

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 606 (2000) 163-168

Reactions of acetonitrile di-iron μ -aminocarbyne complexes; synthesis and structure of $[Fe_2(\mu$ -CNMe_2)(μ -H)(CO)₂(Cp)₂]

Vincenzo G. Albano^b, Luigi Busetto^a, Magda Monari^b, Valerio Zanotti^{a,*}

^a Dipartimento di Chimica Fisica ed Inorganica, Universita' di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy ^b Dipartimento di Chimica 'G. Ciamician', Universita' di Bologna, Via Selmi 2, I-40126 Bologna, Italy

Received 17 March 2000; accepted 18 March 2000

Abstract

The complexes $[Fe_2\{\mu-CN(Me)R\}(\mu-CO)(NCMe)(CO)(Cp)_2]SO_3CF_3$ (R = Me, **2a**; 2,6-Me_2C₆H₃, **2b**; CH₂Ph, **2c**), easily obtained from the corresponding $[Fe_2\{\mu-CN(Me)R\}(\mu-CO)(CO)_2(Cp)_2]SO_3CF_3$ (**1a**-c) precursors, react with NBu₄CN affording the cyano complexes $[Fe_2\{\mu-CN(Me)R\}(\mu-CO)(CN)(CO)(Cp)_2]$ (**3a**-c) by displacement of the MeCN ligand. The analogous reaction with NBu₄Cl leads to the formation of $[Fe_2\{\mu-CN(Me)R\}(\mu-CO)(CI)(CO)(Cp)_2]$ (**4a**-b). The μ -hydride complexes $[Fe_2\{\mu-CN(Me)R\}(\mu-H)(CO)_2(Cp)_2]$ (**5a**-b) have been prepared by reaction of **1a**-b with NaBH₄. The corresponding diruthenium compound $[Ru_2(\mu-CNMe_2)(\mu-H)(CO)_2(Cp)_2]$ (**6**) has been similarly obtained from $[Ru_2(\mu-CNMe_2)(\mu-CO)(NCMe)$ (CO)(Cp)_2]SO_3CF_3. The X-ray molecular structure of **5a** is that expected for *cis* isomers of this family of compounds. It shows a chiral conformation of the C₃H₅ ligands and the crystals are a conglomerate of enantiomeric individuals. NMR spectra of the various compounds, which are indicative of the presence of $\alpha-\beta$ or *cis-trans* isomeric mixtures, are reported and discussed. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Hydride; Acetonitrile; Carbyne complexes; Crystal structure

1. Introduction

Recent work of our group has focused on the reactions of the dinuclear bridging aminocarbyne complexes $[M_2{\mu-CN(Me)R}(\mu-CO)(CO)_2(Cp)_2]SO_3CF_3$ (M = Fe, Ru; R = Me, CH₂Ph; Cp = η^5 -C₅H₅) with carbon nucleophiles, aimed at forming carbon–carbon bonds via addition at the Cp and CO ligands [1].

Continuing our studies on their chemistry [2], we have become interested in replacing a CO with acetonitrile in order to drive the nucleophilic attack at the metal. In fact, in related di-ruthenium complexes, the presence of the labile acetonitrile ligand has proved crucial for a direct involvement of the metal in oxidative additions, substitution reactions and intramolecular rearrangements thus making those complexes valuable models for Fischer–Tropsch catalytic processes [3]. Here we report on the reactions of acetonitrile-substituted μ -aminocarbyne complexes with cyanide, chloride and hydride anions.

2. Results and discussion

carbonyl ligand А in $[Fe_2\{\mu-CN(Me)R\}(\mu CO(CO)_2(Cp)_2$]SO₃CF₃ (R = Me, 1a; 2,6-Me₂C₆H₃, 1b; CH₂Ph, 1c) is readily substituted by MeCN in the presence of Me₃NO, to afford $[Fe_2\{\mu-CN(Me)R\}(\mu-CN(Me)R)]$ CO)(NCMe)(CO)(Cp)₂]SO₃CF₃ (R = Me, 2a; 2,6- $Me_2C_6H_3$, **2b**; CH_2Ph , **2c**), in about 95% yield. Their formulation is based on elemental microanalytical and spectroscopic data. Replacement of CO by NCMe makes the two Fe centers non-equivalent; consequently two Cp singlet signals are observed in the NMR spectra. Unlike 2a, the NMR spectra of compound 2b-cindicate the presence of two isomeric forms (e.g. for 2c two signals for each of the unequivalent Cp are observed). Since 2b-c differ from 2a having the asymmetrically substituted $\mu\text{-CN}(Me)R \quad (R = CH_2Ph,$ 2,6-Me₂C₆H₃) ligand in place of the μ -CNMe₂, these

^{*} Corresponding author. Tel.: + 39-51-2093700; fax: + 39-51-6443690.

E-mail address: zanotti@ms.fci.unibo.it (V. Zanotti).

isomeric forms are presumably due to the different orientation of Me and R with respect to the non-equivalent Fe atoms (α and β isomers) rather than being assigned to a *cis* or *trans* arrangements of the Cp ligands. Isomeric α and β forms, are usually found in complexes of the type [M₂{ μ -CN(Me)R}(μ -CO)(L)(CO)(Cp)₂] (M = Fe [1a,4], Ru [1b]). Finally it should be noted that these isomers are present in comparable amounts for **2c**, whereas one is largely predominant in **2b**.

Fig. 1. ORTEP drawing of $[Fe_2(\mu-CNMe_2)(\mu-H)(CO)_2(Cp)_2]$ (5a) (thermal ellipsoids are drawn at 30% probability). Selected bond lengths: Fe(1)–Fe(2) 2.5877(9), Fe(1)–C(1) 1.864(2), Fe(2)–C(1) 1.860(3), C(1)–N 1.312(3), N–C(2) 1.470(3), N–C(3) 1.461(4), Fe(1)–H 1.63(2), Fe(2)–H 1.59(2), Fe(1)–C(4) 1.736(3), Fe(2)–C(5) 1.730(3), C(4)–O(4) 1.152(3), C(5)–O(5) 1.157(3), Fe(1)–C(Cp_{av}) 2.118(3), Fe(2)–C(Cp_{av}) 2.113(3) Å.

By addition of NBu₄CN to CH₂Cl₂ solutions of **2a**-**c** the displacement of the coordinated acetonitrile by cyanide takes place, producing the cyano complexes [Fe₂{ μ -CN(Me)R}(μ -CO)(CN)(CO)(Cp)₂] (**3a**-**c**) (Scheme 1), which have been isolated in good yields after column chromatography.

Compound **3a** has been identified by comparison of its spectroscopic data with those previously reported for the *cis* isomer [4b]. Compounds **3a**-**c** show an IR absorption of the ν (CN) at about 2091 cm⁻¹, moreover in the ¹³C-NMR spectrum the characteristic downfield resonance of the μ -carbyne carbon is observed (at δ 339.0 for **3b**). As for its precursor **2c**, compound **3c** exhibits, in its ¹H-NMR spectrum, a double set of signals for the Cp ligands, indicating the presence of two isomers (α and β forms) occurring in comparable amounts. By contrast, **3b** shows the large predominance of one isomeric form.

The results here described are to be compared with those previously obtained in the absence of the labile CNMe ligand. Cyanide anion has been shown to add at the bridging carbyne carbon of $[Fe_2{\mu-CN(Me)R}(\mu-CO)(CO)_2(Cp)_2]SO_3CF_3$ (R = Me, CH₂Ph) yielding the corresponding μ -cyanoaminocarbene complexes $[Fe_2{\mu-C(CN)N(Me)R}(\mu-CO)(CO)_2(Cp)_2]$ [2a]. Therefore replacement of CO with NCMe has proved to be quite effective in directing the nucleophilic attack at the metal atom.

Likewise, treatment of $2\mathbf{a}-\mathbf{b}$ with NBu₄Cl in dichloromethane solution results in the displacement of acetonitrile by chloride leading to the formation of the complexes [Fe₂{ μ -CN(Me)R}(μ -CO)(Cl)(CO)(Cp)₂] (4**a**-**b**) (Scheme 1), in moderate yield. The ¹H-NMR spectrum of 4**a** has been straightforward with a singlet for each of the non-equivalent Cp and Me groups (at δ 4.75, 4.65 and 4.71, 4.26, respectively). The NMR spectra of 4**b** reveal the presence, in solution, of only one of the two possible α and β isomers. A major feature in its ¹³C-NMR spectrum is the expected low field resonance, at δ 343.3, attributable to the aminocarbyne carbon.

Somewhat unexpectedly, we found that MeCN solutions of 2a-b react with NaBH₄ to give the μ -hydride complexes [Fe₂{ μ -CN(Me)R}(μ -H)(CO)₂(Cp)₂] (5a-b) (Scheme 2).

The structure of **5a** has been ascertained by X-ray diffraction and is shown in Fig. 1, together with some relevant bond parameters. The overall stereochemistry is that of all the *cis* isomers of this family of compounds. Although the bond distances conform to an idealized *Cs* symmetry the molecule adopts a chiral conformation in the crystal. The chirality is generated by the mutually staggered conformation of the C_sH_s ligands generated by the optimization of the intraligand H···H contacts. The Fe–Fe distance [2.588(1) Å)] is longer than that found in similar compounds in which

165

a bridging CO is in the place of the hydride: 2.504(1) Å in $[Fe_2(\mu-CNMe_2)(\mu-CO)(CO)\{C(O)C_4H_9\}(Cp)_2]$ [1a], 2.509(2) Å in $[Fe_2{\mu-CN(Me)CH_2Ph}(\mu-CO)(CO) \{C(O)th\}(Cp)_2\}$ (th = C₄H₃S) [5], and 2.519(1) Å in $[Fe_2\{\mu-CN(CH_2)_4CH_2\}(\mu-CO)(CO)_2(Cp)_2]$ [6]. The μ -C=NMe₂ ligand is symmetrically bound [μ -C-Fe 1.86_{av} A] and its geometry does not significantly differ from that found in the species cited above, in spite of the substitution of the hydride for a carbonyl ligand. A similar bonding situation is present in [Fe₃(µ-H)(µ- $CNMe_2(CO)_{10}$ [7] in which slightly longer μ -C-Fe distances $[1.90(1)_{av} \text{ Å}]$ should be attributed to the different chemical environment of the Fe atoms. The μ-H–Fe distances, on the other hand, are in very good agreement in the two species [1.61_{av} Å in both compounds].

The NMR data for compound **5a** are in complete agreement with the structure established in the solid state. A single Cp resonance (at δ 4.64) and one sharp singlet for the two N bonded Me groups (at δ 4.09) indicate the presence, in solution, of a single species **5a** and the bridging hydride resonance, at -17.75 ppm, occurs within the expected range [8]. Finally, two IR ν (CO) absorptions (at 1935 and 1891 cm⁻¹, in CH₂Cl₂ solution) show the typical strong–weak intensity pattern which accounts for the two terminal CO ligands in a mutual *cis* position.

In contrast with **5a**, two isomers are observed in the NMR spectra of **5b** (e.g. two high field μ -H signals are displayed at δ – 16.72 and – 17.71). Since the Fe atoms are equivalent in this molecule, α and β isomers are excluded; therefore the observed forms must be *cis*-*trans* isomers. Unlike **5a**, the IR v(CO) band pattern of **5b** consists of two absorptions of comparable intensity (at 1940 and 1901 cm⁻¹), which is consistent with the presence of both *cis* and *trans* isomers.

The formation of 5a-b presumably occurs via the terminal hydride intermediates $[Fe_2{\mu-CN(Me)R}(\mu CO(CO)(H)(Cp)_2$ which undergo site exchange with the bridging CO. Compared to $[Fe_2(\mu-CNMe_2)(\mu CO(X)(CO)(Cp)_2$ (X = CN, 3a; Cl, 4a), in which the cyanide or chloride ligands steadily occupy the terminal coordination position, the rearrangement of the hydride ligand is explained by its tendency to adopt the bridging coordination whenever a more symmetric structure can be attained. Again, these results differ from those previously obtained in the absence of the labile CNMe ligand. Indeed, H⁻ from NaBH₄, has been shown to add at the bridging carbyne carbon of [Fe₂- $\{\mu$ -CN(Me)R $\}(\mu$ -CO)(CO)₂(Cp)₂]SO₃CF₃ $(\mathbf{R} = \mathbf{Me},$ CH₂Ph) causing a rearrangement in which the μ -CHN(Me)R ligand shifts from bridging to terminal coordination to yield the corresponding aminocarbene complexes $[Fe_2(\mu-CO)_2\{CHN(Me)R\}(CO)(Cp)_2]$ [2a].

A few other di-iron μ -hydride complexes are known. They are also generally bridged by phosphorus ligands like PPh₂ and/or Ph₂PCH₂PPh₂ (dppm), which strongly contribute to the stability of the dinuclear unit. Examples include $[Fe_2(\mu-PPh_2)(\mu-H)(CO)_2(Cp)_2]$ [9], $[Fe_2(\mu-PPh_2)(\mu-H)(\mu-dppm)(Cp)_2]$ [10], $[Fe_2(\mu-PPh_2)(\mu-H)-(\mu-dppm)(\mu-CO)(CO)_4]$ [11] and $[Fe_2(\mu-H)(\mu-dppm)(\mu-CO)(CO)_6]BF_4$ [12]. It is noteworthy that these complexes have been obtained by protonation at the metal or by P–H oxidative addition of the diphenylphosphine, whereas complexes **5a–b** result from hydride addition.

In contrast with related μ -hydride di-iron complexes, which readily insert acetylenes into the metal-hydride functionality [11,12], compound **5a** has been found to be unreactive toward HC=CPh and MeOC(O)C=CC(O)OMe. Compound **5a** is not attacked or deprotonated by buthyllithium whereas the reaction with HSO₃CF₃, in the presence of MeCN affords **1a** in about 60% yield, confirming that the bridging hydrogen in **5a** is not acidic but hydridic.

Finally we have investigated the reaction of NaBH₄ with the diruthenium complex $[Ru_2(\mu-CNMe_2)(\mu-CNMe_2)(\mu-CNMe_2)]$ CO(NCMe)(CO)(Cp)₂]SO₃CF₃ (2d), which was genertreatment of $[Ru_2(\mu-CNMe_2)(\mu-CO)$ ated by (CO)₂(Cp)₂]SO₃CF₃ with Me₃NO in CH₃CN. The reaction parallels that of the di-iron counterpart 2a, leading the formation of $[Ru_2\{\mu-CN(Me)R\}(\mu-H)$ to $(CO)_2(Cp)_2$ (6), which has been characterized by elemental analyses, IR and NMR spectroscopy. This result was somewhat predictable on the basis of the similar behavior that diruthenium complexes $[Ru_2]\mu$ -CN(Me)R{(μ -CO)(CO)₂(Cp)₂]SO₃CF₃(R = Me, CH₂Ph) and their di-iron counterparts have shown so far [1b, 13]. However 6 differs from the analogous iron compound 5a in its isomeric composition: the v(CO) band pattern of the former consists of two absorptions, at 1943 and 1907 cm⁻¹ of weak and strong intensity, that reveal the predominance of the trans isomer.

3. Experimental

3.1. General

All reactions were routinely performed under an inert atmosphere of nitrogen by using Schlenk techniques. Solvents were distilled immediately before use under nitrogen from appropriate drying agents. All the reagents were commercial products (Aldrich) of the highest purity available and used as received. $[Ru_2(CO)_4(Cp)_2]$ was from Strem and used as received. Instruments employed: IR, Perkin–Elmer Spectrum 2000; NMR, Varian Gemini 200 and 300. Unless otherwise stated NMR signals due to trace amounts of second isomeric form are italicized. The compounds $[Fe_2{\mu-CN(Me)R}(\mu-CO)(CO)_2(Cp)_2]SO_3CF_3$ (R = Me, **1a**; 2,6-Me₂C₆H₃, **1b**; CH₂Ph, **1c**) [4] and $[Ru_2(\mu-CNMe_2)(\mu-CO)(CO)_2(Cp)_2]SO_3CF_3$ [13] were prepared from the corresponding isocyanide complexes according to published methods.

3.2. Synthesis of [Fe₂(μ-CNMe₂)(μ-CO)(NCMe)-(CO)(Cp)₂]SO₃CF₃ (**2***a*)

Compound $[Fe_{2}(\mu-CNMe_{2})(\mu-CO)(CO)_{2}(Cp)_{2}]SO_{3}$ -CF₃ (152 mg, 0.29 mmol) in MeCN (10 ml) was treated with anhydrous Me₃NO (23 mg, 0.30 mmol). Filtration on a Celite pad and removal of the solvent gave a brown residue that was crystallized from CH₂Cl₂ layered with *n*-pentane at -20° C yielding **2a** as a brown microcrystalline solid (143 mg, 96%). Anal. Found: C, 40.31; H, 3.66. C₁₈H₁₉F₃Fe₂N₂O₅S requires: C, 39.73; H, 3.52%. IR (CH₂Cl₂) v_{max} (cm⁻¹): 1984vs, 1815s (CO) and 1584m (CN). ¹H-NMR (CDCl₃): δ 4.98 (5 H, s, Cp), 4.86 (5 H, s, Cp), 4.66 (3 H, s, NMe), 4.31 (3 H, s, NMe) and 1.92 (3 H, s, NCMe). ¹³C-NMR (CD₂Cl₂): δ 330.4 (μ-C), 266.2 (μ-CO), 211.2 (CO), 130.7 (MeCN), 88.7, 87.0 (Cp), 53.2 (NMe, the other NMe resonance is obscured by the solvent) and 4.4 (MeCN).

3.3. Synthesis of $[Fe_2\{\mu-CN(Me)Me_2C_6H_3\}(\mu-CO)-(NCMe)(CO)(Cp)_2]SO_3CF_3$ (**2b**) and $[Fe_2\{\mu-CN-(Me)CH_2Ph\}(\mu-CO)(NCMe)(CO)(Cp)_2]SO_3CF_3$ (**2c**)

Complexes **2b**–**c** were prepared following the same procedure described for the synthesis of **2a** by treatment of **1b** and **1c** with Me₃NO in MeCN, respectively. **2b**: (92%). Anal. Found: C, 47.18; H, 3.94. $C_{25}H_{25}F_3Fe_2N_2O_5S$ requires: C, 47.34; H, 3.97%. IR (CH₂Cl₂) v_{max} (cm⁻¹): 1988vs, 1820s (CO) and 1523m (CN). ¹H-NMR (CDCl₃): δ 7.42–7.02 (3 H, m, Me₂C₆H₃), *5.11*, 5.00 (5 H, s, Cp), 4.81 (3 H, s, NMe), 4.46, 4.32 (5 H, s, Cp), 2.69, 2.13 (6 H, s, Me₂C₆H₃) and 2.01 (3 H, s, NCMe). ¹³C-NMR (CDCl₃): δ 338.9 (µ-C), 265.0 (µ-CO), 212.1 (CO), 148.5–128.9 (MeCN and Me₂C₆H₃), 88.4, 88.1 (Cp), 54.8 (NMe), 19.5, 18.1 (Me₂C₆H₃), and 4.8 (MeCN).

2c: (95%). Anal. Found: C, 46.44; H, 3.76. $C_{24}H_{23}F_3Fe_2N_2O_5S$ requires: C, 46.47; H, 3.74%. IR (CH₂Cl₂) ν_{max} (cm⁻¹): 1987vs and 1820s (CO) and 1566m (CN). ¹H-NMR (CDCl₃): δ (α isomer) 7.45– 7.39 (m, C₆H₅), 6.37 (1 H, d, J = 15 Hz, CH₂Ph), 6.21 (1 H, d, J = 15 Hz, CH₂Ph), 5.04 (5 H, s, Cp), 4.81 (5 H, s, Cp), 4.13 (3 H, s, NMe), 1.83 (3 H, s, NCMe); (β -isomer) 7.45–7.39 (m, C₆H₅), 5.89 (1 H, d, J = 15Hz, CH₂Ph), 5.74 (1 H, d, J = 15 Hz, CH₂Ph), 4.96 (5 H, s, Cp), 4.90 (5 H, s, Cp), 4.40 (3 H, s, NMe) and 1.88 (3 H, s, NCMe); α/β isomer ratio 0.8. ¹³C-NMR (CDCl₃): δ 333.4 (µ-C), 266.4, 266.2 (µ-CO), 212.0, 211.5 (CO), 135.6–127.4 (MeCN and Me₂C₆H₃), 88.4, 88.1, 89.1, 87.5 (Cp), 71.3, 70.9 (CH₂Ph), 51.4, 50.5 (NMe), 19.5, 18.1 (Me₂C₆H₃), and 4.8, 4.6 (MeCN); signals due to the α form are italicized.

3.4. Synthesis of $[Fe_2(\mu-CNMe_2)(\mu-CO)(CO)-(CN)(Cp)_2]$ (**3a**), $[Fe_2\{\mu-CN(Me)Me_2C_6H_3\}(\mu-CO)-(CN)(CO)(Cp)_2]$ (**3b**) and $[Fe_2\{\mu-CN(Me)CH_2C_6H_5\}-(\mu-CO)(CN)(CO)(Cp)_2]$ (**3c**)

A mixture of **2a** (140 mg, 0.27 mmol) and NBu₄CN (80 mg, 0.30 mmol) was stirred in CH₂Cl₂ (10 ml) for 60 min. Removal of the solvent and chromatography of the residue on an alumina column, with 2:1 (v/v) CH₂Cl₂-petroleum ether (b.p. 40–60°C) as eluent, gave a green band which was collected. Crystallization from CH₂Cl₂ layered with *n*-pentane at -20° C yielded **3a** (86 mg, 84%) which was identified by comparison of the spectroscopic properties with those reported in the literature [4b]. Compound **3b** and **3c** were obtained from **2b** and **2c**, respectively following the same procedure above described.

3b: (76%). Anal. Found: C, 58.65; H, 4.71. $C_{23}H_{22}Fe_2N_2O_2$ requires: C, 58.76; H, 4.72%. IR (CH₂Cl₂) v_{max} (cm⁻¹): 1982vs, 1804s (CO) and 2091m (CN). ¹H-NMR (CDCl₃): δ 7.33–7.28 (3 H, m, Me₂C₆H₃), 5.07, 4.88 (5 H, s, Cp), 4.55, 4.46, (3 H, s, NMe), 4.20, 4.31 (5 H, s, Cp) and 2.65, 2.54, 2.45, 2.42 (6 H, s, Me₂C₆H₃). ¹³C-NMR (CDCl₃): δ 339.0 (µ-C), 262.7 (µ-CO), 211.8 (CO), 149.1–129.0 (CN and Me₂C₆H₃), 90.7, 89.3, 91.3, 89.9 (Cp), 54.8 (NMe) and 18.7, 18.4 (Me₂C₆H₃).

3c: (79%). Anal. Found: C, 57.90; H, 4.44. C₂₂H₂₀Fe₂N₂O₂ requires: C, 57.93; H, 4.42%. IR (CH₂Cl₂) ν_{max} (cm⁻¹): 1980vs, 1806s (CO) and 2092m (CN). ¹H-NMR (CDCl₃): δ 7.61–7.42 (5 H, m, Ph), 6.06 (1H, d J_{AB} = 15 Hz, CH₂Ph), 5.61 (1H, d J_{AB} = 15 Hz, CH₂Ph), 4.87 (5 H, s, Cp), 4.72 (5 H, s, Cp), 3.95 (3 H, s, NMe); β isomer: 7.61–7.42 (5 H, m, Ph), 5.80 (1H, d J_{AB} = 15 Hz, CH₂Ph), 5.54 (1H, d J_{AB} = 15 Hz, CH₂Ph), 4.83 (5 H, s, Cp), 4.78 (5 H, s, Cp), 4.11 (3 H, s, NMe), α/β ratio 0.9.

3.5. Synthesis of $[Fe_2(\mu-CNMe_2)(\mu-CO)(CO)(Cl)(Cp)_2]$ (4a) and $[Fe_2\{\mu-CN(Me)Me_2C_6H_3\}(\mu-CO)-(Cl)(CO)(Cp)_2]$ (4b)

A solution of **2a** (151 mg, 0.28 mmol) in CH₂Cl₂ (8 ml) was treated with NBu₄Cl (83 mg, 0.30 mmol). The mixture was stirred for 180 min and the solvent was then removed under reduced pressure. Chromatography of the residue on an alumina column, with 1:1 (v/v) CH₂Cl₂-petroleum ether (b.p. 40–60°C) as eluent, gave a brown band which was collected and crystallized from CH₂Cl₂-*n*-pentane mixture yielding **4a** (45 mg 41%). Anal. Found: C, 46.10; H, 4.16. C₁₅H₁₆ClFe₂NO₂

Table 1

Crystal data and experimental details for $[Fe_2(\mu\text{-}CNMe_2)(\mu\text{-}H)(CO)_2(Cp)_2]$ (5a)

Formula	C ₁₅ H ₁₇ Fe ₂ NO ₂
М	355.00
Temperature (K)	293(2)
Wavelength (Å)	0.71069
Crystal symmetry	Orthorhombic
Space group	$P2_12_12_1$ (no. 19)
a (Å)	8.000(2)
b (Å)	8.810(3)
c (Å)	20.531(7)
Cell volume ($Å^3$)	1447.0(8)
Z	4
D_{calc} (Mg m ⁻³)	1.630
μ (Mo–K _{α}) (mm ⁻¹)	2.003
F(000)	728
Crystal size (mm)	$0.15 \times 0.20 \times 0.27$
θ Range (°)	2.5-30
Scan mode	ω
Reflections collected	4561 $(\pm h, +k, +l)$
Unique observed reflections $[I > 2\sigma(I)]$	3226
Goodness of fit on F^2	1.031
$R_1 (F)^{\rm a}, \ wR_2 \ (F^2)^{\rm b}$	0.0284, 0.0687
Absolute structure parameter	0.03(2)
Weighting scheme	a = 0.0445,
	b = 0.0381 ^ь
Largest difference peak and hole (e $Å^{-3}$)	0.31 and -0.39

^a $R_1 = \Sigma ||F_o| - |F_c|/\Sigma |F_o|.$ ^b $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$ where $w = 1/[\sigma^2 (F_o^2) + (aP)^2 + bP]$ where $P = (F_o^2 + 2F_c^2)/3.$

requires: C, 46.26; H, 4.14%. IR (CH₂Cl₂) ν_{max} (cm⁻¹): 1980vs, 1801s (CO). ¹H-NMR (CDCl₃): δ 4.75 (5 H, s, Cp), 4.71 (3 H, s, NMe), 4.65 (5 H, s, Cp) and 4.26 (3 H, s, NMe).

Compound **4b** was obtained from **2b** and NBu_4Cl with the same procedure described for the synthesis of **4a**.

4b: (61%). Anal. Found: C, 55.27; H, 4.46. C₂₂H₂₂ClFe₂NO₂ requires: C, 55.10; H, 4.62%. IR (CH₂Cl₂) ν_{max} (cm⁻¹): 1980vs and 1799s (CO). ¹H-NMR (CDCl₃): δ 7.35–7.15 (3 H, m, Me₂C₆H₃), 4.85 (3 H, s, NMe), 4.72 (5 H, s, Cp), 4.29 (5 H, s, Cp) and 2.69, 2.13 (6 H, s, Me₂C₆H₃). ¹³C-NMR (CDCl₃): δ 343.3 (µ-C), 269.0 (µ-CO), 213.8 (CO), 148.8–128.9 (Me₂C₆H₃), 87.6, 86.9 (Cp), 54.8 (NMe) and 18.7, 17.6 (Me₂C₆H₃).

3.6. Synthesis of $[Fe_2(\mu-CNMe_2)(\mu-H)(CO)_2(Cp)_2]$ (5a) and $[Fe_2\{\mu-CN(Me)Me_2C_6H_3\}(\mu-H)(CO)_2(Cp)_2]$ (5b)

Complex **2a** (160 mg, 0.31 mmol) was stirred with NaBH₄ (15 mg, 0.4 mmol) in MeCN (8 ml) for about 30 min. Removal of the solvent and chromatography on an alumina column, with 2:1 Et₂O–MeCN (v/v) as eluent, gave a red–orange band which was collected. Dark-brown crystals of **5a** were obtained upon slow solvent evaporation (70 mg, 64%). Anal. Found: C,

50.75; H, 4.78. $C_{15}H_{17}Fe_2NO_2$ requires: C, 50.70; H, 4.83%. IR (CH₂Cl₂) v_{max} (cm⁻¹): 1935s and 1891w (CO). ¹H-NMR (CDCl₃): δ 4.64 (10 H, s, Cp), 4.09 (6 H, s, NMe₂) and -17.75 (1 H, s, μ -H). ¹³C-NMR (CD₃CN): δ 338.4 (μ -CNMe₂), 217.2 (CO), 81.4 (Cp), and 51.1 (NMe₂).

Compound **5b** was obtained from **2b** and NaBH₄ following the same procedure described for the synthesis of **5a**.

5b: (69%). Anal. Found: C, 59.34; H, 5.13. $C_{22}H_{23}Fe_2NO_2$ requires: C, 59.36; H, 5.21%. IR (CH₂Cl₂) v_{max} (cm⁻¹): 1940s and 1901s (CO). ¹H-NMR (CDCl₃): δ 7.20–6.90 (3 H, m, Me₂C₆H₃), 4.64, 4.61 (5 H, s, Cp), 4.10, 4.07 (5 H, s, Cp) 4.26 (3 H, s, NMe), 2.47, 2.32, 2.27, 2.15 (6 H, s, Me₂C₆H₃), and – 16.72, – 17.71, (1 H, s, µ-H); signals due to the *trans* isomer are italicized (*cis/trans* isomers ratio 1.4). δ_C (CDCl₃), *cis* isomer: 327.8 (µ-C), 218.9, 216.9 (CO), 135.1–128.0 (Me₂C₆H₃), 82.8, 81.4 (Cp), 53.1 (NMe) and 18.8, 18.2 (Me₂C₆H₃); *trans* isomer: 217.8, 217.7 (CO), 82.3, 82.0 (Cp), 18.8, 18.2 (Me₂C₆H₃).

3.7. Synthesis of $[Ru_2(\mu-CNMe_2)(\mu-H)(CO)_2(Cp)_2]$ (6)

A solution of $[Ru_2(\mu-CNMe_2)(\mu-CO)(CO)_2(Cp)_2]$ -SO₃CF₃ (150 mg, 0.24 mmol) in MeCN (10 ml) was treated with anhydrous Me₃NO (21 mg, 0.28 mmol). The mixture was stirred for 30 min then filtered on a Celite pad. Removal of the solvent gave a brown oily residue of $[Ru_2(\mu-CNMe_2)(\mu-CO)(CO)(NCMe)(Cp)_2]$ - SO_3CF_3 (2d), showing the following spectroscopic data: IR (CH₃CN) v_{max} (cm⁻¹): 1979vs and 1812s (CO). ¹H-NMR (CD₃CN): δ 5.43 (5 H, s, Cp), 5.20 (5 H, s, Cp) 3.99 (3 H, s, NMe), 3.92 (3 H, s, NMe). Compound 2d was redissolved in NCMe and treated with NaBH₄ (18 mg, 0.47 mmol). The reaction mixture was allowed to stir for an additional 90 min, then filtered on alumina. Crystallization from CH₂Cl₂ layered with Et₂O at - 20°C yielded 6 (61 mg, 57%). Anal. Found: C, 40.44; H, 3.86. C₁₅H₁₇NO₂Ru₂ requires: C, 40.44; H, 3.85%. IR (CH₂Cl₂) v_{max} (cm⁻¹): 1943m and 1907vs (CO). ¹H-NMR (CDCl₃): δ 5.06, 5.02 (10 H, s, Cp), 3.89, 3.86 (6 H, s, NMe₂) and -13.29, -13.54 (1 H, s, μ -H); signals due to the *cis* isomer are italicized (*cis/trans* isomer ratio 0.4).

3.8. X-ray crystallographic study of 5a

Crystal data and details of the data collection for $[Fe_2(\mu-CNMe_2)(\mu-H)(CO)_2(Cp)_2]$ (5a) are given in Table 1. The diffraction experiments were carried out at room temperature on a fully automated Enraf-Nonius CAD-4 diffractometer using graphite-monochromated Mo-K_{α} radiation. The unit cell parameters were deter-

mined by a least-squares fitting procedure using 25 reflections. Data were corrected for Lorentz and polarization effects. No decay correction was necessary. The compound crystallized as a racemic conglomerate of chiral crystals in the space group $P2_12_12_1$ and the absolute configuration of the specimen under investigation was determined (absolute structure parameter (0.03(2)). The positions of the metal atoms were found by direct methods using the SHELXS-86 program [14] and all the non-hydrogen atoms located in electron density maps. As usual the C₅H₅ rings were treated as rigid groups (C-C 1.42 Å) because they do not contain information of chemical relevance and both the methyl and cyclopentadienyl hydrogen atoms were located in successive Fourier-difference maps but added in calculated positions. The hydride was located in the Fourier map and refined with isotropic thermal factor and the constraint of equal Fe-H distance. The C₅H₅ group on the right of Fig. 1 [C(21)-C(25)] is affected by a higher thermal motion while the facing methyl group [C(2)]shows some evidence of a second orientation around the N-C axis (occupation ca. 0.33) almost staggered with respect to the main image. The final refinement on F^2 proceeded by full-matrix least-squares calculations (SHELXL-93) [15] using anisotropic thermal parameters for all non-hydrogen atoms. The methyl and cyclopentadienyl hydrogen atoms were assigned isotropic thermal parameters 1.2 times U_{eq} of the pertinent carbon atoms.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 141113. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac. uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank the Ministero dell'Universita' e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) (project: 'New strategies for the control of reactions: interactions of molecular fragments with metallic sites in unconventional species') and the University of Bologna ('Funds for Selected Research Topics') for financial support.

References

- (a) V.G. Albano, L. Busetto, C. Camiletti, C. Castellari, M. Monari, V. Zanotti, J. Chem. Soc. Dalton Trans. (1997) 4671.
 (b) V.G. Albano, L. Busetto, C. Camiletti, M. Monari, V. Zanotti, J. Organomet. Chem. 563 (1998) 153.
- [2] (a) V. Zanotti, S. Bordoni, L. Busetto, L. Carlucci, A. Palazzi, R. Serra, V.G. Albano, M. Monari, F. Prestopino, F. Laschi, P. Zanello, Organometallics 14 (1995) 5232. (b) V.G. Albano, L. Busetto, L. Carlucci, M.C. Cassani, M. Monari, V. Zanotti, J. Organomet. Chem. 488 (1995) 133.
- [3] (a) N.M. Doherty, J.A.K. Howard, S.A.R. Knox, N.J. Terril, M.I. Yates, J. Chem. Soc. Chem. Commun. (1989) 638. (b) M. Akita, R. Hua, S.A.R. Knox, Y. Moro-oka, S. Nakanishi, M.I. Yates, J. Organomet. Chem. 569 (1998) 71 and references therein. (c) M. Akita, R. Hua, S. Nakanishi, M. Tanaka, Y. Moro-oka, Organometallics 16 (1997) 5572.
- [4] (a) G. Cox, C. Dowling, A.R. Manning, P. McArdle, D. Cunningham, J. Organomet. Chem. 438 (1992) 143. (b) K. Boss, C. Dowling, A.R. Manning, J. Organomet. Chem. 509 (1996) 197.
- [5] V.G. Albano, S. Bordoni, L. Busetto, C. Camiletti, M. Monari, A. Palazzi, F. Prestopino, V. Zanotti, J. Chem. Soc. Dalton Trans. (1997) 4665.
- [6] V.G. Albano, L. Busetto, C. Castellari, M. Monari, A. Palazzi, V. Zanotti, J. Chem. Soc. Dalton Trans. (1993) 3661.
- [7] F.H. Herbstein, Acta Crystallogr. Sect. B 37 (1981) 339.
- [8] (a) D.S. Moore, S.D. Robinson, Chem. Soc. Rev. (1983) 415.
 (b) G.G. Hlatki, R.H. Crabtree, Coord. Chem. Rev. 43 (1982) 251.
- [9] R.G. Hayter, J. Am. Chem. Soc. 85 (1963) 3120.
- [10] H.G. Raubenhaimer, F. Scott, S. Cronje, P.H. van Rooyen, J. Chem. Soc. Dalton Trans. (1992) 1859.
- [11] G. Hogarth, M.H. Lavender, J. Chem. Soc. Dalton Trans. (1992) 2759.
- [12] J. Boothman, G. Hogarth, J. Organomet. Chem. 437 (1992) 201.
- [13] L. Busetto, L. Carlucci, V. Zanotti, V.G. Albano, M Monari, J. Organomet. Chem. 447 (1993) 271.
- [14] G.M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, University of Göttingen, Germany, 1986
- [15] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993