Synthesis and characterization of polynuclear half-sandwich lanthanoid complexes $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6}^{t} \mathrm{Sm}_{6} \mathrm{Se}_{13}\right]$ and $\left[\mathrm{Li}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}_{6} \mathrm{Nd}_{6} \mathrm{Se}_{13}\right]$

Yanxiang Cheng ${ }^{\text {a }}$, Guo-Xin Jin ${ }^{\text {a,* }}$, Qi Shen ${ }^{\text {b }}$, Yonghua Lin ${ }^{\text {a }}$
${ }^{\text {a }}$ Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
${ }^{\mathrm{b}}$ Department of Chemistry, Suzhou University, Suzhou 215006, China

Received 15 March 2001; received in revised form 14 May 2001; accepted 29 May 2001
Dedicated to Professor Max Herberhold on the occasion of his 65th birthday

Abstract

The half-sandwich tert-butyl cyclopentadienyl lanthanoid complexes $\left\{\left[\mathrm{Cp}{ }^{t} \mathrm{Ln}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mu_{3}-\mathrm{Cl}\right)_{3} \mathrm{Na}(\mathrm{THF})\right\}_{n}\left[\mathrm{Cp}^{t}=\eta^{5}-\right.$ $\left.{ }^{t} \mathrm{BuC}_{5} \mathrm{H}_{4} ; \mathrm{Ln}=\mathrm{Nd}(\mathbf{1 a}), \mathrm{Sm}(\mathbf{1 b}), \mathrm{Gd}(\mathbf{1 c}), \mathrm{Yb}(\mathbf{1 d})\right]$ are prepared by the reaction of anhydrous lanthanoid trichloride, LnCl_{3}, with NaCp^{t} in THF solution. Complex 1b reacts with $\mathrm{Na}_{2} \mathrm{Se}_{5}$ to give hexanuclear samarium polyselenide complexes $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6}^{t} \mathrm{Sm}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]$ (2). An analogous cyclopentadienyl neodymium polyselenide complex $\left[\mathrm{Li}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}_{6} \mathrm{Nd}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]$ (3) is synthesized by the reaction of $\left[\mathrm{CpNCCl}_{2} \cdot 2 \mathrm{LiCl} \cdot 5 \mathrm{THF}\right]$ with $\mathrm{Na}_{2} \mathrm{Se}_{5}$ in THF solution. The molecular structures of $\mathbf{1 a}$ and $\mathbf{2}$ were determined by X-ray crystal structure analysis. Complex $\mathbf{2}$ contains an interstitial selenium atom which is coordinated with six samarium atoms. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Half-sandwich lanthanoid complexes; Samarium; Neodymium; Selenide metal complexes; Interstitial selenium

1. Introduction

Owing to their thermal stability and solubility in organic solvents, many cyclopentadienyl transition metal complexes of d-block elements with unsubstituted chalcogen ligands have been synthesized and well characterized during the last two decades [1-6]. However, the system of related organolanthanoid chalcogenide complexes is still underdeveloped [1,7]. Several organolanthanoid derivatives are known, including binuclear ytterbium complexes with bridging chalcogen ligands such as $\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Yb}\right)_{2}(\mu-\mathrm{E})\right]\left(\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te} ; \mathrm{Cp}^{*}=\right.$ $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) [8], the binuclear samarium complexes $\left[\left(\mathrm{Cp}_{2}^{*} \operatorname{Sm}(\mathrm{THF})\right)_{2}(\mu-\mathrm{E})\right] \quad[9], \quad\left[(\mathrm{Cp} * \mathrm{Sm})_{2}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{E}_{2}\right)\right]$ $(\mathrm{E}=\mathrm{Se}, \mathrm{Te})[9,10],\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Sm}\right)_{2}\left(\mu-\eta^{1}: \eta^{3}-\mathrm{E}_{3}\right)\right][9]$, the binuclear neodymium complex $\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Nd}\right)_{2}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{Se}_{2}\right)\right][10]$ and the hexanuclear complex $\left[\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{11}\right]$ [11]. These complexes were generally prepared by the reactions of

[^0]the low-valent lanthanoid bis-pentamethylcyclopentadienyl complexes $\left[\mathrm{Cp}_{2}^{*} \mathrm{Ln}(\mathrm{THF})_{n}\right](\mathrm{Ln}=\mathrm{Yb}, n=0 ; \mathrm{Ln}=$ $\mathrm{Sm}, n=2$) with elemental chalcogen or by the reaction of $\mathrm{Cp}_{3}^{*} \mathrm{Sm}$ with $\mathrm{Ph}_{3} \mathrm{PSe}$. We have investigated the reactions of the half-sandwich cyclopentadienyl lanthanoid dichloride complexes with $\mathrm{Na}_{2} \mathrm{E}_{5}(\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ and recently described the selenium-centered hexanuclear neodymium complex $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6}^{t} \mathrm{Nd}_{6} \mathrm{Se}_{13}\right]$ [12]. Herein, we report on the related samarium complex in which an interstitial selenium atom is coordinated to six samarium atoms.

2. Results and discussion

tert-Butyl-substituted cyclopentadienyl ligands are increasingly playing a role in organolanthanoid chemistry, because the resultant products are often more soluble than the parent cyclopentadienyl derivatives; tert-butyl-cyclopentadienyl as ligands have been successfully employed in the preparation of highly reactive organolanthanoid complexes [7].

The reactions of NaCp^{t} with one equivalent of the anhydrous $\mathrm{LnCl}_{3}(\mathrm{Ln}=\mathrm{N} \alpha, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Yb})$ at $60^{\circ} \mathrm{C}$ result in the formation of oligomeric half-sandwich complexes $\left\{\left[\mathrm{Cp}^{t} \mathrm{Ln}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mu_{3}-\mathrm{Cl}\right)_{3} \mathrm{Na}(\mathrm{THF})\right\}_{n}$ $(\mathrm{L}=\mathrm{Nd}(\mathbf{1 a}), \mathrm{Sm}(\mathbf{1 b}), \mathrm{Gd}(\mathbf{1 c}), \mathrm{Yb}(\mathbf{1 d}))$ in moderate yields.
$2 n \mathrm{NaCp}^{t}+2 n \mathrm{LnCl}_{3}$
$\xrightarrow[60^{\circ} \mathrm{C}]{\text { THF }}\left\{\left[\mathrm{Cp}^{t} \mathrm{Ln}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mu_{3}-\mathrm{Cl}\right)_{3} \mathrm{Na}(\mathrm{THF})\right\}_{n}$
All complexes ($\mathbf{1 a}-\mathbf{1 d}$) are soluble in ethereal solvents (DME and THF), moderately soluble in aromatic solvents and insoluble in alkane solvents. Complexes $\mathbf{1 a}-$ 1d are very sensitive in air.

The analogous half-sandwich complexes for late lanthanide $\mathrm{Cp}^{t} \mathrm{LnCl}_{2} \cdot 2 \mathrm{THF}(\mathrm{Ln}=\mathrm{Lu})$ have been previously synthesized [13]. The related iodide complex $\mathrm{Cp}^{t} \mathrm{SmI}_{2}(\mathrm{THF})_{3}$ has been determined by an X-ray crystal structure analysis [14].

The chloro-bridged half-sandwich samarium complex 1a reacts with two equivalents of $\mathrm{Na}_{2} \mathrm{Se}_{5}$ in THF to give a dark red diionic product $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6}^{t} \mathrm{Sm}_{6}{ }^{-}\right.$ $\left.\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]$ (2) in 46.1% yield
$\left\{\left[\mathrm{Cp}^{t} \mathrm{Ln}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}_{2}\right)_{2}\left(\mu_{3}-\mathrm{Cl}\right)_{3} \mathrm{Na}(\mathrm{THF})\right\}_{n}$

$$
+\mathrm{Na}_{2} \mathrm{Se}_{5} \xrightarrow{\mathrm{THF}}\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6}^{t} \mathrm{Sm}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]
$$

The dianion $\left[\mathrm{Cp}_{6}^{t} \mathrm{Sm}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]^{2-}$ containing six samarium, 13 selenium atoms is isostructural to the

Fig. 1. Molecular structure of $\left[\mathrm{Cp}^{\prime} \mathrm{Nd}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}_{2}\right)_{2}\left(\mu_{3}-\mathrm{Cl}\right)_{3} \mathrm{Na}-$ (THF) $]_{n}$ (1a). Selected distance (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Nd}(1)-\mathrm{Cl}(1)$ 2.867(3), $\mathrm{Nd}(1)-\mathrm{Cl}(2) 2.844(3), \mathrm{Nd}(1)-\mathrm{Cl}(3) 2.894(3), \mathrm{Nd}(1)-\mathrm{Cl}(4)$ $2.710(3), \mathrm{Nd}(2)-\mathrm{Cl}(1) 2.890(3), \mathrm{Nd}(2)-\mathrm{Cl}(2) 2.850(3), \mathrm{Nd}(2)-\mathrm{Cl}(3)$ $2.867(3), \mathrm{Na}-\mathrm{Cl}(3) 2.87(5), \mathrm{Na}-\mathrm{Cl}(2) 3.002(6), \mathrm{Na}-\mathrm{Cl}(4) 2.800(6)$, $\mathrm{Na}-\mathrm{Cl}(5) \quad 2.842(6) ; \quad \mathrm{Cl}(1)-\mathrm{Nd}(1)-\mathrm{Cl}(2) \quad 77.3(1), \quad \mathrm{Cl}(1)-\mathrm{Nd}(1)-\mathrm{Cl}(3)$ $72.1(1), \quad \mathrm{Cl}(1)-\mathrm{Nd}(1)-\mathrm{Cl}(4) \quad 147.9(1), \quad \mathrm{Cl}(2)-\mathrm{Nd}(1)-\mathrm{Cl}(3) \quad 75.3(1)$, $\mathrm{Cl}(2)-\mathrm{Nd}(1)-\mathrm{Cl}(4) \quad 85.2(1), \quad \mathrm{Cl}(3)-\mathrm{Nd}(1)-\mathrm{Cl}(4) \quad 77.5(1), \quad \mathrm{Cl}(1)-$ $\mathrm{Nd}(1)-\mathrm{O}(1) \quad 87.5(2), \mathrm{Cl}(2)-\mathrm{Nd}(1)-\mathrm{O}(1) \quad 152.5(2), \mathrm{Cl}(3)-\mathrm{Nd}(1)-\mathrm{O}(1)$ $78.2(2), \quad \mathrm{Cl}(4)-\mathrm{Nd}(1)-\mathrm{O}(1) \quad 96.5(2), \quad \mathrm{Nd}(1)-\mathrm{Cl}(4)-\mathrm{Na} \quad 90.2(1)$, $\mathrm{Nd}(2)-\mathrm{Cl}(4)-\mathrm{Na} 89.7(1)$.
related neodymium complex $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\left[\mathrm{Cp}_{6}^{t} \mathrm{Nd}_{6}\left(\mu_{6^{-}}\right.\right.\right.$ $\left.\mathrm{Se})\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]$ [12]. Due to the voluminous ring ligands $\left(\mathrm{Cp}^{t}\right)$, complex 2 is soluble in polar organic solvents such as THF and acetonitrile.

The treatment of unsubstituted mono-cyclopentadienyl neodymium complex $\mathrm{CpNdCl}_{2} \cdot 2 \mathrm{LiCl} \cdot 5 \mathrm{THF}$ [15] with $\mathrm{Na}_{2} \mathrm{Se}_{5}$ at room temperature results in the formation of hexanuclear neodymium complex $\left[\mathrm{Li}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}_{6} \mathrm{Nd}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]$ as dark red prismatic crystals in 23.0% yield. According to a preliminary X-ray crystallographic study [16], complex 3.2THF like 2 and $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6} \mathrm{Nd}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right]$ [12] is a salt and contains an interstitial selenium atom coordinated with six neodymium atoms. However, attempts to isolate analogous sulfide and telluride complexes of $\mathbf{2}$ and $\mathbf{3}$ were not successful.

The molecular structure of both $\mathbf{1 a}$ and $\mathbf{2}$ in the crystals were determined by X-ray crystal structure analyses (Figs. 1 and 2).

The molecule of $\mathbf{1 a}$ is an oligomer bridged by a $\mu_{3}-\mathrm{Cl}$ atom. Each Nd atom in 1a is coordinated to one cyclopentadienyl ring of Cp^{t} group, one oxygen atom of THF, one $\mu_{2}-\mathrm{Cl}$ atom and three $\mu_{3}-\mathrm{Cl}$ atoms. The geometry around the neodymium is distorted octahedral. Two neodymium atoms and one sodium atom form an approximately equilateral triangle, with distances $\mathrm{Nd}-\mathrm{Na} 3.929 \AA$ and $\mathrm{Nd}(1)-\mathrm{Nd}(2) 4.081 \AA$. Three chloride atoms bridge the edges of triangles with angles $\mathrm{Nd}(1)-\mathrm{Cl}(1)-\mathrm{Nd}(2) \quad 90.3(1)^{\circ}, \quad \mathrm{Nd}(1)-\mathrm{Cl}(4)-\mathrm{Na}$ $90.2(1)^{\circ}$ and $\mathrm{Nd}(2)-\mathrm{Cl}(5)-\mathrm{Na} 89.7(1)^{\circ}$, while two additional chloride atoms cap the $\mathrm{Nd}(1)-\mathrm{Nd}(2)-\mathrm{Na}$ fragment on each side in a μ_{3}-fashion. A similar geometry was observed for the half-sandwich lanthanoid complexes in $\left[\mathrm{Na}(\mathrm{THF})[\mathrm{Cp} * \mathrm{Gd}(\mathrm{THF})]_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{3}\left(\mu_{3}-\mathrm{Cl}\right)_{2}\right]$ [17], $\left\{\left[\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Er}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{3}\left(\mu_{3}-\mathrm{Cl}\right)_{2} \mathrm{Na}(\mathrm{THF})_{2}\right\}$ [18], and $\left[\mathrm{Li}(\mathrm{THF})_{2}\right]_{2}(\mu-\mathrm{Cl})_{4}\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Nd}(\mathrm{THF})\right]$ [19].

Complex 2 is a salt containing two cations $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]^{+}$and the hexanuclear dianion $\left[\mathrm{Cp}_{6}^{t} \mathrm{Sm}_{6} \mathrm{Se}_{13}\right]^{2-}$. The six $\mathrm{Cp}^{t} \mathrm{Sm}$ units in the dianion form a symmetrical octahedron with an interstitial selenium atom. The four Sm atoms $[\mathrm{Sm}(2)-\mathrm{Sm}(3)-$ $\operatorname{Sm}(2 a)-\operatorname{Sm}(3 a), \quad \operatorname{Sm}(1)-\operatorname{Sm}(2)-\operatorname{Sm}(1 a)-\operatorname{Sm}(2 a) \quad$ and $\operatorname{Sm}(1)-\operatorname{Sm}(3)-\operatorname{Sm}(1 a)-\operatorname{Sm}(3 a)]$ and the central selenium atom ($\mathrm{Se}(1))$ form almost planar arrangements. The distances of the samarium atoms from C atoms of their cyclopentadienyl ring ($d_{(\mathrm{Sm}-\mathrm{C})}: 2.728 \AA$ (average)) are similar to those in other $\mathrm{Sm}^{\mathrm{III}}$ cyclopentadienyl complexes $\left(d_{(S m-C)}: 2.755 \AA\right.$ in $[\mathrm{Cp} * \operatorname{Sm}(\mathrm{THF})]_{2}(\mu-\mathrm{Se})[9]$, and $2.679 \AA$ in $\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{11}$ [11]), but are clearly shorter than the corresponding distances in $\mathrm{Sm}^{\mathrm{II}}$ cyclopentadienyl complexes [20]. The dianion of $\mathbf{2}$ with the central selenium atom has a highly symmetrical structure, related hexanuclear lanthanoid complexes include $\left[\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{11}\right][11],\left[\mathrm{Cp}_{6} \mathrm{Yb}_{6} \mathrm{Cl}_{13}\right]^{-}$[21], $\left[\mathrm{Cp}_{6}^{t} \mathrm{Nd}_{6} \mathrm{Se}_{13}\right]^{2-}$ [12] and $\left[\mathrm{Nd}_{6}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)_{6} \mathrm{Cl}_{12}\right](\mathrm{THF})_{2}$ [22] in which a centered chloride atom is absent. The structure of the

Fig. 2. Top: Molecular structure of the dianion of 2. Bottom: Molecular structure of the central $\mathrm{Sm}_{6} \mathrm{Se}_{13}$ core of 2. Selected distances (A) and angles (${ }^{\circ}$): $\operatorname{Sm}(1)-\operatorname{Se}(1)$ 2.9976(12), $\operatorname{Sm}(1)-\operatorname{Se}(2)$ 3.068(2), $\operatorname{Sm}(1)-\operatorname{Se}(3) 3.156(3), \operatorname{Sm}(1)-\operatorname{Se}(4) 3.149(3), \operatorname{Sm}(1)-\operatorname{Se}(6)$ 2.864(2), $\operatorname{Sm}(1)-\operatorname{Se}(7) 2.906(3), \operatorname{Sm}(2)-\operatorname{Se}(1) 3.0123(13), \operatorname{Sm}(2)-\operatorname{Se}(2 \mathrm{a})$ 3.152(2), $\operatorname{Sm}(2)-\operatorname{Se}(3 a) 3.031(2), \operatorname{Sm}(2)-\operatorname{Se}(4) 3.209(2), \operatorname{Sm}(3)-\operatorname{Se}(1)$ 3.0065(12), $\quad \operatorname{Sm}(3)-\operatorname{Se}(2) \quad 3.100(2), \quad \operatorname{Sm}(3)-\operatorname{Se}(3 a) \quad 3.216(2)$, $\mathrm{Sm}(3)-\mathrm{Se}(5 \mathrm{a}) 2.873(3), \mathrm{Se}(2)-\mathrm{Se}(5 \mathrm{a}) 2.363(3), \mathrm{Se}(3)-\mathrm{Se}(6) 2.370(3)$, $\mathrm{Se}(4)-\mathrm{Se}(7) 2.370(3), \operatorname{Sm}(1) \cdots \operatorname{Sm}(4)$ 4.065(2); $\operatorname{Sm}(1)-\mathrm{Se}(1)-\mathrm{Sm}(1 \mathrm{a})$ 180.0, $\quad \operatorname{Sm}(3)-\operatorname{Se}(1)-\operatorname{Sm}(3 a) \quad 180.0, \quad \operatorname{Sm}(1)-\operatorname{Se}(1)-\operatorname{Sm}(3) \quad 85.23(3)$, $\operatorname{Sm}(1 a)-\operatorname{Se}(1)-\operatorname{Sm}(3) 97.77(4), \operatorname{Sm}(1)-\operatorname{Se}(1)-\operatorname{Sm}(2 \mathrm{a})$ 85.83(4) $\mathrm{Sm}(1 \mathrm{a})-$ $\operatorname{Se}(1)-\operatorname{Sm}(2 \mathrm{a})$ 94.17(4), $\mathrm{Se}(1)-\operatorname{Sm}(1)-\mathrm{Se}(2 \mathrm{a}) 83.40(5), \mathrm{Se}(1)-\mathrm{Sm}(1)-$ $\mathrm{Se}(6) \quad 82.36(5), \quad \mathrm{Se}(2)-\mathrm{Sm}(1)-\mathrm{Se}(3) \quad 88.70(7), \quad \mathrm{Se}(2)-\mathrm{Sm}(1)-\mathrm{Se}(6)$ 133.74(8), $\mathrm{Se}(1)-\mathrm{Sm}(1)-\operatorname{Sm}(3) 47.47(2), \mathrm{Se}(2)-\mathrm{Sm}(1)-\operatorname{Sm}(3) 49.10(5)$, $\mathrm{Sm}(1)-\mathrm{Se}(2)-\mathrm{Sm}(2 \mathrm{a})$ 82.26(6), $\mathrm{Sm}(1)-\mathrm{Se}(2)-\mathrm{Se}(3) 82.46(6), \mathrm{Sm}(3)-$ $\operatorname{Se}(2)-\operatorname{Sm}(2 \mathrm{a}) \quad 89.77(6), \quad \operatorname{Sm}(1)-\operatorname{Se}(3)-\operatorname{Se}(6) \quad 60.45(8), \quad \operatorname{Sm}(3 a)-$ $\mathrm{Se}(3)-\mathrm{Se}(6) 59.98(7)$.
dianion in $\mathbf{2}$ where each Sm atom is coordinated with six Se atoms, differs from that of the complexes of $\left[\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{11}\right]$ and $\left[\mathrm{Cp}_{6} \mathrm{Yb}_{6} \mathrm{Cl}_{13}\right]^{-}$; in $\left[\mathrm{Cp}_{6} \mathrm{Yb}_{6} \mathrm{Cl}_{13}\right]^{-}$, each Yb atom is bound to five chloride atoms while in $\left[\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{13}\right]$, three Sm atoms are coordinated with six Se atoms and other three Sm atoms are linked with five Se atoms, resulting in a distorted octahedral structure.

The distances between the Sm and Se atoms in 2 ($d_{(\mathrm{Sm}-\mathrm{Se})}: 2.864(2)-3.216(2) \AA$) can be compared with other lanthanoid selenium complexes such as $\left[\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{11}\right]\left(d_{(\mathrm{Sm}-\mathrm{Se})}: 2.859-3.308 \AA \AA^{\circ}[11]\right),\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Sm}\right)_{2^{-}}\right.$ $\left.\left(\mu-\eta^{1}: \eta^{3}-\mathrm{Se}_{3}\right)\right]\left(d_{(\mathrm{Sm}-\mathrm{Se})}: 2.917-3.198 \AA\right)$ [9], [(THF) ${ }_{3} \mathrm{Sm}-$ $\left.\left(\mu_{2}-\mathrm{SePh}\right)_{3} \mathrm{Zn}(\mathrm{SePh})\right]_{n}\left(d_{(\mathrm{Sm}-\mathrm{Se})}: 3.1898-3.4470 \AA\right)$ [23] and $\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Yb}\right)_{2}(\mu-\mathrm{Se})\right]\left(d_{(\mathrm{Yb}-\mathrm{Se})}: 2.621 \AA\right)[8]$.

The 13 selenium atoms in 2 like neodymium complex $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Cp}_{6}^{t} \mathrm{Nd}_{6}\left(\mu_{6}-\mathrm{Se}\right)\left(\mu-\mathrm{Se}_{2}\right)_{6}\right][12]$ can be divided into three types: a central $\mathrm{Se}(1)$ atom which is coordinated to six Sm atoms ($d_{(\mathrm{Sm}-\mathrm{Se})}: 2.9976(12)-3.0123(13)$ \AA); six pairs of bridging Se units $[\mathrm{Se}(2)-\mathrm{Se}(5 \mathrm{a})$, $\mathrm{Se}(3)-\mathrm{Se}(6), \mathrm{Se}(4)-\mathrm{Se}(7)]$ in which one Se atom is coordinated to three Sm atoms ($d_{(\mathrm{Sm}-\mathrm{Se})}$: 3.068(2)-3.216(2) \AA) while the other one is connected with only two Sm atoms ($d_{(\mathrm{Sm}-\mathrm{Se})}: 2.873(3)-2.887(2) \AA$). The distances between two Se atoms are in the range of 2.363(3)$2.370(3) \AA$ and can be compared with those in $\left[\mathrm{Cp}_{6}^{*} \mathrm{Sm}_{6} \mathrm{Se}_{11}\right] \quad\left(2.361-2.376\right.$ Å) $\quad[11], \quad\left[\mathrm{Na}(\mathrm{THF})_{6}\right]_{2}-$ $\left[\mathrm{Cp}_{6}^{t} \mathrm{Nd}_{6} \mathrm{Se}_{13}\right](2.357-2.364 \AA)$ [12], [Cp* $\left.\operatorname{Re}\left(\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{2}\right)\right]_{8}$ $(2.356-2.385 \AA)[2],\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Nd}\right)_{2}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{Se}_{2}\right)\right](2.389(2)$ A) $[10],\left[\left(\mathrm{Cp}_{2}^{*} \mathrm{Sm}\right)_{2}\left(\mu-\eta^{1}: \eta^{3}-\mathrm{Se}_{3}\right)\right](2.326-2.377 \AA)[9]$ and $\left[\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{Se}_{4}\right)\right](2.313-2.361 \AA)[4]$.

3. Experimental

All manipulations were routinely carried out in standard Schlenk vessels under Ar. The solvents were kept free of traces of water and oxygen, and distilled in a stream of Ar before use. Anhydrous samarium trichloride [24] and $\mathrm{CpNaCl}_{2} \cdot 2 \mathrm{LiCl} \cdot 5 \mathrm{THF}$ [15] were prepared according to the literature.
The IR spectra were measured on a Bio-Rad FTS 135 (as KBr pellet). Elemental analyses were performed by the Analytical Laboratory of Changchun Institute of Applied Chemistry and the Analytic Center of Fudan University.

3.1. $\left\{\left[\mathrm{Cp}^{t} \mathrm{Ln}(\mathrm{THF})\right]_{2}\left(\mu_{2}-\mathrm{Cl}\right)\left(\mu_{3}-\mathrm{Cl}\right)_{3} \mathrm{Na}(\mathrm{THF})\right\}_{n}$ $[\operatorname{Ln}=N d(\mathbf{1 a}), \operatorname{Sm}(\mathbf{1 b}), G d(\mathbf{1 c}), Y b(\mathbf{1 d})]$

1a: A solution of $\mathrm{NaCp}^{t}(0.2651 \mathrm{M}, 32.4 \mathrm{ml}$ in THF) which was prepared by the reaction of $\mathrm{Cp}^{t}-\mathrm{H}$ with NaH , was added dropwise to a suspension of NdCl_{3} $(2.154 \mathrm{~g}, 8.59 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was then slowly warmed up and kept at $60{ }^{\circ} \mathrm{C}$ stirring for 6 days, filtered through a plug of sea sand. Hexane (ca .15 ml) was added to the filtrate. The resulting solution was kept at $-15{ }^{\circ} \mathrm{C}$ for several days to afforded violet prismatic crystals of $1 \mathrm{a}(3.23 \mathrm{~g}$, 80.4%), m.p. $=111^{\circ} \mathrm{C}$. Anal. Found: C, 37.84; H, 5.21; $\mathrm{Cl}, \quad 18.47 ; \mathrm{Na}, \quad 3.03 ; \mathrm{Nd}, 30.72$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{Cl}_{5} \mathrm{NaNd}_{2} \mathrm{O}_{3}, \mathrm{C}, 38.03 ; \mathrm{H}, 5.32 ; \mathrm{Cl}, 18.71 ; \mathrm{Na}$, 2.43; $\mathrm{Nd}, 30.45 \%$. IR (KBr pellet, cm^{-1}): 3068(w), 2949(s), 2895(w), 1615(m), 1570(w), 1520(m), 1460(m),

1360(m), 1276(m), 1200(m), 1158(w), 1041(m), 1018(m), $830(\mathrm{~m}), 787(\mathrm{~s}), 760(\mathrm{~s}), 570(\mathrm{~m})$.

In a similar manner for $\mathbf{1 a}$, complexes $\mathbf{1 b}, \mathbf{1 c}$ and $\mathbf{1 d}$ were synthesized.

1b: Yellow crystal, yield: 71.2%. Anal. Found: C, $37.98 ; \mathrm{H}, 5.55 ; \mathrm{Cl}, 18.87 ; \mathrm{Sm}, 31.32$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{Cl}_{5} \mathrm{NaO}_{3} \mathrm{Sm}_{2}$: C, 37.54; H, 5.25; Cl, 18.58; Sm, 31.34%. IR (KBr pellet, cm^{-1}): 3070(w), 2949(s), 2896(w), 1615(m), 1570(m), 1521(m), 1460(m), 1360(m), $1276(\mathrm{~m}), 1200(\mathrm{~m}), 1158(\mathrm{w}), 1040(\mathrm{~m}), 1018(\mathrm{~m}), 830(\mathrm{~m})$, 786(s), 760(s), 462(m).

1c: White crystals, m.p. $=97{ }^{\circ} \mathrm{C}$; yield: 43.13%. Anal. Found: C, 37.47; H, 6.02; Cl, 18.09; Gd, 32.25; Na, 2.34. Calc. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{Cl}_{5} \mathrm{NaGd}_{2} \mathrm{O}_{3}$: C, 37.01; H, 5.70; $\mathrm{Cl}, 18.21$; Gd, 32.31 ; $\mathrm{Na}, 2.36 \%$. IR (KBr pellet, cm^{-1}): 3090(w), 2949(s), 2895(w), 1615(m), 1570(m), 1520(m), $1460(\mathrm{~m}), 1360(\mathrm{~m}), 1276(\mathrm{~m}), 1200(\mathrm{~m}), 1158(\mathrm{w}), 1040(\mathrm{~m})$, 1018(m), 830(m), 787(s), 760(s), 670(s), 450(m).

1d: Red crystal, m.p. $=118{ }^{\circ} \mathrm{C}$; yield: 47.5%. Anal. Found: C, 36.10; H, 5.12; Cl, 17.50; Na, 2.11; Yb, 34.61. Calc. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{Cl}_{5} \mathrm{NaYb}_{2} \mathrm{O}_{3}$: C, $35.85 ; \mathrm{H}, 5.01$; $\mathrm{Cl}, 17.64 ; \mathrm{Na}, 2.28 ; \mathrm{Yb}, 34.44 \%$. IR (KBr pellet, cm^{-1}): $2950(\mathrm{~s}), 2895(\mathrm{~s}), 1640(\mathrm{~m}), 1460(\mathrm{~m}), 1360(\mathrm{~m}), 1274(\mathrm{~m})$, $1245(\mathrm{~m}), 1178(\mathrm{~m}), 1039(\mathrm{~m}), 1010(\mathrm{~m}), 836(\mathrm{~m}), 780(\mathrm{~m})$, 680(m), 450(m).

2: A suspension of $\mathrm{Na}_{2} \mathrm{Se}_{5}(0.800 \mathrm{~g}, 1.814 \mathrm{mmol})$ and $\mathbf{1 b}(0.870 \mathrm{~g}, 0.907 \mathrm{mmol})$ in THF (30 ml) was stirred at room temperature (r.t.) for 2 h . The precipitate was filtered off. Hexane (ca. 5 ml) was carefully added to the top of the filtrate and allowed to stand for several days at $-15{ }^{\circ} \mathrm{C}$ to isolate the dark red prismatic crystal of 2 (yield: $0.23 \mathrm{~g}, 42.2 \%$). M.p. (dec.) $=72{ }^{\circ} \mathrm{C}$. Anal. Found: C, 34.66; H, 5.11. Calc. for $\mathrm{C}_{102} \mathrm{H}_{174} \mathrm{Na}_{2} \mathrm{O}_{12} \mathrm{Se}_{13} \mathrm{Sm}_{6}$: C, 34.34; H, 4.92\%. IR (KBr pellet, cm^{-1}): 3084(w), 2950(s), 2896(w), 1481(m), 1385(m), 1359(w), 1275(m), 1199(w), 1154(m), 1047(s), 894(w), 824(m), 767(s), 677(m).

3: A suspension containing $\mathrm{CpNdCl}_{2} \cdot 2 \mathrm{LiCl} \cdot 5 \mathrm{THF}$ $(1.07 \mathrm{~g}, 1.47 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{Se}_{5}(0.60 \mathrm{~g}, 1.36 \mathrm{mmol})$ in THF (35 ml) was stirred at r.t. for 24 h and filtered through a plug of sea sand. The filtrate was carefully concentrated to a slightly supersaturated solution (ca. 20 ml) and kept at $-15{ }^{\circ} \mathrm{C}$ for several weeks to afford red prismatic crystals of $3(0.18 \mathrm{~g}, 23.0 \%)$. M.p. (dec.) $=81{ }^{\circ} \mathrm{C}$. IR (KBr pellet, cm^{-1}): 3080(w), 2974(m), 2873(m), 1487(w), 1435(m), 1119(w), 1041(s), 1010(s), 911(w), 886(m), 840(w), 780(s), 763(s), 674(w).

3.2. X-ray crystal structure analyses for $\mathbf{1 a}$ and $\mathbf{2}$

Single crystals were sealed in thin-walled glass capillaries under an atmosphere of Ar. The intensity data of both compounds were collected with a Nicolet R3M/E diffractometer (1a) and a Siemens P4 diffractometer (2) using $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.7107 \AA$, graphite monochromator); the stability of the primary beam was
controlled by monitoring three check reflections every 100 reflections. Corrections for Lp factors and for absorption based on ψ-scan technique were applied.

1a. $\quad \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{NaNd}_{2} \mathrm{Cl}_{5}: \quad M_{\mathrm{r}}=907.34 ; \quad \rho=1.539$ $\mathrm{g} \mathrm{cm}^{-3}$; violet prism of the dimension $0.22 \times 0.14 \times$ 0.26 mm , orthorhombic space group $P 2_{1} 2_{1} 2_{1}$, with lattice parameters $\quad a=14.440(4), \quad b=15.259(2)$, $c=17.762(2) \AA, Z=4$, unit cell volume $V=3913.68$ \AA^{3}. Data collection: intensity data of 6252 reflections in the range $3.0 \leq 2 \theta \leq 65^{\circ}$ have been measured in the ω-scan mode (measuring temperature 296 K); observed reflections: $2932[I \geq 3 \delta(I)]$; structure solution with direct methods (SHELXTL); number of refined parameter: 370; $R=0.047, w R=0.042$.
2. $\mathrm{C}_{102} \mathrm{H}_{174} \mathrm{Na}_{2} \mathrm{P}_{12} \mathrm{Se}_{13} \mathrm{Sm}_{6}, M_{\mathrm{r}}=3567.03 ; \rho=1.859$ $\mathrm{g} \mathrm{cm}^{-3}$, black prism of the dimension $0.44 \times 0.40 \times$ 0.36 mm , triclinic space group $P \overline{1}$, with lattice parameters $a=14.349(3), \quad b=15.421(3), \quad c=16.035(3) \AA$, $\alpha=64.590(10), \beta=81.55(2), \gamma=85.80(2)^{\circ}$ and $Z=2$; unit cell volume $V=3169.9(11) \AA^{3}$, absorption coefficient $\mu=6.521 \mathrm{~mm}^{-1}$, measured reflections: 10038 , independent reflections: 8519 ($R_{\mathrm{int}}=0.0298$), observed reflection: $8469(F \geq 0.0 \delta(F 2)$); structure solution with direct methods (SHELXTL PLUS (VMS)); refinement with 605 parameters converged at $R_{1}=0.0507$, and $w R_{2}=$ $0.1014[I>2 \delta(I)] ; \max / \mathrm{min}$ residual electron density was $1.324 /-1.34 \mathrm{e}^{-3}$.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 156405 and 156406 for compounds 1a and 2, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-1223-336033; e-mail: deposit@ccdc.cam. ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

Financial support by the National Natural Science Foundation of China and Special Funds for Major State Basic Research Projects is gratefully acknowledged.

References

[1] Review: (a) J.W. Kolis, Coord. Chem. Rev. 105 (1990) 195; Chem. Rev. 93 (1993) 1037;
(b) M. Herberhold, G.X. Jin, A. Mueller, M. Penk, Z. Naturforsch. B 46 (1991) 25;
(c) J. Wachter, J. Coord. Chem. 15 (1987) 219; Angew. Chem. Int. Ed. Engl. 37 (1989) 750;
(d) M. Draganjac, T.B. Rauchfuss, Angew. Chem. Int. Ed. Engl. 24 (1985) 724.
[2] (a) M. Herberhold, G.X. Jin, W. Milius, Angew. Chem. Int. Ed. Engl. 32(1993) 85; J. Organomet. Chem. 439 (1993) 259; Z. Anorg. Allg. Chem. 620 (1994) 299; Chem. Commun. (1996) 2645;
(b) G.X. Jin, Y. Arikawa, K. Tatsumi, J. Am. Chem. Soc. 123 (2001) 735;
(c) J. Kulpe, E. Herdtwerk, G. Weichselbaumer, W.A. Herrmann, J. Organomet. Chem. 348 (1988) 369;
(d) M. Rakowski DuBois, B.R. Jagirdar, S. Dietz, B.C. Noll, Organometallics 16 (1997) 294.
[3] (a) J. Lang, H. Kawaguchi, A. Ohnishi, K. Tatsumi, Chem. Commun. (1997) 405; Inorg. Chem. 36 (1997) 6447; J. Am. Chem. Soc. 119 (1997) 10346;
(b) H. Kawaguchi, K. Tatsumi, Chem. Commun. (2000) 1299;
(c) M. Herberhold, G.X. Jin, W. Kremnitz, A.L. Rheingold, B.S. Haggerty, Z. Naturforsch. B 46 (1991) 500; 43 (1993) 1438.
[4] (a) M. Herberhold, G.X. Jin, A.L. Rheingold, Chem. Ber. 124 (1991) 2245; 128 (1995) 557;
(b) S. Oro, T. Suzuki, Y. Ozawa, K. Isobe, Inorg. Chem. 35 (1996) 6093; Chem. Commun. (1997) 891; Organometallics 17 (1998) 1637;
(c) M. Herberhold, G.X. Jin, A.L. Rheingold, J. Organomet. Chem. 519 (1996) 223.
[5] O. Blacgue, H. Brunner, M.M. Kubicki, B. Nuber, B. Stubenhofer, J. Wachter, B. Wrackmeyer, Angew. Chem. Int. Ed. Engl. 36 (1997) 352; J. Organomet. Chem. 517 (1996) 47.
[6] M. Nishio, H. Matsuzaka, Y. Mizobe, M. Hidai, Angew. Chem. Int. Ed. Engl. 35 (1996) 872; Acc. Chem. Res. 33 (2000) 46.
[7] H. Schumann, J.A. Meese-Marktscheffel, L. Esser, Chem. Rev. 95 (1995) 865.
[8] D.J. Berg, C.J. Bums, R.A. Andersen, A. Zalkin, Organometallics 8 (1989) 1865.
[9] W.J. Evans, G.W. Rabe, J.W. Ziller, R.J. Doedens, Inorg. Chem. 33 (1994) 2719.
[10] W.J. Evans, G.W. Myce, R.D. Clark, R.J. Doedens, J.W. Ziller, Angew. Chem. Int. Ed. Engl. 38 (1999) 1801.
[11] W.J. Evans, G.W. Rabe, M.A. Ansari, J.W. Ziller, Angew. Chem. Int. Ed. Engl. 33 (1994) 2110.
[12] G.X. Jin, Y.X. Cheng, Y.H. Lin, Organometallics 18 (1999) 947.
[13] A.L. Wayda, J. Organomet. Chem. 361 (1989) 73.
[14] V.K. Belskii, Yu.K. Gunko, E.B. Lobkovskii, B.M. Bulychev, G.L. Soloveichik, Metalloorg. Khim. 4 (1991) 420; Organomet. Chem. USSR 4 (1991) 202.
[15] (a) Y. Li, X.L. Xu, G.Z. Liu, Chin. J. Org. Chem. 8 (1988) 43; (b) Q. Shen, W. Chen, Y. Jin, C. Shan, Pure Appl. Chem. 60 (1988) 1251.
[16] Although the molecular framework of complex $\mathbf{3}$ was clearly established, the quality of the crystal was insufficient for a reliable refinement procedure.
[17] Q. Shen, M.H. Qi, Y.H. Lin, J. Organomet. Chem. 399 (1990) 247.
[18] J.H. Jin, S.H. Jin, Z.S. Jin, W.Q. Chen, Polyhedron 11 (1992) 2872.
[19] J. Guan, S. Jin, Y Lin, Q. Shen, Organometallics 11 (1992) 2483.
[20] W.I. Evan, S.E. Foster, J. Organomet. Chem. 433 (1992) 79.
[21] (a) W.P. Kretschmer, J.H. Tenben, S.I. Troyanov, Angew. Chem. Int. Ed. Engl. 37 (1998) 95;
(b) R. Anwander, Angew. Chem. Int. Ed. Engl. 37 (1998) 599.
[22] J. Sieler, A. Simon, K. Peter, R. Teube, M. Geitner, J. Organomet. Chem. 362 (1989) 297.
[23] D. Freedman, A. Kornienko, T.J. Emge, J.G. Brennan, Inorg. Chem. 39 (2000) 2168.
[24] M.D. Toylor, C.P. Carter, J. Inorg. Nucl. Chem. 24 (1962) 387.

[^0]: * Corresponding author. Fax: + 86-431-5685653.

 E-mail address: gxjin@ciac.jl.cn (G.-X. Jin).

