{SiSSi}\left({ }^{\circ}\right)$	$\angle \mathrm{SiSiS}\left({ }^{\circ}\right)$	$\angle \mathrm{SSiS}\left({ }^{\circ}\right)$	Total energy (H)	Total energy with zero point corr. (H)
$\mathbf{1}$	2.365	2.187	109.2	110.5	-	-2273.89799	-2273.59077
$\mathbf{2 a}$	-	2.172	109.0	-	113.4	-2302.80119	-2302.56720
$\mathbf{3 a}$	2.358	$2.179^{\mathrm{a}} / 2.185^{\mathrm{b}}$	103.8	102.2	111.6	-1904.55117	-1904.32007

[^1]Table 3
Selected bond lengths and angles of $\mathbf{4 c}$

Atoms	Bond lengths (\AA)	Atoms	Bond angles $\left({ }^{\circ}\right)$
$\mathrm{S}(1)-\mathrm{Si}(1)$	$2.1404(10)$	$\mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(4)$	$105.06(4)$
$\mathrm{S}(1)-\mathrm{Si}(4)$	$2.1499(10)$	$\mathrm{Si}(1)-\mathrm{S}(2)-\mathrm{Si}(2)$	$100.14(4)$
$\mathrm{S}(2)-\mathrm{Si}(1)$	$2.1469(10)$	$\mathrm{Si}(3)-\mathrm{S}(3)-\mathrm{Si}(4)$	$100.27(4)$
$\mathrm{S}(2)-\mathrm{Si}(2)$	$2.1515(10)$	$\mathrm{Si}(5)-\mathrm{S}(4)-\mathrm{Si}(6)$	$104.95(4)$
$\mathrm{S}(3)-\mathrm{Si}(3)$	$2.1438(10)$	$\mathrm{Si}(5)-\mathrm{S}(5)-\mathrm{Si}(2)$	$100.59(4)$
$\mathrm{S}(3)-\mathrm{Si}(4)$	$2.1444(10$	$\mathrm{Si}(6)-\mathrm{S}(6)-\mathrm{Si}(3)$	$100.47(4)$
$\mathrm{S}(4)-\mathrm{Si}(5)$	$2.1286(10)$	$\mathrm{S}(1)-\mathrm{Si}(1)-\mathrm{S}(2)$	$114.49(4)$
$\mathrm{S}(4)-\mathrm{Si}(6)$	$2.1340(11)$	$\mathrm{S}(1)-\mathrm{Si}(1)-\mathrm{Si}(5)$	$113.58(4)$
$\mathrm{S}(5)-\mathrm{Si}(5)$	$2.1386(10)$	$\mathrm{S}(2)-\mathrm{Si}(1)-\mathrm{Si}(5)$	$105.96(4)$
$\mathrm{S}(5)-\mathrm{Si}(2)$	$2.1498(10)$	$\mathrm{S}(5)-\mathrm{Si}(2)-\mathrm{S}(2)$	$109.31(4)$
$\mathrm{S}(6)-\mathrm{Si}(6)$	$2.1387(10)$	$\mathrm{S}(5)-\mathrm{Si}(2)-\mathrm{Si}(3)$	$110.32(4)$
$\mathrm{S}(6)-\mathrm{Si}(3)$	$2.1448(9)$	$\mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{Si}(3)$	$110.20(4)$
$\mathrm{Si}(1)-\mathrm{Si}(5)$	$2.3481(11)$	$\mathrm{S}(3)-\mathrm{Si}(3)-\mathrm{S}(6)$	$110.33(4)$
$\mathrm{Si}(2)-\mathrm{Si}(3)$	$2.3642(11)$	$\mathrm{S}(3)-\mathrm{Si}(3)-\mathrm{Si}(2)$	$110.40(4)$
$\mathrm{Si}(4)-\mathrm{Si}(6)$	$2.3578(10)$	$\mathrm{S}(6)-\mathrm{Si}(3)-\mathrm{Si}(2)$	$110.12(4)$
$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.863(3)$	$\mathrm{S}(3)-\mathrm{Si}(4)-\mathrm{S}(1)$	$112.95(4)$
$\mathrm{Si}(2)-\mathrm{C}(2)$	$1.857(3)$	$\mathrm{S}(3)-\mathrm{Si}(4)-\mathrm{Si}(6)$	$105.87(4)$
$\mathrm{Si}(3)-\mathrm{C}(3)$	$1.859(3)$	$\mathrm{S}(1)-\mathrm{Si}(4)-\mathrm{Si}(6)$	$114.13(4)$
$\mathrm{Si}(4)-\mathrm{C}(4)$	$1.850(3)$	$\mathrm{S}(4)-\mathrm{Si}(5)-\mathrm{S}(5)$	$114.27(5)$
$\mathrm{Si}(5)-\mathrm{C}(5)$	$1.862(3)$	$\mathrm{S}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)$	$114.86(4)$
$\mathrm{Si}(6)-\mathrm{C}(6)$	$1.862(3)$	$\mathrm{S}(5)-\mathrm{Si}(5)-\mathrm{Si}(1)$	$105.46(4)$
		$\mathrm{S}(4)-\mathrm{Si}(6)-\mathrm{S}(6)$	$114.14(5)$
		$\mathrm{S}(4)-\mathrm{Si}(6)-\mathrm{Si}(4)$	$113.84(4)$
		$\mathrm{S}(6)-\mathrm{Si}(6)-\mathrm{Si}(4)$	$105.61(4)$

are part of six-membered rings, are $4-5^{\circ}$ larger than the SiSSi bond angles at the other four sulfur atoms, which are part of five-membered rings. Ab initio calculations of $\mathbf{4 a - c}$ (Table 4) reveal that $\mathbf{4 a}$ is lower in energy than $\mathbf{4 b}$ and that the structure of $\mathbf{4 c}$ is energetically even more preferred (Scheme 5).

The lower energy of $\mathbf{4 a}$ with respect to $\mathbf{4 b}$ correlates with the fact that $\mathbf{4 a}$ contains four of the preferred five-membered rings $\mathrm{Si}_{3} \mathrm{~S}_{2}$, whereas in $\mathbf{4 b}$ only the less favorable four-membered rings $\mathrm{Si}_{2} \mathrm{~S}_{2}$ and six-membered rings $\mathrm{Si}_{4} \mathrm{~S}_{2}$ can be found. The high overall ring strain of such small tricyclic systems (calculated SiSSi bond angles in $\mathbf{4 a}$ and $\mathbf{4 b}$ are smaller than 90°) forces the system to form the larger tetracyclic cage $\mathbf{4 c}$. The optimized geometry of $\mathbf{4 c}$ calculated by ab-initio methods is in complete agreement with the X-ray structure analysis, however the calculated $\mathrm{Si}-\mathrm{Si}$ as well as SiS bond lengths

are $0.02-0.03 \AA$ larger and the SiSSi bond angles at $\mathrm{S}(1)$ and $\mathrm{S}(4)$ are $2-3^{\circ}$ larger than the observed data.

Compared with the acyclic compound $(\mathrm{BuS})_{2} \mathrm{SiMe}-\mathrm{SiMe}(\mathrm{SBu})_{2}$, which exhibits a ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shift of $9.1 \mathrm{ppm}[8]$, the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ chemical shifts in $\mathbf{4 c}$ are shifted to lower field. The four equivalent silicon atoms, which take part in both a $\mathrm{Si}_{3} \mathrm{~S}_{2}$ five-membered ring and in a $\mathrm{Si}_{4} \mathrm{~S}_{2}$ six-membered ring are shifted by 5.0 ppm, while the two other silicon atoms (part of fivemembered rings) are shifted to a lower field by 19.4 ppm . These effects parallel the trends in monocyclic silthianes, where the formation of a five-membered ring is accompanied by a low-field shift of $10-14 \mathrm{ppm}$, and a six-membered ring results in a high-field shift of 3-5 ppm in comparison with acyclic thiobutyl substituted compounds containing the same silyl unit.

2.3. Bis-(1,3,3,4,4-pentamethyl-1,3,4-trisila-2,5-dithiacyclopent-1-yl) (5a)

The treatment of a $2: 1$ mixture of $\mathrm{SiClMe}_{2}-\mathrm{SiClMe}_{2}$ and $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}$ with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} yielded, besides some 1, the new bicyclic silthiane 5a. No further products with the possible decaline like structures $\mathbf{5 b}$ or 5c could be observed by NMR spectroscopy (Scheme $6)$.
The assignment of $\mathbf{5 a}$ as the five-membered ring isomer is supported by the ${ }^{29} \mathrm{Si}$-NMR chemical shift of the SiMe_{2} units, which is very close to the shift observed for the five-membered ring compounds $\mathbf{3 a - c}$, and also the Si-NMR shift at a relatively low field for the SiMe units. Furthermore, the splitting of the ${ }^{1} \mathrm{H}$ -

Table 4
Calculated geometry parameters and total energies (B3LYP/6-31G*) of the compounds $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 c}$

Compound	$d(\mathrm{SiSi})(\AA)$	$d(\mathrm{SiS})(\AA)$	$\angle \mathrm{SiSSi}\left({ }^{\circ}\right)$	$\angle \mathrm{SSiS}\left({ }^{\circ}\right)$	Total energy (H)	Total energy with zero point corr. (H)
$\mathbf{4 a}$	2.440	2.180	86.7	103.5	-2910.69797	-2910.53392
$\mathbf{4 b}$	2.422	2.190	76.4	94.8	-2910.66369	-2910.50071
$\mathbf{4 c}$	$2.384 / 2.394^{\text {a }}$	$2.174 / 2.177^{\mathrm{b}}$	$99.9 / 107.3^{\mathrm{c}}$	$114.1 / 109.2^{\mathrm{d}}$	-4366.07013	-4365.82337

[^2]
and ${ }^{13} \mathrm{C}$-NMR signals of the diastereotopic SiMe_{2} units support the bicyclic structure $\mathbf{5 a}$.

2.4. Bicyclo-[3,3,0]-octanes

If a $1: 2$ mixture of $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ is treated with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3}, the work-up results in an oily residue of $1,3,3,5,7,7$-hexamethyl-1,3,5,7-tetrasila-2,4,6,8-tetrathiabicyclo-[3,3,0]-octane (6) together with some $\mathbf{2 a}$. Compound $\mathbf{4 c}$, which is probably also formed, is insoluble in hexane and was therefore removed together with the precipitated ammonium salt. In order to get 6 free of $\mathbf{2 a}$, the ratio of the chlorosilanes was changed to $1: 1$. This time 6 was found as the only hexane soluble product. Single crystals suitable for X-ray analysis were obtained from hexane solution, Fig. 2. Selected bond lengths and angles of 6 are summarized in Table 7.

The crystal structure analysis of 6 reveals the expected bicyclo-[3,3,0]-octane skeleton with SiSSi angles of 99° (Table 7), which is close to the SiSSi angles of the five-membered rings in $\mathbf{4 c}\left(100-100.5^{\circ}\right)$ and approximately 6° smaller than the SiSSi angles in the six-membered rings of $4 \mathbf{c}\left(105^{\circ}\right)$ and published data for the six-membered ring compounds $(\mathrm{PhMeSiS})_{3}: 106.2^{\circ}$ [12] and $\left(\mathrm{MeSiS}_{3 / 2}\right)_{4}: 104.5^{\circ}$ [13]. Both five-membered rings adopt an envelope conformation with angles between the two planes of $50.39(0.05)^{\circ}$ in the ring $\mathrm{Si}(1)-\mathrm{Si}(1 \mathrm{a})-\mathrm{S}(1 \mathrm{a})-\mathrm{Si}(2)-\mathrm{S}(1)$ and $48.24(0.05)^{\circ}$ in the ring $\mathrm{Si}(1)-\mathrm{Si}(1 \mathrm{a})-\mathrm{S}(2 \mathrm{a})-\mathrm{Si}(3)-\mathrm{S}(2)$.

It is known from different SiO_{2} modifications that the SiOSi angle has a major influence on the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shift $[14,15]$ ranging from -107 ppm in α-quartz [16] (mean SiOSi angle: 143.6° [17]) to -128.2 ppm in zunyite [18] (SiOSi angle: 180° [19]). The bond polarization theory has been applied to fit the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shifts
with the molecular geometry of SiO_{2} networks [20]. From these results it seems likely that the SiSSi bond angle in cyclic silthianes also has an important influence on the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shifts if silicon atoms with the same first coordination sphere are compared.

Because of the formation of five-membered rings, the ${ }^{29}$ Si-NMR signals in 6 (Table 8) show again the expected downfield shifts of 20.75 ppm (SiMe, part of two five-membered rings) and $10.5 \mathrm{ppm}\left(\mathrm{SiMe}_{2}\right)$ compared with the same silyl units in the acyclic thiobutyl substituted compounds $(\mathrm{BuS})_{2} \mathrm{SiMe}-\mathrm{SiMe}(\mathrm{SBu})_{2}$ and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{SBu})_{2}$ [8].

In comparison with the compounds $\mathbf{2 a}$ and $\mathbf{4 c}$ (the reaction products if $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}$ or $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$, respectively, are treated separately with $\mathrm{H}_{2} \mathrm{~S} / \mathrm{NEt}_{3}$) the formation of $\mathbf{6}$ is energetically preferred. According to Eq. (3):
$\mathbf{4 c}+2 \mathbf{2 a} \rightleftharpoons 3 \mathbf{6}$
three molecules of $\mathbf{6}$ are $29.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy than $\mathbf{4 c}$ and two molecules of $\mathbf{2 a}$ (calculated energies,

Fig. 2. The molecular structure of $\mathbf{6}$.

Table 5
Calculated geometry parameters and total energies (B3LYP/6-31G*) of the compounds 6, 10a-b and 11; for assignment of Si and S see Fig. 2, Scheme 8, and Eq. (4)

Compound	$d(\mathrm{SiSi})$ and $d(\mathrm{SiS})(\mathrm{A})$	Bond angles (${ }^{\circ}$)	Total energy (H)	Total energy with zero point corr. (H)
6	Si(1)-Si(1a): 2.381 Si(1)-S(1): 2.165 $\mathrm{Si}(2)-\mathrm{S}(1): 2.184$ Si(1)-S(2): 2.178 Si(3)-S(2): 2.178	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(2): 100.4 \\ & \mathrm{Si}(1)-\mathrm{S}(2)-\mathrm{Si}(3): 101.0 \\ & \mathrm{Si}(1 \mathrm{a})-\mathrm{Si}(1)-\mathrm{S}(1): 105.8 \\ & \mathrm{Si}(1 \mathrm{a})-\mathrm{Si}(1)-\mathrm{S}(2): 105.9 \\ & \mathrm{~S}(1)-\mathrm{Si}(2)-\mathrm{S}(1 \mathrm{a}): 110.3 \\ & \mathrm{~S}(2)-\mathrm{Si}(3)-\mathrm{S}(2 \mathrm{a}): 109.1 \end{aligned}$	-2990.56098	-2990.32305
10a	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{Si}(2): 2.370 \\ & \mathrm{Si}(1)-\mathrm{S}(1): 2.183 \\ & \mathrm{Si}(1)-\mathrm{S}(2): 2.182 \\ & \mathrm{Si}(2)-\mathrm{S}(2): 2.200 \end{aligned}$	Si(1)-S(1)-Si(1): 89.1 $\mathrm{Si}(1)-\mathrm{S}(2)-\mathrm{Si}(2): 99.5$ $\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{S}(2): 102.1$ $\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{S}(2): 108.9$ Si(2)-Si(1)-S(1): 101.2 S(1)-Si(1)-S(2): 109.2	-2592.30580	-2592.07037
10b	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{Si}(2): 2.366 \\ & \mathrm{Si}(1)-\mathrm{S}(2): 2.186 \\ & \mathrm{Si}(1)-\mathrm{S}\left(2^{\prime}\right): 2.192 \\ & \mathrm{Si}(2)-\mathrm{S}(1): 2.187 \end{aligned}$	$\mathrm{Si}(2)-\mathrm{S}(1)-\mathrm{Si}(2): 113.1$ $\mathrm{Si}(1)-\mathrm{S}(2)-\mathrm{Si}(1): 78.8 / 79.1$ $\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{S}(1): 109.5$ $\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{S}(2): 106.5 / 109.4$ $\mathrm{S}(2)-\mathrm{Si}(1)-\mathrm{S}(2): 96.6$	-2592.29259	-2592.05752
11	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{Si}(2): 2.372 \\ & \mathrm{Si}(1)-\mathrm{S}(2): 2.201 \\ & \mathrm{Si}(2)-\mathrm{S}(2): 2.195 \\ & \mathrm{Si}(3)-\mathrm{S}(1): 2.170 \\ & \mathrm{Si}(3)-\mathrm{S}(2): 2.176 \end{aligned}$	$\mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(3): 89.3$ $\mathrm{Si}(2)-\mathrm{S}(2)-\mathrm{Si}(3): 100.0$ Si(1)-Si(2)-S(2): 101.9 $\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{S}(1): 99.4$ S(1)-Si(3)-S(2): 108.2 $\mathrm{S}(2)-\mathrm{Si}(3)-\mathrm{S}(2): 111.5$	-2592.30320	-2592.06758

Table 6
Calculated geometry parameters and total energies (B3LYP/6-31G*) of the compounds 12a-b and 14; for assignment of Si and S see Scheme 9 and Eq. (5)

Compound	$d(\mathrm{SiSi})$ and $d(\mathrm{SiS})(\AA)$	Bond angles (${ }^{\circ}$)	Total energy (H)	Total energy with zero point corr. (H)
12a	Si(1)-Si(2): 2.378 Si(1)-Si(3): 2.366 Si(4)-Si(5): 2.368 Si(1)-S(1): 2.197 Si(2)-S(2): 2.192 Si(3)-S(3): 2.186 Si(4)-S(1): 2.181 Si(4)-S(2): 2.180 Si(5)-S(3): 2.188	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(4): 96.4 \\ & \mathrm{Si}(2)-\mathrm{S}(2)-\mathrm{Si}(4): 102.0 \\ & \mathrm{Si}(3)-\mathrm{S}(3)-\mathrm{Si}(5): 109.8 \\ & \mathrm{~S}(1)-\mathrm{Si}(4)-\mathrm{S}(2): 109.8 \\ & \mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{Si}(3): 113.2 \end{aligned}$	-2961.65838	-2961.34679
12b	Si(1)-Si(2): 2.369 $\mathrm{Si}(3)-\mathrm{Si}(4): 2.368$ Si(1)-S(1): 2.188 Si(2)-S(2): 2.194 Si(3)-S(2): 2.177 $\mathrm{Si}(4)-\mathrm{S}(1): 2.192$	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(4): 104.8 \\ & \mathrm{Si}(2)-\mathrm{S}(2)-\mathrm{Si}(3): 106.3 \\ & \mathrm{~S}(2)-\mathrm{Si}(3)-\mathrm{S}(2): 114.7 \\ & \mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{Si}(2): 110.7 \end{aligned}$	-2961.65709	-2961.34571
14	$\begin{aligned} & \mathrm{Si}(1)-\mathrm{Si}(2): 2.370 \\ & \mathrm{Si}(2)-\mathrm{S}(1): 2.195 \\ & \mathrm{Si}(3)-\mathrm{S}(1): 2.172 \end{aligned}$	$\begin{aligned} & \mathrm{Si}(2)-\mathrm{S}(1)-\mathrm{Si}(3): 105.6 \\ & \mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{S}(1): 107.0 \\ & \mathrm{~S}(1)-\mathrm{Si}(3)-\mathrm{S}(1): 112.4 \\ & \mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{Si}(2): 105.7 \end{aligned}$	-2961.65849	-2961.34649

see Tables 4 and 5). The calculated geometry of $\mathbf{6}$ is in complete agreement with the result of the crystal structure analysis with envelope conformations of both five-membered rings and one SiMe_{2} unit in exo
and one in endo position. However, as for 4 c the calculated $d_{\text {Sisi }}$ and $d_{\text {Sis }}$ are $0.02-0.03 \AA$ longer and the angles SiSSi are $1-2^{\circ}$ larger than the observed data.

Three isomers of 3,7-diphenyl-1,3,5,7-tetramethyl-1,3,5,7-tetrasila-2,4,6,8-tetrathiabicyclo-[3,3,0]-octane ($7 \mathbf{a}-\mathbf{c}$) were obtained by a similar reaction of a mixture of $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}$ and two equivalents of $\mathrm{PhMeSiCl}_{2}$. The three isomers differ in the spatial orientation of the two phenyl groups (Scheme 7):

Compound $7 \mathbf{b}$ is formed with 49% yield and can be assigned unambiguously because it contains two different SiPhMe units and therefore shows two different ${ }^{29} \mathrm{Si}$ NMR signals in this region. The isomer which is formed with a yield of only 9%, very likely corresponds to the structure of 7 a , because in 7 a the two phenyl rings hinder each other and make this isomer less favorable. Consequently the third isomer, which is formed with a yield of 42%, possesses the structure 7c. Finally, the reaction of a mixture of $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}$ and two equivalents of $\mathrm{Ph}_{2} \mathrm{SiCl}_{2}$ with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} resulted in the formation of 3,3,7,7-tetraphenyl-1,5-dimethyl-1,3,5,7-tetrasila-2,4,6,8 -tetrathiabicyclo-[3,3,0]-octane (8).

The ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shifts of the central $\mathrm{Si}_{2} \mathrm{Me}_{2}$ units in $7 \mathbf{a}-\mathbf{c}$ and $\mathbf{8}$ are almost the same as those found for 6 supporting

7c

Scheme 7.

Fig. 3. The molecular structure of $\mathbf{9}$.

Table 7
Selected bond lengths and angles of 6

Atoms	Bond lengths (\AA)	Atoms	Bond angles (${ }^{\circ}$)
$\mathrm{S}(1)-\mathrm{Si}(1)$	2.1343(7)	$\mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(2)$	99.28(3)
$\mathrm{S}(1)-\mathrm{Si}(2)$	2.1563(7)	$\mathrm{Si}(1)-\mathrm{S}(2)-\mathrm{Si}(3)$	98.96(3)
$\mathrm{S}(2)-\mathrm{Si}(1)$	2.1460(7)	$\mathrm{S}(1)-\mathrm{Si}(1)-\mathrm{S}(2)$	109.76(3)
$\mathrm{S}(2)-\mathrm{Si}(3)$	$2.1475(7)$	$\mathrm{S}(1)-\mathrm{Si}(1)-\mathrm{Si}(1 \mathrm{a})$	104.92(2)
$\mathrm{Si}(1)-\mathrm{C}(1)$	1.855(2)	$\mathrm{S}(2)-\mathrm{Si}(1)-\mathrm{Si}(1 \mathrm{a})$	105.40(2)
$\mathrm{Si}(1)-\mathrm{Si}(1 \mathrm{a})$	2.3600(12)	$\mathrm{S}(1)-\mathrm{Si}(2)-\mathrm{S}(1 \mathrm{a})$	106.67(4)
$\mathrm{Si}(2)-\mathrm{C}(2)$	1.851(3)	$\mathrm{S}(2 \mathrm{a})-\mathrm{Si}(3)-\mathrm{S}(2)$	109.15(4)
$\mathrm{Si}(2)-\mathrm{C}(3)$	1.852(3)	$\mathrm{C}(2)-\mathrm{Si}(2)-\mathrm{C}(3)$	112.42(16)
$\mathrm{Si}(3)-\mathrm{C}(4)$	1.846 (3)	$\mathrm{C}(4)-\mathrm{Si}(3)-\mathrm{C}(5)$	112.86(19)
$\mathrm{Si}(3)-\mathrm{C}(5)$	$1.846(4)$		

the bicyclo-[3,3,0]-octane structures of these compounds. Furthermore, the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signals of the SiPhMe and SiPh_{2} units are very close to those of $\mathbf{3 b}$ and $\mathbf{3 c}$ and shifted by $7.4-8.6 \mathrm{ppm}(\mathrm{SiPhMe})$ and $5.4 \mathrm{ppm}\left(\mathrm{SiPh}_{2}\right)$ downfield as compared with $\mathrm{PhMeSi}(\mathrm{SBu})_{2}$ and $\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{SBu})_{2}$ [8] as a result of the formation of five-membered rings.

Another silthiane with a bicyclo-[3,3,0]-octane skeleton was prepared by the reaction of 1,1,2,2-tetrakis(chlorodimethylsilyl)-1,2-dimethyldisilane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3}. The only observed silicon containing reaction product was the expected $1,2,2,4,4,5,6,-$ 6,8,8-decamethyl-1,2,4,5,6,8-hexasila-3,7-dithiabicyclo[3,3,0]octane (9). After sublimation, crystals of 9 suitable for crystal structure analysis could be obtained, Fig. 3.

The crystal structure analysis of $\mathbf{9}$ shows the expected bicyclo-[3,3,0]-octane skeleton with SiSSi angles of $101-$ 102° (Table 9), which is again in the range of the SiSSi angles of the five-membered rings in $\mathbf{4 c}$ and $\mathbf{6}$. All $\mathrm{Si}-\mathrm{Si}$ as well as $\mathrm{Si}-\mathrm{S}$ bond lengths are in the usual ranges of $2.33-2.35$ and $2.15-2.16 \AA$, respectively. The SiSiSi angles in the five-membered rings $\mathrm{Si}_{4} \mathrm{~S}$ are in the range $102-103^{\circ}$, whereas the angles $\operatorname{Si}(6)-\operatorname{Si}(1)-\operatorname{Si}(4)$ and $\mathrm{Si}(5)-\mathrm{Si}(4)-\mathrm{Si}(3)$ between the two rings are expanded to $114-115^{\circ}$. Both five-membered rings adopt an envelope conformation with angles of $42.34(0.04)^{\circ}$ in the ring $\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{S}(1)-\mathrm{Si}(3)-\mathrm{Si}(4)$ and $44.35(0.03)^{\circ}$ in the ring $\mathrm{Si}(1)-\mathrm{Si}(6)-\mathrm{S}(2)-\mathrm{Si}(5)-\mathrm{Si}(4)$. The angle between the planes $\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$ and $\mathrm{Si}(1)-\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(6)$ is $119.06(0.02)^{\circ}$. Compared with the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ shifts of the same hexasilane skeleton in the acyclic compound $\left(\mathrm{BuSMe}_{2} \mathrm{Si}_{2}\right)_{2} \mathrm{SiMe}-\mathrm{SiMe}-\left(\mathrm{SiMe}_{2} \mathrm{SBu}\right)$ of -74.7 ppm (SiMe) and $5.7 \mathrm{ppm}\left(\mathrm{SiMe}_{2}\right)$, the signals are shifted by $3.4(\mathrm{SiMe})$ and $10.7 \mathrm{ppm}\left(\mathrm{SiMe}_{2}\right)$ to lower field in accordance with the formation of five-membered rings, although in this case $\mathrm{Si}_{4} \mathrm{~S}$ rings are present. The ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}$-NMR shifts of the SiMe groups also differ significantly, see Section 3.10 and Table 8, but the ${ }^{1} J_{\text {Sic }}$ coupling constants remain almost unchanged.

Table 8
NMR chemical shifts (ppm) and ${ }^{1} J_{\text {SiC }}(\mathrm{Hz})$ data of silthianes 6, 7a-c, $\mathbf{8}$ and $\mathbf{9}$ with a bicyclo-[3,3,0]-octane skeleton

[^3]
2.5. Bicyclo-[2,2,1]-heptanes (norbornanes)

The reaction of 1,1,2-trichlorotrimethyldisilane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} yielded 1,2,2,4,5,5-hexamethyl-1,2,4,5-tetrasila-3,6,7-trithianorbornane (10a) as the only product. The proposed structure is in agreement with the mass spectrum and with the presence of two ${ }^{29} \mathrm{Si}$ NMR and three ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}$-NMR signals (Table 10) due to the splitting of the diastereotopic methyl groups in the SiMe_{2} units. The theoretically also possible structure 10b bears only two different methyl groups which
would result in only two ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals (Scheme 8).
Furthermore, the Si-NMR shifts for 10a are found $11.0 \mathrm{ppm}(\mathrm{SiMe})$ and $11.3 \mathrm{ppm}\left(\mathrm{SiMe}_{2}\right)$ downfield from the values for the acyclic thiobutyl substituted compound (BuS$)_{2} \mathrm{SiMe}_{\mathrm{SiMe}}^{2}$ (SBu) [8], strongly supporting a structure with five-membered rings.
The calculated structure of 10a (see Fig. 4) reveals a SiSSi angle at $\mathrm{S}(2)$ in the usual range for five-membered rings as well as a relatively small angle at $S(1)$ of only 89.1°, which is even 5° smaller than the SiSSi angle

Table 9
Selected bond lengths and angles of 9

Atoms	Bond lengths (\AA)	Atoms	Bond angles $\left({ }^{\circ}\right)$
$\mathrm{S}(1)-\mathrm{Si}(3)$	$2.1541(8)$	$\mathrm{Si}(3)-\mathrm{S}(1)-\mathrm{Si}(2)$	$102.11(3)$
$\mathrm{S}(1)-\mathrm{Si}(2)$	$2.1573(8)$	$\mathrm{Si}(5)-\mathrm{S}(2)-\mathrm{Si}(6)$	$101.31(3)$
$\mathrm{S}(2)-\mathrm{Si}(5)$	$2.1509(8)$	$\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{Si}(6)$	$114.36(3)$
$\mathrm{S}(2)-\mathrm{Si}(6)$	$2.1515(8)$	$\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{Si}(4)$	$102.45(3)$
$\mathrm{Si}(1)-\mathrm{Si}(2)$	$2.3443(8)$	$\mathrm{Si}(6)-\mathrm{Si}(1)-\mathrm{Si}(4)$	$102.02(3)$
$\mathrm{Si}(1)-\mathrm{Si}(6)$	$2.3471(8)$	$\mathrm{S}(1)-\mathrm{Si}(2)-\mathrm{Si}(1)$	$106.56(3)$
$\mathrm{Si}(1)-\mathrm{Si}(4)$	$2.3512(8)$	$\mathrm{S}(1)-\mathrm{Si}(3)-\mathrm{Si}(4)$	$106.87(3)$
$\mathrm{Si}(3)-\mathrm{Si}(4)$	$2.3417(7)$	$\mathrm{Si}(5)-\mathrm{Si}(4)-\mathrm{Si}(3)$	$115.26(3)$
$\mathrm{Si}(4)-\mathrm{Si}(5)$	$2.3371(8)$	$\mathrm{Si}(5)-\mathrm{Si}(4)-\mathrm{Si}(1)$	$102.02(3)$
$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.890(2)$	$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(1)$	$102.24(3)$
$\mathrm{Si}(4)-\mathrm{C}(6)$	$1.888(2)$	$\mathrm{S}(2)-\mathrm{Si}(5)-\mathrm{Si}(4)$	$106.38(3)$
		$\mathrm{S}(2)-\mathrm{Si}(6)-\mathrm{Si}(1)$	$106.41(3)$

found in decamethylhexasila-7-thianorbornane [7]. The calculations showed that the experimentally observed isomer $\mathbf{1 0 a}$ is $33.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy than $\mathbf{1 0 b}$ with a strained four-membered ring.
An isomeric compound, 1,2,2,4,6,6-hexamethyl-1,2,4,6-tetrasila-3,5,7-trithianorbornane (11), has been prepared by reacting a $1: 1$ molar mixture of $1,2,3-$ trichloropentamethyltrisilane and methyltrichlorosilane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3}. The mass spectrum and the three ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signals detected at a relatively low field are in agreement with the norbornane structure 11. The GC-MS spectra of $\mathbf{1 0 a}$ and $\mathbf{1 1}$ differ only in the retention times and in the relative intensities of the parent peak and fragment peaks.

2.6. Bicyclo-[3,2,1]-octane and bicyclo-[3,3,1]-nonane

The treatment of a $1: 1$ mixture of $1,1,2$-trichlorotrimethyldisilane and 1,2,3-trichloropentamethyltrisilane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} resulted in the formation of 1,2,2,4,4,5,6,6-octamethyl-1,2,4,5,6-pentasila-3,7,8-tri-thiabicyclo-[3,2,1]-octane (12a). The structure is in agreement with the observed mass spectrum and the five ${ }^{29} \mathrm{Si}$-NMR signals including two different ${ }^{1} J_{\text {Sisi }}$ coupling constants in the trisilane unit. As expected, eight different signals for the eight methyl groups are found by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy. In the alternative structure 12b (Scheme 9) with a bicyclo-[2,2,2]octane skeleton the two SiMe_{2} groups of the trisilane unit are equal, what should result in only four Si - and five C- and $\mathrm{H}-\mathrm{NMR}$ signals.

The formation of 12a containing a five-membered ring shows again that isomers with this ring size are preferred.
The calculated energies of the two isomers (Table 6) differ by only $2.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the experimentally observed isomer 12a being lower in energy than 12b.
The DFT calculation of 12a reveal that the six-membered ring adopts a chair conformation, while the fivemembered ring has an envelope conformation. Due to the increased ring size of one cyclus, the angles SiSSi are larger than the calculated values for 10a and $\mathbf{1 1}$. The angle at $S(2)$ is comparable with the angle in 3a, and the angle at $S(3)$ is similar to the angle in $\mathbf{1}$, also containing a $\mathrm{Si}_{4} \mathrm{~S}_{2}$ six-membered ring. The geometry of

The ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signals of the trisilane unit in $\mathbf{1 1}$ are shifted by $15.7\left(\mathrm{Si}^{\mathrm{A}}\right)$ and $6.4 \mathrm{ppm}\left(\mathrm{Si}^{\mathrm{B}}\right)$ to lower field compared with the acyclic derivative BuSSi-$\mathrm{Me}_{2}-\mathrm{SiMe}(\mathrm{SBu})-\mathrm{SiMe}_{2}(\mathrm{SBu})[8]$. The chemical shift of Si^{A} is only 1.3 ppm upfield from value found for the bridgehead silicon atoms in decamethylhexasila-7-thianorbornane [7] with the same first coordination sphere. The calculated structure of $\mathbf{1 1}$ (Table 5) shows similar bond parameters as the isomeric compound $\mathbf{1 0 a}$. For instance, the bond angles SiSSi at $\mathrm{S}(1)$ and $\mathrm{S}(2)$ are almost identical. A comparison of the calculated total energies (with zero point correction) reveals that the norbornane 10a is $7.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy than the isomer $\mathbf{1 1}$.

Scheme 8.

Table 10
NMR chemical shifts (ppm) and coupling constants ${ }^{1} J_{\mathrm{siC}}$ and ${ }^{1} J_{\mathrm{SiSi}}(\mathrm{Hz})$ of the bicyclic silthianes 10a, 11, 12a, 13a and 14

compound	δ_{Si}	${ }^{1} \mathrm{~J}_{\text {SiC }}$	$\delta_{\text {C }}(\mathrm{SiMe})$	$\delta_{\mathrm{H}}(\mathrm{SiMe})$
10a	21.3	47.6	2.4	0.91
	10.5	46.6	$0.1 / 0.3$	0.40 / 0.58
	${ }^{1} \mathrm{~J}_{\text {Sisi }}: 100.6$			
11	-8.9	${ }^{1} \mathrm{~J}_{\text {SiSi }}$: 72.9	-7.8	0.81
	7.7		$1.16 / 1.28$	0.45 / 0.64
	28.1		7.2	1.03
12a	22.1	44.7	C: -3.7	A-E: 0.378,
	-2.6	${ }^{1} \mathrm{~J}_{\text {SiSi }}$: 105.9	A, B, D-E:	0.415, 0.465,
	12.9	46.8	0.87, 1.74,	0.527, 0.559,
	-12.9	a)	1.85, 1.92,	0.609, 0.724 ,
		46.6	$\begin{aligned} & 2.27(2 \mathrm{C}), \\ & 4.00 \end{aligned}$	0.740
13a	-27.5		-2.1	
	-3.3		$2.35 / 2.82$	$0.46 / 0.58$
14	-89.0	36.9	-15.6	0.04
		${ }^{1} \mathrm{~J}_{\text {SiSi }}: 66.6$		
	-1.0	46.2	3.4	0.52
	12.0	66.0	10.7	0.83

[^4]12b is very similar to the isomeric compound $\mathbf{1 4}$. The calculated SiSSi angles of 104.8 and 106.3° are almost identical to the value of 105.6° in $\mathbf{1 4}$.
If $1,2,3$-trichloropentamethyltrisilane alone is reacted with $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{NEt}_{3}, 1,2,2,4,4,5,6,6,8,8$-decamethyl-1,2,4,5,6,8-hexasila-3,7,9-trithiabicyclo-[3,3,1]-nonane (13a) is formed. This bicyclus contains two six-membered rings $\mathrm{Si}_{4} \mathrm{~S}_{2}$ and can also be regarded as an adamantane structure with one missing corner. The only possible alternative structure 13b is built up of only one six-membered ring and two seven-membered rings. 13b should show three different ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signals, but only two signals with a $2: 1$ ratio are observed, which is in agreement with structure 13a (Scheme 10).

2.7. 1,2,2,4,6,6,7,7-Octamethyl-1,2,4,6,7-pentasila-3,5,8-trithiabicyclo-[2,2,2]-octane (14)

Compound $\mathbf{1 4}$ is formed by the reaction of a $1: 1$ molar mixture of $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right)_{3}$ and MeSiCl_{3} with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3}, Eq. (5):

Since this compound is built of six-membered rings, the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signals of all silyl groups are shifted to higher field (${ }^{(S i M e}$: $-9.6 \mathrm{ppm}, \mathrm{SiMe}_{2}$: -5.8 ppm , SiMe: -17.5 ppm) compared with the acyclic compounds $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{SBu}\right)_{3}$ and $\mathrm{MeSi}(\mathrm{SBu})_{3}[8]$.

The DFT calculation of $\mathbf{1 4}$ (Table 6, Fig. 5) reveals SiSSi angles of 105.6° which are typical for six-membered rings. A comparison of the total energies (with zero point correction) of $\mathbf{1 4}$ with the isomeric com-

Fig. 4. Schakal plot of the optimized structure of 10a, hydrogen atoms are omitted.
pound 12b indicates a difference of only $2.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, 14 being the energetically preferred isomer.

3. Experimental

3.1. $N M R$ and $G C-M S$ measurements

All NMR spectra were recorded on a Bruker DPX 400 in CDCl_{3} solution and TMS as internal standard for ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$. In order to get a sufficient signal/ noise ratio of ${ }^{29}$ Si-NMR spectra for obtaining ${ }^{1} J_{\text {SiC }}$ or ${ }^{1} J_{\text {Sisi }}$ satellites, ${ }^{29}$ Si INEPT spectra were also recorded. The assignment of ipso carbon atoms in phenyl substituents was simplified by recording ${ }^{13} \mathrm{C}$ APT spectra.

Mass spectra were measured on a Hewlett-Packard 5971 (ionization energy: 70 eV , column: $30 \mathrm{~m} \times 0.25$ $\mathrm{mm} \times 0.25 \mu \mathrm{~m}$, phenylmethylpolysiloxane, column temperature: $80^{\circ} \mathrm{C}(3 \mathrm{~min}) / 20 \mathrm{~K} \mathrm{~min}^{-1}$, flow: He 0.5 ml $\min ^{-1}$).

14

3.2. Crystal structure analysis

X-ray structure analysis measurements were performed on a Bruker SMART CCD. Crystal data of $\mathbf{4 c}$, 6 and 9 as well as data collection and refinement details are given in Table 11.

All data were corrected for absorption using SADABS [21]. The structures were solved using direct methods (shelx-97 [22]), refined using least-squares methods (shelx-97) and drawn using zorter [23].

12a

12b

Scheme 9.

13b

Scheme 10

3.3. Theoretical methods

The ab initio molecular orbital calculations were carried out using the Gaussian 98 series of programs [24]. Geometries were fully optimized at the DFT level, using Becke's three-parameter hybrid exchange func-

Fig. 5. Schakal plot of the optimized structure of 14, hydrogen atoms are omitted
tional and the correlation functional of Lee, Yang and Parr (B3LYP) [25]. Geometry optimizations, harmonic

Table 11
Crystal data of $\mathbf{4 c}, \mathbf{6}$ and $\mathbf{9}$ as well as data collection and refinement details

	4c	6	9
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P 2_{1} / n$	Pnma	$P 2_{1} / n$
Unit cell dimensions			
$a(\AA)$	10.3954(4)	12.1879(4)	9.9221(2)
$b(\AA)$	8.1079(3)	10.1585(4)	12.5947(1)
$c(\AA)$	24.2696(9)	13.5404(5)	18.0410(3)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	100.973(1)	90	104.747(1)
$\gamma\left({ }^{\circ}\right)$	90	90	90
Volume (A^{3})	2008.16(13)	1676.45(11)	2180.24(6)
Z	4	4	4
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.492	1.311	1.167
Linear absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	1.022	0.823	0.561
Radiation used	$\mathrm{Mo}-\mathrm{K}_{\alpha}$	$\mathrm{Mo}-\mathrm{K}_{\alpha}$	$\mathrm{Mo}-\mathrm{K}_{\alpha}$
Temperature (K)	173(2)	173(2)	173(2)
Scan method	ω scans	ω scans	ω scans
Absorption correction	Empirical	Empirical	Empirical
Max./min. transmission	0.812213/0.580765	0.867692/0.737513	0.765533/0.376927
Measured reflections	8945	7891	10008
Independent reflections	5386	2369	5408
Observed reflections	3747	1748	4073
$R_{\text {int }}$	0.0336	0.0435	0.0339
θ Range for collection (${ }^{\circ}$)	1.71-30.29	2.25-30.43	1.99-30.35
Completeness to $\theta_{\text {max }}(\%)$	89.3	88.6	82.5
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Final $R(I>2 \sigma(I))$	$R_{1}: 0.0392$	$R_{1}: 0.0347$	R_{1} : 0.0393
R (all data)	$R_{1}: 0.0712$	$R_{1}: 0.0610$	R_{1} : 0.0610
H -locating and refining	difmap/refall	difmap/refall	difmap/refall
Goodness-of-fit on F^{2}	0.977	1.025	0.988
Max./min. e-density (e \AA^{-3})	0.613/-0.557	0.345/-0.359	0.368/-0.718
Data collection program	SMART	SMART	SMART
Cell refinement program	SAINT	SAINT	SAINT
Data reduction program	XPREP	XPREP	XPREP
Absorption correction	SADABS	SADABS	SADABS
Structure solving program	SHELXS-97	SHELXS-97	SHELXS-97
Structure refining program	SHELXL-97	SHELXL-97	SHELXL-97
Structure drawing	ZORTEP	ZORTEP	ZORTEP

frequencies, and zero-point vibrational energies were calculated with the polarized $6-31 \mathrm{G}^{*}$ basis set [26]. All structures were identified as true local minima by their Hessian matrices.

3.4. Starting materials

$\mathrm{H}_{2} \mathrm{~S}$ (N25, Air Liquide), triethylamine, BuSH, BuLi and all monosilanes $\mathrm{Me}_{x} \mathrm{Ph}_{y} \mathrm{SiCl}_{z}$ are commercially available. The oligosilanes $\mathrm{SiClMe}_{2}-\mathrm{SiClMe}_{2}$ [27], $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiClMe}_{2} \quad$ [28], $\quad \mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me} \quad$ [29], $\mathrm{SiClMe}_{2}-\mathrm{SiClMe}-\mathrm{SiClMe}_{2}$ [30], $\mathrm{SiMe}\left(\mathrm{SiClMe}_{2}\right)_{3}$ and $\left[\mathrm{MeSi}\left(\mathrm{SiClMe}_{2}\right)_{2}\right]_{2} \quad$ [31] were prepared as described previously.

3.5. 1,2,4-Trisila-3,5-dithiacyclopentanes

$\mathrm{SiClMe}_{2}-\mathrm{SiClMe}_{2}(0.374 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ ($0.258 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in $20 \mathrm{ml} n$-hexane. $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the stirred solution and at the same time triethylamine ($1.11 \mathrm{ml}, 8 \mathrm{mmol}$) were slowly added by a syringe. After 20 min the reaction mixture was filtered from precipitated triethylammonium chloride and the solvent was removed in vacuo yielding an oily residue which consisted of 55% 3a as well as $\mathbf{1}$ and $\mathbf{2 a}$ (determined by NMR).

1, GC-MS: m / e [relative intensity]: $296\left[\mathrm{M}^{+}, 23\right]$, 281 [M-Me, 13], $237 \quad\left[\mathrm{M}-\mathrm{SiMe}_{2} \mathrm{H}, 11\right], \quad 116$ [$\left.\mathrm{Si}_{2} \mathrm{Me}_{4}, 100\right], 73$ [$\left.\mathrm{SiMe}_{3}, 92\right]$.

2a, GC-MS: $270\left[\mathrm{M}^{+}, 21\right], 255$ [M - Me, 100], 165 $\left[\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{3}, 73\right], 73$ [$\left.\mathrm{SiMe}_{3}, 35\right]$.

3a, GC-MS: $238\left[\mathrm{M}^{+}, 50\right], 223$ [M $\left.-\mathrm{Me}, 65\right], 165$ $\left[\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{3}, 34\right], 163$ [$\left.\mathrm{Si}_{2} \mathrm{Me}_{5} \mathrm{~S}, 30\right], 73$ [$\left.\mathrm{SiMe}_{3}, 100\right]$.

The same reaction was repeated with $\mathrm{PhMeSiCl}_{2}$ $(0.382 \mathrm{~g}, 2 \mathrm{mmol})$ instead of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ and yielded a solid mixture of 55% 3b as well as $\mathbf{1}$ and the two isomers of $(\mathrm{PhMeSiS})_{3}$.

3b, GC-MS: 300 [M ${ }^{+}$, 36], 285 [M - Me, 22], 227 [$\left.\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{2} \mathrm{Ph}, 9\right], 209$ (9), 195 [$\left.\mathrm{Si}_{2} \mathrm{SMe}_{2} \mathrm{Ph}, 5\right], 165$ [$\left.\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{3}, 12\right], 135$ [$\left.\mathrm{SiMe}_{2} \mathrm{Ph}, 100\right], 105$ [SiPh, 6], 73 [$\left.\mathrm{SiMe}_{3}, 20\right]$.
(PhMeSiS) $)_{3}:{ }^{29} \mathrm{Si}-\mathrm{NMR}, \delta / \mathrm{ppm}: 13.1(2 \mathrm{Si}), 12.95$ (1 Si) [cis,cis,trans-isomer [12] (85\%)] and 12.8 [all-transisomer (15%)].

Repetition of the same reaction with $\mathrm{Ph}_{2} \mathrm{SiCl}_{2}$ ($0.506 \mathrm{~g}, 2 \mathrm{mmol}$) instead of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ yielded a mixture of $55 \% \mathbf{3 c}$ as well as $\mathbf{1}$ and $\left(\mathrm{Ph}_{2} \mathrm{SiS}\right)_{3}$ as solid residue.

3c, GC-MS: 362 [M ${ }^{+}$, 53], 347 [M-Me, 9], 289 $\left[\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{MePh}_{2}, 5\right], 284$ (15), 271 (12), 269 (7), 227 [$\left.\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{2} \mathrm{Ph}, 73\right], 209$ (7), 197 [$\left.\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Ph}, ~ 38\right], 135$ $\left[\mathrm{SiMe}_{2} \mathrm{Ph}, 100\right], 105[\mathrm{SiPh}, 13], 77[\mathrm{Ph}, 8], 73\left[\mathrm{SiMe}_{3}\right.$, 14].

3.6. Synthesis of 1,3,5,7,9,11-hexamethyl-1,3,5,7,9, 11-hexasila-2,4,6,8,10,12-hexathiatetra-cyclo[5,5,0,0 $\left.0^{3,11}, 0^{5,9}\right]$-dodecane (4c)

$\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}(0.684 \mathrm{~g}, 3 \mathrm{mmol})$ was dissolved in 40 ml toluene and a stream of $\mathrm{H}_{2} \mathrm{~S}$ was passed through the solution while $\mathrm{NEt}_{3}(1.77 \mathrm{ml}, 12.8 \mathrm{mmol})$ was added by syringe. The product was filtered from precipitated triethylammonium chloride and concentrated to a volume of 1 ml . Colorless crystals of $\mathbf{4 c}$ $\left(0.23 \mathrm{~g}, 51 \%, F>190^{\circ} \mathrm{C}\right)$ crystallized from the solution. Since 4 c is almost insoluble in CDCl_{3}, NMR spectra were taken in $\mathrm{C}_{6} \mathrm{D}_{6}$. Single crystals of 4 c suitable for X-ray analysis were obtained by slow cooling of a hot saturated solution in $\mathrm{C}_{6} \mathrm{D}_{6}$.

3.7. Synthesis of bis-(1,3,3,4,4-pentamethyl-1,3,4-trisila-2,5-dithiacyclopent-1-yl) (5a)

$\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me} \quad(0.228 \mathrm{~g}, \quad 1 \mathrm{mmol})$ and $\mathrm{SiClMe}_{2}-\mathrm{SiClMe}_{2}(0.374 \mathrm{~g}, 2 \mathrm{mmol})$ were dissolved in 40 ml hexane $1.15 \mathrm{ml}(8 \mathrm{mmol}) \mathrm{NEt}_{3}$ were slowly added while $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the solution. After filtration from the precipitated ammonium salt and removal of the solvent in vacuo a solid mixture of $\mathbf{5 a}(60 \%)$ and $\mathbf{1}(40 \%)$ remained. Also formed $\mathbf{4 c}$ is insoluble in hexane and was therefore removed by filtration.

3.8. Synthesis of 1,3,5,7-tetrasila-2,4,6,8-tetrathiabi-cyclo-[3,3,0]-octanes ($\mathbf{6}, 7 \boldsymbol{a}-\boldsymbol{c}, \boldsymbol{8}$)

$\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me} \quad(0.342 \mathrm{~g}, \quad 1.5 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}(0.387 \mathrm{~g}, 3 \mathrm{mmol})$ were dissolved in 40 ml n-hexane. $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the stirred solution while $1.66 \mathrm{ml}(12 \mathrm{mmol})$ triethylamine were slowly added by a syringe. After 40 min the reaction mixture was filtered from precipitated triethylammonium chloride and the solvent was removed in vacuo yielding an oily residue which consisted of $78 \% \mathbf{6}$ and $22 \% \mathbf{2 a}$ (determined by NMR). In order to get $\mathbf{6}$ free from 2a, the molar ratio $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}: \mathrm{Me}_{2} \mathrm{SiCl}_{2}$ was changed from $1: 2$ to $1: 1$. The reaction was repeated with $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}(1.14 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}(0.65 \mathrm{~g}, 5 \mathrm{mmol})$ dissolved in 100 ml hexane and $\mathrm{NEt}_{3}(4.15 \mathrm{ml}, 30 \mathrm{mmol})$ was added while $\mathrm{H}_{2} \mathrm{~S}$ passed through the solution. After filtration the solution was concentrated to 2 ml when colorless needles of $\mathbf{6}$ crystallized from the solution, $F 75-77^{\circ} \mathrm{C}$.

6, GC-MS: $330\left[\mathrm{M}^{+}, 36\right], 315$ [M $\left.-\mathrm{Me}, 26\right], 165$ $\left[\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{3}, 100\right], 73$ [$\left.\mathrm{SiMe}_{3}, 20\right]$.

Analog reaction of a mixture of $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiCl}_{2} \mathrm{Me}$ $(0.456 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{PhMeSiCl}_{2}(0.764 \mathrm{~g}, 4 \mathrm{mmol})$ dissolved in 50 ml hexane with $\mathrm{H}_{2} \mathrm{~S}$ and NEt_{3} (2.3 $\mathrm{ml}, 16 \mathrm{mmol}$) yielded, after work-up, a semicrystalline mixture of the three isomers $7 \mathbf{a}-\mathbf{c}$ as well as 15% of
the two isomers of $(\mathrm{PhMeSiS})_{3}$ (see Section 3.5). Repetition of this reaction with $\mathrm{Ph}_{2} \mathrm{SiCl}_{2}(1.01 \mathrm{~g}, 4 \mathrm{mmol})$ instead of $\mathrm{PhMeSiCl}_{2}$ yielded a solid product which consisted of $45 \% \mathbf{8}$ as well as $30 \%\left(\mathrm{Ph}_{2} \mathrm{SiS}\right)_{3}\left(\delta_{\mathrm{Si}}: 4.5\right.$ ppm, [9]) and $25 \%\left(\mathrm{Ph}_{2} \mathrm{SiS}\right)_{2}\left(\delta_{\mathrm{Si}}:-3.5 \mathrm{ppm},[9]\right)$.

3.9. Synthesis of $1,2,2,4,4,5,6,6,8,8$-decamethyl-

1,2,4,5,6,8-hexasila-3,7-dithiabicyclo-[3,3,0]-octane
Through a solution of $\left[\mathrm{SiMe}\left(\mathrm{SiClMe}_{2}\right)_{2}\right]_{2}(0.35 \mathrm{~g}$, 0.76 mmol) in 25 ml hexane was bubbled $\mathrm{H}_{2} \mathrm{~S}$ while $\mathrm{NEt}_{3}(0.43 \mathrm{ml}, 3.1 \mathrm{mmol})$ was added. After filtration and evaporation of the solvent, a viscous oil remained. Sublimation at $120^{\circ} \mathrm{C} / 0.03$ Torr yielded 0.2 g (69%) pure 9 as a crystalline product, $\mathrm{F} 75^{\circ} \mathrm{C}$.
9, GC-MS: 382 [M $\left.{ }^{+}, 73\right], 367$ [M - Me, 38], 323 [M $\left.-\mathrm{SiMe}_{2} \mathrm{H}, 32\right], 309\left[\mathrm{M}-\mathrm{SiMe}_{3}, 61\right], 277\left[\mathrm{Si}_{5} \mathrm{SMe}_{7}\right.$, 13], $249\left[\mathrm{Si}_{4} \mathrm{SMe}_{7}, 19\right], 131\left[\mathrm{Si}_{2} \mathrm{Me}_{5}, 16\right], 73\left[\mathrm{SiMe}_{3}\right.$, 100], 59 [$\left.\mathrm{SiMe}_{2} \mathrm{H}, 15\right]$.

3.10. Synthesis of 1,1,2,2-tetrakis-(butylthiodimethyl-silyl)-1,2-dimethyldisilane

$\left[\mathrm{SiMe}\left(\mathrm{SiClMe}_{2}\right)_{2}\right]_{2}(0.23 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added to a BuSLi solution made from BuSH ($0.18 \mathrm{~g}, 2 \mathrm{mmol}$) and $\operatorname{BuLi}(1.25 \mathrm{ml}, 1.6 \mathrm{M}, 2 \mathrm{mmol})$ in 10 ml dry THF. After stirring for 2 h and filtration from precipitated LiCl the solvent was removed in vacuo yielding $\left[\mathrm{SiMe}\left(\mathrm{SiMe}_{2}(\mathrm{SBu})\right)_{2}\right]_{2}(0.25 \mathrm{~g}, 0.37 \mathrm{mmol})$ as a colorless oily residue. NMR, $\delta / \mathrm{ppm}:{ }^{29} \mathrm{Si}: 5.7$ ($\mathrm{SiMe}_{2},{ }^{1} J_{\mathrm{SiC}}: 44.7,{ }^{1} J_{\mathrm{SiSi}}: 64.6 \mathrm{~Hz}$), -74.7 (SiMe); ${ }^{13} \mathrm{C}: 2.21\left(\mathrm{SiMe}_{2}\right),-8.5(\mathrm{SiMe}), 26.85\left(\mathrm{SCH}_{2}\right), 35.2$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 22.0\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 13.7\left(\mathrm{~S} \sim \mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}:$ $0.545 \quad\left(\mathrm{SiMe}_{2}\right), \quad 0.400 \quad(\mathrm{SiMe}), \quad 2.53 \quad\left(\mathrm{SCH}_{2}\right), 1.59$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 1.42\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.91\left(\mathrm{~S} \sim \mathrm{CH}_{3}\right)$.

3.11. Synthesis of tetrasilatrithianorbornanes (10a, 11)

1,2,2,4,5,5-Hexamethyl-1,2,4,5-tetrasila-3,6,7-trithianorbornane (10a) resulted from the reaction of a solution of $\mathrm{SiCl}_{2} \mathrm{Me}-\mathrm{SiClMe}_{2}(0.52 \mathrm{~g}, 2.5 \mathrm{mmol})$ in 20 ml hexane with $\mathrm{H}_{2} \mathrm{~S}$ and $1.04 \mathrm{ml}(7.5 \mathrm{ml}) \mathrm{NEt}_{3}$ after filtration from the precipitated ammonium salt and evaporation of the solvent in vacuo as viscous oil, Kp $80^{\circ} \mathrm{C} / 0.03$ Torr.

10a, GC-MS: 298 [M ${ }^{+}$, 47], 283 [M - Me, 40], 239 [M $\left.-\mathrm{SiMe}_{2} \mathrm{H}, 24\right], 223\left[\mathrm{Si}_{3} \mathrm{~S}_{2} \mathrm{Me}_{5}, 22\right], 165\left[\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{3}\right.$, 27], 73 [$\left.\mathrm{SiMe}_{3}, 100\right]$.

The treatment of a mixture of $0.266 \mathrm{~g}(1 \mathrm{mmol})$ $\mathrm{SiClMe}\left(\mathrm{SiClMe}_{2}\right)_{2}$ and $0.150 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{MeSiCl}_{3}$ dissolved in 20 ml hexane with $\mathrm{H}_{2} \mathrm{~S}$ and 0.83 ml (6 $\mathrm{mmol}) \mathrm{NEt}_{3}$ resulted after filtration and evaporation of the solvent in 0.25 g of an oily residue of 1,2,2,4,6,6-hexamethyl-1,2,4,6-tetrasila-3,5,7-trithianorbornane (11, 82\%) besides $10 \%\left(\operatorname{MeSiS}_{3 / 2}\right)_{4}\left(\delta_{\mathrm{Si}}\right.$: 17.2%, [9]) and 8% 13a.

11, GC-MS: 298 [${ }^{+}$, 38], 283 [M - Me, 34], 239 [M $\left.-\mathrm{SiMe}_{2} \mathrm{H}, 21\right], 223\left[\mathrm{Si}_{3} \mathrm{~S}_{2} \mathrm{Me}_{5}, 19\right], 165\left[\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Me}_{3}\right.$, 21], 73 [$\left.\mathrm{SiMe}_{3}, 100\right]$.

3.12. Synthesis of 1,2,2,4,4,5,6,6-octamethyl-1,2,4,5,6-pentasila-3,7,8-trithiabicyclo-[3,2,1]-octane (12a)

$\mathrm{SiClMe}\left(\mathrm{SiClMe}_{2}\right)_{2}(0.266 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{SiCl}_{2} \mathrm{Me}-$ $\mathrm{SiClMe}_{2}(0.208 \mathrm{~g}, 1 \mathrm{mmol}$) were dissolved in 25 ml hexane and $0.83 \mathrm{ml}(6 \mathrm{mmol}) \mathrm{NEt}_{3}$ were slowly added while $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the solution. After filtration from the ammonium salt and evaporation of the solvent 0.28 g of an oily residue remained which consisted of $65 \% \mathbf{1 2 a}$ besides $25 \% \mathbf{1 0 a}$ and 10% 13a.

12a, GC-MS: 356 [M ${ }^{+}$, 26], 341 [M - Me, 21], 297 [M $\left.-\mathrm{SiMe}_{2} \mathrm{H}, 13\right], 283$ [$\left.\mathrm{M}-\mathrm{SiMe}_{3}, 13\right], 191\left[\mathrm{Si}_{3} \mathrm{SMe}_{5}\right.$, 18], $176\left[\mathrm{Si}_{3} \mathrm{SMe}_{4}, 18\right], 116\left[\mathrm{Si}_{2} \mathrm{Me}_{4}, 21\right], 73\left[\mathrm{SiMe}_{3}\right.$, 100], $59\left[\mathrm{SiMe}_{2} \mathrm{H}, 11\right]$.

3.13. Synthesis of $1,2,2,4,4,5,6,6,8,8$-decamethyl-1,2,4,5,6,8-hexasila-3,7,9-trithiabicyclo-[3,3,1]-nonane (13a)

$\mathrm{SiClMe}\left(\mathrm{SiClMe}_{2}\right)_{2}(0.398 \mathrm{~g}, 1.5 \mathrm{mmol})$ was dissolved in 20 ml hexane and while $\mathrm{H}_{2} \mathrm{~S}$ passed through the solution $\mathrm{NEt}_{3}(0.63 \mathrm{ml}, 4.5 \mathrm{mmol})$ was slowly added. After filtration and removal of the solvent an oily residue of 13a remained. 13a was also a byproduct in the synthesis of 11 and $\mathbf{1 2 a}$.
13a, GC-MS: 414 [M ${ }^{+}$, 7], 399 [M - Me, 4], 249 [$\left.\mathrm{Si}_{4} \mathrm{SMe}_{7}, 19\right], 234\left[\mathrm{Si}_{4} \mathrm{SMe}_{6}, 27\right], 191\left[\mathrm{Si}_{3} \mathrm{SMe}_{5}, 11\right]$, $131\left[\mathrm{Si}_{2} \mathrm{Me}_{5}, 21\right], 116\left[\mathrm{Si}_{2} \mathrm{Me}_{4}, 17\right], 73\left[\mathrm{SiMe}_{3}, 100\right], 59$ [$\mathrm{SiMe}_{2} \mathrm{H}, 12$].
3.14. Synthesis of 1,2,2,4,6,6,7,7-octamethyl-1,2,4,6,7-pentasila-3,5,8-trithiabicyclo-[2,2,2]-octane (14)

A solution of $\mathrm{SiMe}\left(\mathrm{SiClMe}_{2}\right)_{3}(0.34 \mathrm{~g}, 1.05 \mathrm{mmol})$ and $\mathrm{MeSiCl}_{3}(0.157 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 25 ml hexane were reacted with $\mathrm{NEt}_{3}(0.87 \mathrm{ml}, 6.3 \mathrm{mmol})$, while $\mathrm{H}_{2} \mathrm{~S}$ bubbled through the solution. After filtration and evaporation of the solvent 0.3 g of a semisolid residue of $\mathbf{1 4}$ remained.
14, GC-MS: 356 [${ }^{+}$, 31], 341 [M - Me, 20], 297 [M $\left.-\mathrm{SiMe}_{2} \mathrm{H}, 12\right], 283\left[\mathrm{Si}_{4} \mathrm{~S}_{3} \mathrm{Me}_{5}, 11\right], 191\left[\mathrm{Si}_{3} \mathrm{SMe}_{5}\right.$, 14], $176\left[\mathrm{Si}_{3} \mathrm{SMe}_{4}, 13\right], 131\left[\mathrm{Si}_{2} \mathrm{Me}_{5}, 17\right], 116\left[\mathrm{Si}_{2} \mathrm{Me}_{4}\right.$, 16], 73 [$\left.\mathrm{SiMe}_{3}, 100\right], 59\left[\mathrm{SiMe}_{2} \mathrm{H}, 13\right]$.

4. Supplementary material

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. 4c: CCDC 141105, 6 :

CCDC 141106 and 9: CCDC 141107. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-1223-336033 or e-mail: deposit@ccdc.cam. ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

The authors wish to thank the 'Deutsche Forschungsgemeinschaft' for financial support. Special thanks are given to the Computing Centre of the TU Bergakademie Freiberg for supplying disk space and computing time.

References

[1] S.R. Bahr, P. Boudjouk, Inorg. Chem. 31 (1992) 712.
[2] M. Unno, Y. Kawai, H. Shioyama, H. Matsumoto, Organometallics 16 (1997) 4428.
[3] W. Ando, T. Kadowaki, A. Watanabe, N. Choi, Y. Kabe, T. Erata, M. Ishii, Nippon Kagaku Kaishi (1994) 214.
[4] H. Stüger, M. Eibl, E. Hengge, J. Organomet. Chem. 431 (1992) 1.
[5] U. Wannagat, O. Brandstätter, Monatsh. Chem. 94 (1963) 1090.
[6] H. Nöth, H. Fußstädter, H. Pommerening, T. Taeger, Chem. Ber. 113 (1980) 342.
[7] W. Wojnowski, B. Dreczewski, A. Herman, K. Peters, E.-A. Peters, H.G. v. Schnering, Angew. Chem. 97 (1985) 978.
[8] U. Herzog, G. Roewer, Main Group Met. Chem. 22 (1999) 579.
[9] H.-G. Horn, M. Hemeke, Chem. Ztg. 109 (1982) 263.
[10] H.-G. Horn, J. Prakt. Chem. 334 (1992) 201.
[11] E. Lukevics, O. Pudova, Main Group Met. Chem. 21 (1998) 123.
[12] L. Pazdernik, F. Brisse, R. Rivest, Acta Crystallogr. Sect. B 33 (1977) 1780 .
[13] J.C.J. Bart, J.J. Daly, J. Chem. Soc. Dalton Trans. (1975) 2063.
[14] U. Sternberg, Mol. Phys. 63 (1988) 249.
[15] R.F. Pettifer, R. Dupree, I. Farnan, U. Sternberg, J. Non-Cryst. Solids 106 (1988) 408.
[16] J.V. Smith, C.S. Blackwell, Nature 303 (1983) 223.
[17] Y. LePage, G. Donnay, Acta Crystallogr. Sect. B 32 (1977) 2615.
[18] M. Mägi, E. Lippmaa, A. Samoson, G. Engelhardt, A.-R. Grimmer, J. Phys. Chem. 88 (1984) 1518.
[19] W.B. Kamb, Acta Crystallogr. 13 (1960) 15.
[20] U. Sternberg, W. Priess, J. Magn. Reson. A102 (1993) 160.
[21] sadabs: Area-Detector Absorption Correction, Siemens Industrial Auto-mation, Madison, WI, 1996.
[22] shelx-97 [includes shelxs-97, shelxl-97, ciftab], G.M. Sheldrick. shelx-97. Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany, 1997.
[23] zortep, L. Zsolnai, G. Huttner, University of Heidelberg, Germany, 1994.
[24] Gaussian 98, Revision A.6, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
[25] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648. (b) P.J. Stevens, F.J. Devlin, C.F. Chablowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623.
[26] (a) P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28 (1973) 213. (b) M.M. Francl, W.J. Petro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A. Pople, J. Chem. Phys. 77 (1982) 3654.
[27] H. Sakurai, K. Tominaga, T. Watanabe, M. Kumada, Tetrahedron 45 (1966) 5493.
[28] H. Sakurai, T. Watanabe, M. Kumada, J. Organomet. Chem. 7 (1967) P15.
[29] R. Lehnert, M. Höppner, H. Kelling, Z. Anorg. Allg. Chem. 591 (1990) 209.
[30] U. Herzog, E. Brendler, G. Roewer, J. Organomet. Chem. 511 (1996) 85.
[31] U. Herzog, Dissertation, TU Bergakademie Freiberg, 1997.

[^0]: * Corresponding author. Tel.: + 49-3731-394343; fax: $+49-3731-$ 394058.

 E-mail address: herzog@merkur.hrz.tu-freiberg.de (U. Herzog)

[^1]: ${ }^{a} \mathrm{~S}-\mathrm{Me}_{2} \mathrm{Si}-\mathrm{S}$.
 ${ }^{\mathrm{b}} \mathrm{Si}-\mathrm{Me}_{2} \underline{\mathrm{Si}-\mathrm{S}}$.

[^2]: ${ }^{a} \operatorname{Si}(2)-\operatorname{Si}(3)$.
 ${ }^{\mathrm{b}} \mathrm{Si}(2)-\mathrm{S}$ and $\mathrm{Si}(3)-\mathrm{S}$.
 ${ }^{\mathrm{c}} \mathrm{Si}(1)-\mathrm{S}(1)-\mathrm{Si}(4)$ and $\mathrm{Si}(5)-\mathrm{S}(4)-\mathrm{Si}(6)$.
 ${ }^{\mathrm{d}} \mathrm{S}(2)-\mathrm{Si}(2)-\mathrm{S}(5)$ and $\mathrm{S}(3)-\mathrm{Si}(3)-\mathrm{S}(6)$.

[^3]: ${ }^{\text {a }}:$ Ph, ${ }^{13} \mathrm{C}: \mathrm{i}: 133.15, \mathrm{o}: 133.8, \mathrm{~m}: 128.0, \mathrm{p}: 130.5$

[^4]: ${ }^{\text {a) }}{ }^{1} \mathrm{~J}_{\mathrm{Si}} \mathrm{C}_{\mathrm{Si}} \mathrm{D}: 72.4,{ }^{1} \mathrm{~J}_{\mathrm{Si}} \mathrm{D}_{\mathrm{Si}} \mathrm{E}: 79.2$

