www.elsevier.com/locate/jorganchem # Synthesis of di- and trisilanes with potentially chelating substituents Johannes Belzner ^{a,1*}, Uwe Dehnert ^a, Dirk Schär ^a, Bernhard Rohde ^a, Peter Müller ^b, Isabel Usón ^b Received 3 April 2001; received in revised form 29 May 2001; accepted 29 October 2001 #### Abstract Silylenes 2 or 4, generated by thermolysis of cyclotrisilanes 1 and 3, were inserted into the Si–Cl or Si–H bonds of monosilanes to yield a variety of disilanes, which can be further functionalized subsequently. In a few cases, trisilanes are accessible by the reaction of 1 with disilanes. The reaction of a metalated silane with a chlorosilane is an alternative method for the formation of Si–Si bonds, which turned out to be especially useful for the synthesis of bulkily substituted disilanes. Some of the new dichlorodiand trisilanes themselves serve as thermal precursors of silylenes 2 or 4, the extrusion of which can be catalyzed by 1 or 3 in certain cases. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Silylenes; Oligosilanes; Halosilanes; Silicon-silicon bond formation #### 1. Introduction Two principal reaction pathways are available for the formation of Si–Si bonds (Scheme 1). The nucleophilic attack of a metalated silane on a silicon center, which bears a leaving group, or, alternatively, the insertion of a silylene into a Si–X bond (X=H or Hal). The first method in particular, a Wurtz-type coupling reaction, was used repeatedly for the synthesis of disilanes. Reacting a monohalogenated silane with metals such as Li, Na, or Mg gives rise—via a metalated silane as Scheme 1. Formation of Si-Si bond; M = Li, Na, MgHal; X = H, Hal crucial intermediate—to the formation of symmetrically substituted disilanes [1]. In contrast, geminally dihalogenated silanes do not serve as synthetically useful starting material for disilanes. When treated with metals, they are transformed to either polysilanes [2] or, in the case of dihalosiloles, to silole dianions [3]; 1,2-dihalodisilanes could be isolated from the reaction mixture only in a few cases [4]. Unsymmetrically substituted disilanes are in general synthesized by reaction of a preformed metalated silane with a halosilane [5], although it was reported that treatment of a mixture of two different halosilanes with lithium may result in the formation of unsymmetrical disilanes in good vield [6]. The alternative, aforementioned method to create a Si-Si bond, the insertion of a silvlene into a Si-H bond, proceeds extremely fast [7] and thus silanes serve frequently as trapping agents for short-lived silylenes [8]. Contrasting the wealth of silylene insertion reactions into Si-H bonds, only few examples of a insertion into Si-Hal bonds are known [9]. We have used both methods, i.e. silvlene insertion and nucleophilic displacement, for the synthesis of di- and trisilanes, which bear the potentially 2-(dimethylaminomethyl)phenyl substituent [9c,10], and want to report here the results of these studies. ^a Institut für Organische Chemie der Georg-August-Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany ^b Institut für Anorganische Chemie der Georg-August-Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany ^{*} Corresponding author. Tel.: +49-221-7490816. *E-mail address:* jbelzne@gwdg.de (J. Belzner). ¹ Present address: Henkelstr. 282, D-40599 Düsseldorf, Germany. Table 1 Synthesis of disilanes by silylene insertion; $Ar = 2-(Me_2NCH_2)C_6H_4$; $Mes = 2,4,6-Me_3C_6H_2$ | Entry | Silylene precursor | Silane | Disilane(s) | Yield (%) | |-------|--------------------|---|--|-----------| | 1 | 1 | Me ₃ SiCl (5) | ClAr ₂ Si–SiMe ₃ (6a) | 54 | | 2 | 1 | Me ₂ SiCl ₂ (7a) | ClAr ₂ Si–SiMe ₂ Cl (8a) | 95 | | 3 | 1 | Me_2SiHCl (7b) | $Har_2Si-SiMe_2Cl$ (8b) | 78 | | | | | ClAr ₂ Si–SiMe ₂ H (8c) ^a | | | 4 | 1 | Ph_2SiH_2 (9a) | HAr ₂ Si-SiPh ₂ H (10a) | 78 | | 5 | 1 | Ph_2SiCl_2 (9b) | ClAr ₂ Si–SiPh ₂ Cl (10b) | 78 | | 6 | 1 | Ph ₂ SiHCl (9c) | HAr ₂ Si-SiPh ₂ Cl (10c) | 83 | | | | - , , | ClAr ₂ Si–SiPh ₂ H (10d) ^b | | | 7 | 1 | $(4-MeC_6H_4)_2SiCl_2$ (11) | $ClAr_2Si-Si(4-MeC_6H_4)_2Cl$ (12a) | 44 | | 3 | 1 | $(4-ClC_6H_4)_2SiCl_2$ (13) | ClAr ₂ Si–Si(4-ClC ₆ H ₄) ₂ Cl (14a) | 40 | |) | 1 | $(2-EtC_6H_4)_2SiCl_2$ (15) | $ClAr_2Si-Si(2-EtC_6H_4)_2Cl$ (16) | 88 | | .0 | 1 | Ar_2SiH_2 (17a) | $HAr_2Si-SiAr_2H$ [12] (18a) | 96 | | 1 | 1 | Ar_2SiCl_2 (17b) | ClAr ₂ Si–SiAr ₂ Cl (18b) | 68 | | 2 | 1 | Ar ₂ SiHCl (17c) | HAr ₂ Si-SiAr ₂ Cl (18c) | 97 | | .3 | 1 | 19 | 20 | 75 | | 4 | 1 | 21 | 22 | 98 | | 5 | 1 | PhSiCl ₃ (23) | ClAr ₂ Si-SiPhCl ₂ (24a) | 85 | | 6 | 3 | Ph ₂ SiCl ₂ (9b) | ClAr(Mes)Si-SiPh ₂ Cl (26b) | 80 | | 7 | 3 | $Ar(Mes)SiCl_2$ (27b) | ClAr(Mes)Si-SiAr(Mes)Cl (28b) | 38 | | 8 | 3 | 21 | 29 | 35 | | 9 | 3 | MesSiCl ₃ (30) | ClAr(Mes)Si-SiMesCl ₂ (31) | 82 | | 20 | 1 | Mes_2SiH_2 (32a) | HAr ₂ Si–SiMes ₂ H (33a) | traces | ^a 8b:8c = 3:1. #### 2. Results and Discussion #### 2.1. Formation of disilanes by silylene insertion The insertion reactions of silvlenes into Si-H and Si-Cl bonds of a variety of silanes were investigated (Table 1) making extensive use of cyclotrisilanes 1 and 3 as thermal precursors of silvlenes 2 and 4 (Scheme 2) [9c,11]. When 1 was heated at 50 °C trimethylchlorosilane (5) in benzene, chlorodisilane 6a was formed quantitatively and could be isolated in 54% yield (entry 1). Using dimethyldichlorosilane (7a) as starting material, the vicinally dihalogenated disilane 8a was obtained as sole product; no formation of a trisilane was observed, i.e. no subsequent insertion of silvlene 2 into a Si-Cl bond of initially formed 8a did occur under the reaction conditions employed (entry 2). With dimethylmonochlorosilane (7b) as trapping agent, a 3:1 mixture of regioisomeres 8b and 8c was formed indicating that silvlene 2 inserts preferentially into the Si–H bond of the chlorosilane (entry 3). The reaction of cyclotrisilane 1 with diphenylsubstituted silanes 9a-c proceeded analogously (Table 1, entries 4, 5, 6), again the insertion of silylene 2 in the Si-H bond of Ph₂SiHCl (9c) being preferred to that into the Si-Cl bond. When treating 1 with diarylsilanes 11, 13, 15, and 17a-c, in which the aromatic rings bear a para- or ortho-substituent, the corresponding disilanes 12a, 14a, 16, 18a [12], 18b, and 18c were obtained in reasonable to good yields (entries 7–12). Similarly, 1,2-dichlorodisilanes 20 and 22 could be synthesized by insertion of silylene 2 into a Si–Cl bond of dichlorosiloles 19 or 21 (entries 13 and 14; Scheme 3). Using trichlorosilane 23 as substrate clean formation of trichlorodisilane 24a was observed (entry 15). However, reaction of 1 with highly coordinated trichlorosilane ArSiCl₃ (Ar = 2-(Me₂NCH₂)C₆H₄; 25) did not give the corresponding trichlorodisilane. Instead, dichlorosilane 17b was obtained quantitatively besides a solid, which is insoluble in all common solvents. The reactions of thermally more stable cyclotrisilane 3 with silanes are less well investigated. However, treatment of 3 with three equivalents of dichlorosilanes 9b, 27b, or 21 at temperatures between 80 and 90 °C allowed the synthesis of the corresponding 1,2-dichlorodisilanes 26b, 28b [9c], or 29 (entries 16–18). With Scheme 2. Cyclotrisilanes as silylene precursors; $Ar = 2-(Me_2NCH_2)C_6H_4$; $Mes = 2,4,6-Me_3C_6H_2$. ^b 10c:10d = 2:1. Scheme 3. Reaction of 1 with dichlorosiloles; $Ar = 2-(Me_2NCH_2)-C_6H_4$. Scheme 4. Failed syntheses of disilanes; 17a, 27a, 32a, 33a, 34a: X = H; 17b, 27b, 32b, 33b, 34b: X = Cl; $Ar = 2-(Me_2NCH_2)C_6H_4$; $Mes = 2,4,6-Me_3C_6H_2$. trichlorosilane 30 as starting material, the insertion product 31 was obtained in good yield (entry 19). Albeit the reaction of cyclotrisilanes 1 and 3 with monosilanes has proven to be a quite generally applicable procedure for the synthesis of disilanes, some attempts to obtain disilanes by this method were without success: Thus, e.g., reaction of 1 with bulkily substituted dimesityldichlorosilane (32b) did not yield the corresponding 1,2-dichlorodisilane 33b (Scheme 4, top). Instead, a complex product mixture was formed which contained, besides a variety of unidentified compounds, some starting material 32b as well as minor amounts of dichlorosilane 17b and dichlorodisilane 18b. Using sterically less demanding dimesitylsilane (32a) as substrate was not successful either, only traces of the expected insertion product 33a could be identified by means of ¹H-NMR spectroscopy in the reaction mixture. Attempts to synthesize 1,2-dichlorodisilane 34b, either by treatment of 1 with three equivalents of 27b or alternatively by treatment of 3 with three equivalents of 17b, failed (Scheme 4, bottom). In both cases, the respective cyclotrisilane was totally consumed under formation of a complex product mixture consisting of 1,2-dichlorodisilane 18b as major product besides minor amounts of dichlorosilanes 27b and 17b as well as various unidentified compounds. Similarly, reaction of cyclotrisilane 1 with silane 27a or, alternatively, of 3 with silane 17a did not yield disilane 34a. #### 2.2. Formation of trisilanes by silylene insertion It was shown (vide supra) that reaction of cyclotrisilanes 1 or 3 with different monosilanes gives exclusively disilanes. Competing formation of trisilanes, which in principle could arise from insertion of the silvlene into a Si-H or Si-Cl bond of the newly formed disilane, was never observed under the reaction conditions employed. This selectivity implies that the reaction of the silylenes 2 and 4 with monosilanes is appreciably faster than that with disilanes. However, the synthesis of trisilanes from disilanes and cyclotrisilanes 1 or 3 as silvlene precursors proved to be possible using the appropriate stoichiometry of starting
materials and, in most cases, performing the reaction at higher temperatures (Table 2). Thus, e.g. treatment of cyclotrisilane 1 with three equivalents of disilane 35 yielded trisilane 36 (entry 1). With an excess of 1 no further insertion of a silvlene under formation of a tetrasilane occurred, even under forcing reaction conditions. Reaction of 1 with three equivalents of unsymmetrical disilane 10a delivered trisilane 37a in good yield (entry 2). Interestingly, the silylene inserts regioselectively into the Si-H bond of the phenyl substituted silicon center of 10b. The reaction of 1 with three equivalents of 1,2-dichlorodisilane 10b proceeds analogously, giving exclusively the symmetrical 1,3dichlorotrisilane 37b, which also may be obtained directly from monosilane **9b** and **1** employing a 3:2 ratio of the reactants (entry 3). The observed regioselectivity Synthesis of trisilanes by silylene insertion; $Ar = 2-(Me_2NCH_2)C_6H_4$; $Mes = 2,4,6-Me_3C_6H_2$ | Entry | Silylene precursor | Disilane | Trisilane | Yield (%) | |-------|--------------------|---|---|-----------| | 1 | 1 | ClPh ₂ Si–SiPh ₂ Cl (35) | ClPh ₂ Si-SiPh ₂ -SiAr ₂ Cl (36) | 35 | | 2 | 1 | HAr ₂ Si-SiPh ₂ H (10a) | HAr ₂ Si-SiPh ₂ -SiAr ₂ H (37a) | 89 | | 3 | 1 | ClAr ₂ Si-SiPh ₂ Cl (10b) | $ClAr_2Si-SiPh_2-SiAr_2Cl$ (37b) | 78 | Table 3 Synthesis of di- and trisilanes by nucleophilic substitution; $Ar = 2-(Me_2NCH_2)C_6H_4$; $Mes = 2,4,6-Me_3C_6H_2$ | Entry | Precursor of metallated silane | Metal | Halosilane | Product | Yield (%) | |-------|--|-------|--|---|-----------| | 1 | Ar ₂ SiHCl (17c) | K | Ar ₂ SiHCl (17c) | HAr ₂ Si–SiAr ₂ H (18a) | 91 | | 2 | 17c | K | Me ₃ SiCl (5) | HAr ₂ Si-SiMe ₃ (6b) | 49 | | 3 | HAr ₂ SiSiAr ₂ H (18a) | Li | Me ₃ SiCl (5) | 6b | 63 | | 4 | 18a | Li | Mes ₂ SiCl ₂ (32b) | HAr ₂ Si–SiMes ₂ Cl (33c) | 75 | | 5 | 18a | Li | Me ₂ SiCl ₂ (7a) | HAr ₂ Si-SiMe ₂ -SiAr ₂ H (38) | 43 | | 6 | Mes ₂ SiHCl (32c) | Li | ArMesSiCl ₂ (27b) | HMes ₂ Si–SiAr(Mes)Cl (39a) | 13 | Table 4 Transformation of disilanes; $Ar = 2-(Me_2NCH_2)C_6H_4$; $Mes = 2,4,6-Me_3C_6H_2$ | Entry | Disilane(s) | Reagent | Product | Yield (%) | |-------|--|--------------------|---|-----------| | 1 | ClAr ₂ Si–SiMe ₃ (6a) | LiAlH ₄ | HAr ₂ Si–SiMe ₃ (6b) | 51 | | 2 | HAr ₂ Si–SiMe ₂ Cl (8b)
ClAr ₂ Si–SiMe ₂ H (8c) | LiAlH ₄ | $HAr_2Si-SiMe_2H$ (8d) | 47 | | 3 | HAr ₂ Si–SiPh ₂ Cl (10c)
ClAr ₂ Si–SiPh ₃ H (10d) | $LiAlH_4$ | $HAr_2Si-SiPh_2H$ (10a) | 96 | | 4 | $ClAr_2Si-Si(4-MeC_6H_4)_2Cl$ (12a) | $LiAlH_4$ | $HAr_2Si-Si(4-MeC_6H_4)_2H$ (12b) | 91 | | 5 | $ClAr_2Si-Si(4-ClC_6H_4)_2Cl$ (14a) | LiAlH ₄ | $HAr_2Si-Si(4-ClC_6H_4)_2H$ (14b) | 65 | | 6 | ClAr ₂ Si–SiPhCl ₂ (24a) | LiAlH ₄ | $HAr_2Si-SiPhH_2$ (24b) | 41 | | 7 | HAr ₂ Si–SiMes ₂ Cl (33c) | LiAlH ₄ | HAr ₂ Si-SiMes ₂ H (33a) | 65 | | 8 | HMes ₂ Si-SiAr(Mes)Cl (39a) | LiAlH ₄ | HMes ₂ Si-SiArMesH (39b) | 47 | | 9 | HAr ₂ Si-SiAr ₂ H (18a) | NCS a | ClAr ₂ Si–SiAr ₂ Cl (18b) | 72 | | 10 | HAr ₂ Si–SiAr ₂ H (18a) | NCS b | HAr ₂ Si–SiAr ₂ Cl (18c) | 59 | | 11 | HAr ₂ Si–SiMes ₂ Cl (33c) | NCS | ClAr ₂ Si–SiMes ₂ Cl (33b) | 77 | ^a Two equivalents NCS, solvent: CCl₄. indicates that insertion of silylene 2 at a silicon center, which bears *ortho*-substituted aryl groups, is sterically hindered. In accordance with this conclusion, 1 reacts neither with 16 nor with 18b or ClMes₂Si–SiAr₂Cl (33b) under formation of trisilanes. #### 2.3. Formation of disilanes by nucleophilic substitution Nucleophilic coupling of a halosilane with a metalated silane, which is easily prepared by reaction of a halosilane or a disilane with alkali metals, is an alternative procedure for the synthesis of disilanes [13]. Thus, disilane 18a is not only available by insertion of silylene 2 into the Si-H bond of silane 17a (vide supra), but also can be obtained in good yield by reaction of chlorosilane 17c with potassium in toluene via a potassio silane Ar₂SiHK as intermediate (Table 3, entry 1). This reaction could not be performed using more easily manageable lithium in THF or toluene as under these conditions cleavage of the Si-C bond of the starting material occurred. Interestingly, treatment of a mixture of chlorosilanes 17c and 5 with potassium resulted in the formation of the unsymmetrical cross-coupling product 6b (entry 2). A better yield of this disilane was obtained when employing lithium in order to transform disilane 18a into Ar₂SiHLi, which subsequently was reacted with 5 (entry 3). Similarly, disilane 33c was obtained from Ar₂SiHLi and dichlorosilane 32b (entry 4). Using sterically less hindered 7a as electrophile the reaction could not be stopped after the first substitution step and therefore only trisilane 38 was isolated from the reaction mixture (entry 5). Finally, bulkily substituted disilane 39a was synthesized by treatment of preformed Mes₂SiHLi with dichlorosilane 27b (entry 6). #### 2.4. Transformations of disilanes Various halogen substituted disilanes (Table 4) can easily be reduced to the corresponding hydrido disilanes using LiAlH₄ in Et₂O. However, silole based dichlorodisilanes **20** and **22** undergo cleavage of the Si–Si bond under these reaction conditions. N-Chlorosuccinimide (NCS) has proven in several cases to be a superior reagent for chlorination of disilanes [1a,5b]. Thus, **18a** could be chlorinated at both silicon centers by means of two equivalents of NCS in CCl₄. When performing the reaction in hexane as solvent, the monochlorinated product **18c** could be isolated as main product. Dichlorodisilane **33b**, which could not be obtained by insertion of silylene **2** into the Si–Cl bond of dichlorosilane **32b** (vide supra) and which might be a useful precursor for a chelated disi ^b One equivalent NCS, solvent: hexane. lene, was synthesized by treatment of 33c with NCS in CCl_4 . #### 2.5. Thermal stability of tri- and disilanes When 1,3-dichlorotrisilane 36 was heated in benzene in the presence of excess 2,3-dimethylbuta-1,3-diene (40) to 110 °C for 13 h quantitative conversion into a 1:1 mixture of 35 and silylene trapping product 41 occurred (Scheme 5, top). 1,3-Dichlorotrisilane 37b underwent an analogous silylene extrusion under similar conditions (Scheme 5, bottom): With 1,3-diene 40 as trapping agent equimolar amounts of silacyclopentene 41 and dichlorodisilane 10b were formed, whereas thermal silylene extrusion in the presence of one equivalent of dichlorosilane 9b resulted in the clean formation of two equivalents of dichlorodisilane 10b. It is worth noting that in all these reactions exclusively the chelated and therefore thermodynamically more stable Scheme 5. Thermal silylene extrusion from trisilanes; $Ar = 2-(Me_2NCH_2)C_6H_4$. Scheme 6. Silylene extrusion from 18b; $Ar = 2-(Me_2NCH_2)C_6H_4$. Scheme 7. Mechanism of the silylene-catalyzed reaction of **18b** with **40**; Ar = 2-(Me₂NCH₂)C₆H₄. silylene **2** and not diphenylsilylene was generated. A similar reactivity, i.e. extrusion of a coordinated silylene, was reported for the thermal and/or metal-catalyzed decomposition of disilanes bearing the 8-dimethylamino-naphth-l-vl substituent [14]. 1,2-Dichlorodisilanes are thermally more stable: 35 or 1,2-dichloro-1,1,2,2-tetramesityldisilane (42), which bear no potentially chelating 2-(dimethylaminomethyl)phenyl substituent, do not extrude silylenes when heated to 110 °C for 15 h in the presence of a silvlene trap. In contrast, highly coordinated dichlorodisilane 10b transfers silvlene 2 to 40 under these conditions; however, due to the relatively high temperatures, minor amounts of by-products with unknown structure are formed in this case. 1,2-Dichlorodisilane 18b remains unchanged when treated with diene 40 at 70 °C for 19 h (Scheme 6, top). However, when 18b was treated under almost identical conditions, the only variation being the presence of a catalytic amount of cyclotrisilane 1, the 1,2-dichlorodisilane was totally consumed and a 1:1 mixture of 17b and 41 was formed (Scheme 6, bottom). **28b** (used as a mixture of the d,land meso-diastereomers) shows a similar behavior. Neither silvlene transfer to 40 nor change of the diastereomeric ratio, which might result from extrusion and re-insertion of silvlene 2, were observed after 24 h at 90 °C in the presence of excess 40. But 28b underwent in the presence of 40 and a trace of 3 clean conversion into a roughly equimolar mixture of 27b and the corresponding silacyclopentene [15], which results from the transfer of silvlene 4 to the diene. From these observations it can be concluded that cyclotrisilanes 1 and 3, i.e. the silylenes in equilibrium with these cyclotrisilanes, catalyze the extrusion of silylene 2 or 4 from the respective 1,2-dichlorodisilane. Scheme 7 shows a possible mechanism for this reaction. The first step is a dehalogenation of 18b by 2 under formation of 17b and disilene 43. Such kind of reduction of a 1,2dichlorodisilane by a silylene yielding a disilene is, to the best of our knowledge, not known [16]. Jutzi, however, has shown that silicocene reduces 1,2-dibromocyclohexane to cyclohexene, thereby being transformed itself into the corresponding dibromosilane [17], and we have found that 2 reacts analogously with 1,2-dihaloethanes under formation of a olefin and 17b [18]. Disilene 43 is assumed to be in equilibrium with silvlenes 2 [11,19], which can either be trapped irreversibly by diene 40 or can re-enter into the catalytic cycle and reduce a further molecule of 18b. The
efficiency of the mechanism presented here depends crucially on a delicate balance of the different steps involved in the overall reaction. Thus, e.g. the dehalogenation of 18b by 2 needs to be faster than the reaction of the silylene with 40 or its insertion into a Si-Cl bond of 18b. When, as in the case of 10b, silvlene 2 inserts faster into the Si-Cl bond under formation of Table 5 $^{29}\text{Si-NMR}$ data of chlorinated disilanes $Ar=2\text{-}(\text{Me}_2\text{NCH}_2)C_6\text{H}_4;$ $\text{Mes}=2,4,6\text{-Me}_3\text{C}_6\text{H}_2$ | Disilane | δ (Si 1) | δ (Si 2) | |---|-------------------|------------| | ClPh ₂ Si–SiPh ₂ Cl (35) [31b] | -6.1 | -6.1 | | ClMes ₂ Si–SiMes ₂ Cl (42) [1a] | +0.2 | +0.2 | | ClAr ₂ Si–SiPh ₂ Cl (10b) | -21.7 | -2.3 | | $ClAr_2Si-Si(4-MeC_6H_4)_2Cl$ (12a) | -19.6 | -1.8 | | $ClAr_2Si-Si(4-ClC_6H_4)_2Cl$ (14a) | -24.3 | -3.4 | | $ClAr_2Si-Si(2-EtC_6H_4)_2Cl$ (16) | -4.5 | +0.4 | | ClAr ₂ Si-SiAr ₂ Cl (18b) | -2.9 | -2.9 | | ClAr(Mes)Si-SiPh ₂ Cl (26b) | -15.0 | -2.1 | | ClAr(Mes)Si-SiAr(Mes)Cl (28b) | -2.6 | -2.6 | | ClAr(Mes)Si-SiMesCl ₂ (31) | -9.0 | 9.4 | | ClAr(Mes)Si-SiMes ₂ H (39a) | +1.5 | -51.4 | | ClAr ₂ Si–SiMes ₂ Cl (33b) | -4.8 $^{\rm a}$ | $+0.2^{a}$ | | | | | ^a The assignment is ambiguous. **37b** (vide supra) as it reduces **10b** to the corresponding disilene, an auto-catalyzed extrusion of silylenes **2** is impossible. #### 2.6. Structures in the solid state and in solution Several 1,2-dichlorotetraaryldisilanes were investigated in regard to the ability of the 2-(dimethylaminomethyl)phenyl substituent to coordinate intramolecularly to the silicon center (Table 5). If coordination occurs in solution, the chelated silicon center is expected to resonate at higher field in comparison to the silicon nucleus of an appropriate reference compound, in which the silicon center is non-coordinated [20]. The ²⁹Si-NMR signal of dichlorodisilane **10b**, e.g. is shifted significantly to higher field in comparison to ClPh₂Si-SiPh₂Cl (35) indicating that there is a coordinative interaction between the amino group of the 2-(dimethylaminomethyl)phenyl substituent and the silicon center. This coordination is hardly affected by introducing substituents into the para-position of the phenyl rings of the adjacent SiPh₂Cl group. Dichlorodisilanes 12a and 14a absorb at similar frequencies as 10b. However, when the neighboring silicon center bears ortho-substituted aryl groups as in 16 or 18b, the coordination breaks down, presumably due to steric hindrance. Accordingly, the silicon center of the ClAr(Mes)Si group of 26b appears to be chelated, because it is significantly highfield shifted as compared with 35 or ClMes₂Si-SiMes₂Cl (42). In contrast, the 2-(dimethylaminomethyl)phenyl substituted silicon center of chlorinated disilanes 28b, 31 and 39a, in all of which the neighboring silicon center bears substituents, which are sterically more demanding in comparison to the phenyl groups of 26b, is not coordinated by the amino group as is evident from the small shift differences in regard to the reference compounds 35 or 42. Not only the chemical shifts of the silicon centers, but also the different sensitivity of their resonance frequencies towards temperature changes allow a discrimination of chelated and non-chelated silicon. The position of the ²⁹Si-NMR signal of the phenyl substituted silicon center of 10b remains virtually constant upon temperature changes, whereas the resonance frequency of the coordinated silicon moves from $\delta = -29.7$ at 280 K to $\delta = -20.6$ at 320 K (Fig. 1a). This shift indicates that chelated and non-chelated 10b is in equilibrium, the non chelated form being favored at higher temperature [21]. In contrast, the chemical shift of both silicon centers of 33b remains essentially unchanged over a temperature interval of 40 K (Fig. 1b) and thus supports the conclusion that the 2-(dimethylaminomethyl)phenyl substituted center of 33b is not chelated by the amino group. Chlorosilane **39a** adopts in the solid state a staggered conformation (Fig. 2), which already was reported for other tetraaryl disilanes [5b,22]. The Si(1)–N(1) distance (3.312(2) Å) is shorter than the sum of the van der Fig. 1. 29 Si-NMR spectra of **10b** and **33b** at variable temperature; Ar = $2(Me_2NCH_2)C_6H_4$;(a) Spectra of **10b** at 320 K (top) and 280 K (bottom); (b) Spectra of **33b** at 340 K (top) and 300 K (bottom). Waals-radii of both elements (3.6 Å) [23], but appreciably longer than that of dative $Si \rightarrow N$ bonds (ca. 1.8–3.0 Å) [24]. Thus, there is apparently no significant coordinative interaction between Si(1) and N(1) in the solid state as it was found for the structure of **39a** in solution. This conclusion is corroborated by the fact that the lone pair of the amino nitrogen is not directed exactly towards the silicon center. Instead, the vector [25] of the lone pair forms an angle of 31.8° with the line which joins Si(1) and N(1). #### 3. Experimental ¹H- and ¹³C-NMR spectra were recorded on a Bruker AM 250 (1H-NMR, 250 MHz, 13C-NMR, 62.9 MHz), a Bruker AMX 300 (¹H-NMR: 300 MHz, ¹³C-NMR: 75.5 MHz) and a Varian VXR 500 (1H-NMR, 500 MHz,¹³C-NMR, 125.7 MHz). C_q, CH, CH₂ and CH₃ were determined using the DEPT or APT pulse sequence. ²⁹Si-NMR spectra were recorded on a Bruker AMX 300 (59.6 MHz) or a Varian XL 500 (99.3 MHz) using a refocused INEPT pulse sequence or performing a direct acquisition. Chemical shifts refer to $\delta_{\rm TMS} = 0.0$. IR spectra were recorded on a Bruker IFS 66 (film or KBr). Mass spectra were recorded on a Varian MAT 311 A. High resolution mass spectra were determined with a Varian MAT 311 A, using preselected ion peak matching at $R \sim 10\,000$ to be within ± 2 ppm of the exact mass. FAB mass spectra were obtained by using Fig. 2. X-ray structure of $\bf 39a$; selected distances [Å], bond angles and torsion angles [°]: Si(1)–N(1) 3.312(2), Si(1)–Si(2) 2.3692(10), Si(1)–Cl(1) 2.1066(9), Si(1)–C(11) 1.887(2), Si(1)–C(21) 1.891(2), Si(2)–H(1) 1.39, Si(2)–C(31) 1.908(2), Si(2)–C(41) 1.894(2); Cl(1)–Si(1)–C(11) 103.13(7), Cl(1)–Si(1)–Si(2) 102.56(3), Cl(1)–Si(1)–C(21) 104.63(7), C(11)–Si(1)–Si(2) 104.19(6), C(11)–Si(1)–C(21) 113.82(9), C(21)–Si(1)–Si(2) 125.78(7); C(21)–Si(1)–Si(2)–C(31) 172.24(10), Cl(1)–Si(1)–Si(2)–H(1) 163.8, C(11)–Si(1)–Si(2)–C(41) 176.64(10). an *ortho*-nitrophenyl octyl ether (NOE) or *meta*-nitrobenzylalcohol (3-NBA) matrix. Elemental analyses were performed at Mikroanalytisches Labor der Georg-August-Universität Göttingen [26]. All manipulations of air and moisture sensitive compounds were carried out under an inert argon atmosphere using carefully dried glassware. Ethereal solvents, hexane, pentane, toluene and C_6D_6 used were dried by refluxing over sodium benzophenone ketyl and distilled immediately before use; CDCl₃, CCl₄ was dried using molecular sieve (4 Å). Mes₂SiHLi [27], **19** [28], **21** [3a], **32b** [29], **32c** [30], and **35** [31] were obtained by published procedures. #### 3.1. Formation of disilanes by silylene insertion ### 3.1.1. 1-Chloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2,2-trimethyldisilane (**6a**) A solution of 120 mg (0.14 mmol) of 1 and 51 μ l (0.40 mmol) of 5 in 0.5 ml of C_6D_6 was heated at 50 °C. After 4 h only 6a and surplus 5 could be detected in the reaction mixture by means of ¹H-NMR spectroscopy. The solvent was removed in vacuo, 5 ml of hexane were added and the resulting suspension was filtered leaving behind 87 mg (54%) of 6a as a white solid (melting point (m.p.) 92–93 °C). ¹H-NMR (C_6D_6) : $\delta = 0.36$ (s, 9H, SiMe₃), 1.78 (s, 12H, NMe₂), 2.99, 3.42 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 7.13– 7.24 (m, 4H, ar H), 7.38 (dd, ${}^{3}J = 8$ Hz, ${}^{4}J = 2$ Hz, 2H, ar H), 8.07 (dd, ${}^{3}J = 6$ Hz, ${}^{4}J = 2$ Hz, 2H, ar H). ${}^{13}C$ -NMR (C_6D_6) : $\delta = -0.3$ (SiMe₃), 45.3 (NMe₂), 64.2 (CH₂N), 126.6 (ar CH), 128.7 (ar CH), 129.9 (ar CH), 135.6 (ar C_o), 136.6 (ar CH), 146.0 (ar C_o). ²⁹Si-NMR (C_6D_6) : $\delta = -1.2$ (SiCl)), -13.3 (SiMe₃). ### 3.1.2. 1,2-Dichloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2-dimethyldisilane (**8a**) A solution of 118 mg (0.13 mmol) of **1** and 48 μl (0.40 mmol) of **7a** in 0.5 ml of C_6D_6 was heated for 2.5 h at 55 °C. After removal of the solvent and excess silane in vacuo 161 mg (95%) of **8a** were obtained as a ¹H-NMR spectroscopically pure, colorless oil. ¹H-NMR (C_6D_6): $\delta = 0.75$ (s, 6H, SiMe₂), 1.86 (s, 12H, NMe₂), 3.00, 3.46 (AB system, $^2J_{AB} = 13$ Hz, 4H, CH₂N), 7.11–7.27 (m, 6H, ar H), 8.22–8.26 (m, 2H, ar H). ¹³C-NMR (C_6D_6): $\delta = 4.5$ (SiMe₂), 45.5 (NMe₂), 64.3 (CH₂N), 126.9 (ar CH), 128.2 (ar CH), 130.1 (ar CH), 135.3 (ar C_q), 136.9 (ar CH), 145.9 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = 16.2$ (SiMe₂Cl), – 29.6 (SiAr₂Cl). MS (EI), m/z (%): 424 (8) [M]⁺, 290 (92) [M⁺–Ar], 134 (36) [Ar]⁺, 91 (75) [C_7H_7]⁺, 58 (45) [CH₂NMe₂]⁺. 3.1.3. 2-Chloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2-dimethyldisilane (**8b**) and 1-chloro-1,1-bis[2-(dimethylaminomethyl)phenyl]-2,2-dimethyldisilane (**8c**) A solution of 140 mg (0.16 mmol) of $\mathbf{1}$ and 51 μ l (0.47 mmol) of **7b** in 0.5 ml of C_6D_6 was heated for 2 h at 70 °C. After removal of the solvent and surplus silane in vacuo 154 mg (78%) of a 3:1 mixture of **8b** and c were obtained as a viscous oil. 8b: ¹H-NMR (C₆D₆): $\delta = 0.55$ (s, 6H, SiMe₂), 1.82 (s, 12H, NMe₂), 3.27 (s, 4H, CH₂N), 5.22 (s (d, ${}^{1}J_{SiH} = 202$ Hz), 1H, SiH), 7.06–7.21 (m, 6H, ar H), 7.84 (d, ${}^{3}J = 6$ Hz, 2H, ar H). ¹³C-NMR (C₆D₆): $\delta = 4.4$ (SiMe₂), 45.7 (NMe₂), 65.0 (CH₂N), 126.5 (ar CH), 129.1 (ar CH), 129.4 (ar CH), 134.2 (ar C_q), 137.5 (ar CH), 145.7 (ar C_q). ²⁹Si-NMR (C_6D_6) : $\delta = 22.8$ (SiMe₂Cl), -41.1 (d, ${}^1J_{SiH} = 202$ Hz, SiAr₂H). IR (film): $\tilde{v} = 2114$ cm⁻¹. **8c**: ¹H-NMR
(C_6D_6) : $\delta = 0.36$ (d, ${}^3J = 4$ Hz, 6H, SiMe₂), 1.79 (s, 12H, NMe₂), 3.05, 3.39 (AB System, ${}^{2}J_{AB} = 14$ Hz, 4H, CH₂N), 4.26 (sep, ${}^{3}J = 4$ Hz (d, ${}^{1}J_{SiH} = 182$ Hz), 1H, SiH), 7.06-7.21 (m, 4H, ar H), 7.28 (d, $^{3}J = 7$ Hz, 2H, ar H), 8.10 (dd, ${}^{3}J = 6$ Hz, ${}^{4}J = 2$ Hz, 2H, ar H). ¹³C-NMR (C₆D₆): $\delta = -5.0$ (SiMe₂), 45.2 (NMe₂), 64.1 (CH₂N), 126.7 (ar CH), 128.1 (ar CH), 129.7 (ar CH), 135.7 (ar C_0), 136.8 (ar CH), 145.5 (ar C_0). ²⁹Si-NMR (C₆D₆): $\delta = -16.8$ (SiAr₂Cl) $\delta = -35.0$ (dsep, ${}^{1}J_{SiH} = 182$, ${}^{2}J_{SiH} = 7$ Hz, SiMe₂H). IR (film): $\tilde{v} = 2114 \text{ cm}^{-1}$. ### 3.1.4. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2,2-diphenyldisilane (**10a**) A solution of 148 mg (0.17 mmol) of 1 and 93 μl (0.50 mmol) of 9a in 2 ml of toluene was heated for 2 h at 90 °C. After removal of the solvent in vacuo 188 mg (78%) of **10a** were obtained as a viscous oil. ¹H-NMR (C_6D_6): $\delta = 1.83$ (s, 12H, NMe₂), 3.31 (s, 4H, CH₂N), 5.45 (d, ${}^{3}J = 3$ Hz (d, ${}^{1}J_{SiH} = 189$ Hz), 1H, SiH), 5.61 (d, ${}^{3}J = 3$ Hz (d, ${}^{1}J_{SiH} = 200$ Hz), 1H, SiH), 6.99 (ddd, ${}^{3}J = 7$ Hz, ${}^{3}J = 7$ Hz, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H) 7.08-7.22 (m, 10H, ar H), 7.64-7.68 (m, 4H, ar H), 7.77 (d, ${}^{3}J = 7$ Hz, 2H, ar H). ${}^{13}C$ -NMR (C₆D₆): $\delta = 44.7 \text{ (NMe}_2), 65.0 \text{ (CH}_2\text{N)}, 126.5 \text{ (ar CH)}, 128.2 \text{ (ar}$ CH), 129.1 (ar CH), 129.1 (ar CH), 129.1 (ar CH), 135.1 (ar C_q), 135.5 (ar C_q), 136.5 (ar CH), 138.1 (ar CH), 146.0 (at C_q). ²⁹Si-NMR (C_6D_6): $\delta = -30.8$ (ddqin, ${}^{1}J_{SiH} = 189 \text{ Hz}, {}^{2}J_{SiH} = 5 \text{ Hz}, {}^{3}J_{SiH} = 4 \text{ Hz},$ SiPh₂H), -42.3 (ddt, ${}^{1}J_{SiH} = 200$ Hz, ${}^{2}J_{SiH} = 5$ Hz, $^{3}J_{\text{SiH}} = 6$ Hz, SiAr₂H). IR (film): $\tilde{v} = 2128$ cm⁻¹. MS (EI, 70 eV), m/z (%): 479 (1) [M⁺-H], 435 (8) [M⁺ $-NMe_2-H$], 420 (12) [M⁺ $-NMe_2-Me-H$], 346 (11) [M⁺ -Ar], 297 (100) [M⁺ $-Ph_2SiH$], 252 (10) [M⁺ $-Ph_2$ -SiH-NMe₂-H], 238 (13) [M⁺-Ph₂SiH-NMe₂-Me], 209 (8) $[M^+-Ph_2SiH-2NMe_2]$, 182 (8) $[Ph_2Si]^+$, 134 (2) $[Ar]^+$, 105 (13) $[PhSi]^+$, 91 (3) $[C_7H_7]^+$, 58 (10) $[CH_2NMe_2]^+$. $C_{30}H_{36}N_2Si_2$ (480.2417): correct HRMS. Anal. Calc. for $C_{30}H_{36}N_2Si_2$ (480.80): C, 74.94; H 7.55. Found: C, 75.40; H, 8.01%. ### 3.1.5. 1,2-Dichloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2-diphenyldisilane (10b) A solution of 5.00 g (5.62 mmol) of 1 and 3.25 ml (16.9 mmol) of **9b** in 50 ml of toluene was stirred for 2 days at 55 °C. The solvent was removed in vacuo and 150 ml of pentane were added to the solid residue. The resulting suspension was filtered and the filtrate was reduced in vacuo to a volume of 40 ml. After cooling at -20 °C for 15 h 7.77 g (78%) of **10b** were obtained as a colorless solid (m.p. 114-115 °C). ¹H-NMR (C₆D₆): $\delta = 1.82$ (s, 12H, NMe₂), 3.04, 3.42 (AB system, ${}^{2}J_{AB} =$ 14 Hz, 4H, CH₂N), 7.04-7.20 (m, 10H, ar H), 7.29 (d, $^{3}J = 8$ Hz, 2H, ar H), 7.90–7.94 (m, 4H, ar H), 8.39 $(dd, {}^{3}J = 7 Hz, {}^{4}J = 2 Hz, 2H, ar H). {}^{13}C-NMR (C_{6}D_{6}):$ $\delta = 45.4 \text{ (NMe}_2), 64.0 \text{ (CH}_2\text{N)}, 126.5 \text{ (ar CH)}, 127.9 \text{ (ar}$ CH), 128.3 (ar CH), 130.2 (ar CH), 130.3 (ar CH), 134.0 (ar C_q), 134.8 (ar C_q), 135.8 (ar CH), 137.5 (ar CH), 146.0 (ar C_0). ²⁹Si-NMR (C_6D_6): $\delta = -2.3$ (Si 2), -21.7 (Si 1). MS (EI, 70 eV), m/z (%): 552/550/548(1/3/4) [M]⁺, 418/416/414 (11/41/55) [M⁺-Ar], 333/331 $[M^+-Ph_2SiCl]$, 288/286 (20/35)-Ph₂SiCl-HNMe₂], 274/272 (18/47) [M⁺-Ph₂SiCl- NMe_2-Me_1 , 200/198 (14/39) $[M^+-Ph_2SiCl-Ar + H]$, 134 (18) $[Ar]^+$, 91 (19) $[C_7H_7]^+$, 77 (21) $[C_6H_5]^+$, 58 (49) $[CH_2NMe_2]^+$. $C_{30}H_{34}N_2Si_2Cl_2$ (548.1637): correct HRMS. Anal. Calc. for $C_{30}H_{34}N_2Si_2Cl_2$ (549.69): C, 65.55; H, 6.23. Found: C, 66.01; H, 6.66%. # 3.1.6. 2-Chloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2-diphenyldisilane (**10c**) and 1-chloro1,1-bis[2-(dimethylaminomethyl)phenyl]-2,2-diphenyldisilane (**10d**) A solution of 123 mg (0.14 mmol) of $\mathbf{1}$ and 81 μ l (0.42 mmol) of 9c in 0.5 ml of C_6D_6 was stirred for 20 min at 90 °C. After removal of the solvent in vacuo 178 mg (83%) of a 2:1 mixture of **10c** and **10d** were obtained as a viscous oil. **10c**: ${}^{1}\text{H-NMR}$ (C₆D₆): $\delta =$ 1.77 (s, 12H, NMe₂), 3.18, 3.38 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 5.72 (s (d, ${}^{1}J_{SiH} = 209$ Hz), 1H, SiH), 6.93-7.28 (m, 12H, ar H), 7.68-7.71 (m, 4H, ar H), 7.82 (d, ${}^{3}J = 7$ Hz, 2H, ar H). ${}^{13}\text{C-NMR}$ (C₆D₆): $\delta =$ 44.8 (NMe₂), 64.8 (CH₂N), 126.4 (ar CH), 128.2 (ar CH), 128.9 (ar CH), 129.5 (ar CH), 130.0 (ar CH), 132.9 (ar C_0), 135.2 (ar CH), 136.7 (ar C_0), 138.2 (ar CH), 146.1 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = 3.5$ (Ph₂SiCl), -31.9 (dt, $^1J_{\text{SiH}} = 209$ Hz, $^3J_{\text{SiH}} = 6$ Hz, Ar₂SiH). **10d**: ¹H-NMR (C₆D₆): $\delta = 1.80$ (s, 12H, NMe₂), 3.13, 3.34 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 5.46 (s (d, ${}^{1}J_{SiH} = 190 \text{ Hz}$), 1H, SiH), 6.93–7.28 (m, 12H, ar H), 7.84–7.87 (m, 4H, ar H), 8.22 (d, ${}^{3}J = 7$ Hz, 2H, ar H). ¹³C-NMR (C_6D_6): $\delta = 45.4$ (NMe₂), 64.1 (CH₂N), 126.6 (ar CH), 128.1 (ar CH), 128.9 (ar CH), 129.6 (ar CH), 133.9 (ar C_a), 134.8 (ar CH), 135.3 (ar C_q), 136.9 (ar CH), 137.5 (ar CH), 145.9 (ar C_q). 29 Si-NMR (C₆D₆): $\delta = -18.2$ (Ar₂SiCl), -45.2 (dqin, $^{1}J_{\text{SiH}} = 189$ Hz, $^{3}J_{\text{SiH}} = 5$ Hz, Ph₂SiH). ### 3.1.7. 1,2-dichloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2-bis(4-methylphenyl)disilane (12a) A solution of 247 mg (0.28 mmol) of 1 and 234 mg (0.83 mmol) of 11 in 8 ml of toluene was heated for 17 h at 50 °C. The solvent was removed in vacuo and 14 ml of Et₂O were added to the solid residue. The resulting suspension was filtered, the filtrate was evaporated in vacuo and the residue was dissolved in 10 ml of pentane. The solution was cooled at -20 °C for 3 days and 214 mg (44%) of 12a were obtained as a colorless solid (m.p. 105-107 °C). ¹H-NMR (C₆D₆): $\delta = 1.85$ (s, 12H, NMe₂), 1.95 (s, 6H, CH₃), 3.04, 3.43 (AB system, ${}^{2}J_{AB} = 14$ Hz, 4H, CH₂N), 6.93 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 7.12-7.20 (m, 4H, ar H), 7.28-7.32 (m, 2H, ar H), 7.89 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 8.44–8.48 (m, 2H, ar H). ¹³C-NMR (C₆D₆): $\delta = 21.4$ (CH₃), 45.5 (NMe₂), 64.1 (CH₂N), 126.6 (ar CH), 128.4 (ar CH), 129.0 (ar CH), 130.4 (ar CH), 131.6 (ar C_q), 134.4 (ar C_{q}), 136.0 (ar CH), 137.7 (ar CH), 140.2 (ar C_{q}), 146.2 $(\text{ar } C_0)$. ²⁹Si-NMR (C₆D₆): $\delta = -1.8$ (Si 2), -19.6 (Si 1). MS (EI, 70 eV), m/z (%): 578/576 (2/3) [M]⁺, 508/506 (3/5) [M+-NMe₂-Me-H], 446/444/442 (8/33/ 48) [M⁺-Ar], 333/331 (19/57) [Ar₂SiCl]⁺, 274/272 (35/ 100) $[M^+-(MeC_6H_4)SiCl-NMe_2-Me]$, 200/198 (31/100) $[ArSiClH]^+$, 178 (82) $[C_{12}H_6Si]^+$, 91 (43) $[C_7H_7]^+$, 58 (56) $[CH_2NMe_2]^+$. $C_{32}H_{38}Cl_2N_2Si_2$ (576.1950): correct HRMS. Anal. Calc. for $C_{32}H_{38}Cl_2N_2Si_2$ (577.74): C, 66.53; H, 6.63. Found: C, 67.26; H, 6.71%. ### 3.1.8. 1,2-Dichloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2-bis(4-chlorophenyl)disilane (14a) A solution of 300 mg (0.34 mmol) of 1 and 326 mg (1.01 mmol) of 13 in 8 ml of toluene was heated for 17 h at 50 °C. The solvent was removed in vacuo and 20 ml of Et₂O were added to the solid residue. The resulting suspension was filtered and the solvent was evaporated from the filtrate in vacuo. The residue was solved in 10 ml of pentane and the solution was cooled to -20 °C. After 3 days, 249 mg (40%) of **14a** were obtained as a colorless solid (m.p. 115-116 °C). ¹H-NMR (C_6D_6): $\delta = 1.81$ (s, 12H, NMe₂), 3.03, 3.40 (AB system, ${}^{2}J_{AB} = 14$ Hz, 4H, CH₂N), 7.04 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 7.09-7.31 (m, 6H, ar H), 7.65 (d, $^{3}J = 8$ Hz, 4H, ar H), 8.28 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 2$ Hz, 2H, ar H). ¹³C-NMR (C_6D_6): $\delta = 45.5$ (NMe₂), 64.1 (CH₂N), 126.8 (ar CH), 128.4 (ar CH), 130.5 (ar CH), 133.2 (ar C_o), 134.0 (ar C_q), 135.6 (ar CH), 137.0 (ar C_q), 137.3 (ar CH), 137.4 (ar CH), 145.9 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = -3.4$ (Si 2), -24.3 (Si 1). MS (El, 70 eV), m/z(%): 620/618/616 (5/8/6) [M]+, 585/583/581 (5/13/12) $[M^+-Cl]$, 488/486/484/482 (17/50/82/57) $[M^+-Ar]$, 333/ 331 (38/100) [Ar₂SiCl]⁺, 288/286 (33/61) [M⁺ -(ClC₆H₄)₂SiCl-NMe₂-H], 178 (58) [C₁₂H₆Si]⁺, 134 (45) [Ar]⁺, 58 (53) [CH₂NMe₂]⁺. $C_{30}H_{32}Cl_4N_2Si_2$ (616.0858): correct HRMS. Anal. Calc. for $C_{30}H_{32}Cl_4N_2Si_2$ (618.58): C, 58.25; H, 5.21. Found: C, 59.19; H, 5.42%. ### 3.1.9. 1,2-Dichloro-2,2-bis(2-ethylphenyl)-1,1-bis[2-(dimethylaminomethyl)phenyl]disilane (16) A solution of 1.00 g (1.12 mmol) of 1 and 1.04 g (0.37 mmol) of 15 in 20 ml of toluene was heated for 8 h at 50 °C. The solvent was removed in vacuo, 50 ml of pentane was added to the solid residue and the resulting suspension was filtered. The solvent was evaporated in vacuo from the filtrate leaving behind 1.79 g (88%) of 16 as ¹H-NMR spectroscopically pure, yellowish oil. ¹H-NMR (C₆D₆): $\delta = 0.94$ (t, ³J = 7 Hz, 6H, CH₂CH₃), 1.87 (s, 12H, NMe₂), 2.64 (q, ${}^{3}J = 7$ Hz, 4H, C $\underline{\text{H}}_{2}$ CH₃), 3.19, 3.57 (AB System, ${}^{2}J_{AB} = 14 \text{ Hz}$, 4H, CH₂N), 6.92 $(dd, {}^{3}J={}^{3}J=7 Hz, 2H, ar H), 6.95 (dd, {}^{3}J={}^{3}J=7 Hz,$ 2H, ar H), 7.05 (d, ${}^{3}J = 7$ Hz, 2H, ar H), 7.05–7.30 (m, 4H, ar H), 7.50 (d, ${}^{3}J = 8$ Hz, 2H, ar H), 7.98–8.15 (m, 4H, ar H). ¹³C-NMR (C₆D₆): $\delta = 15.3$ (CH₂CH₃), 29.9 (CH₂CH₃), 45.3 (NMe₂), 64.0 (CH₂N), 125.4 (ar CH), 126.4 (ar CH), 128.8 (ar CH), 128.9 (ar CH), 130.6 (ar CH), 131.0 (ar CH), 133.0 (ar C_q), 133.1 (ar C_q), 137.0 (ar CH), 137.6 (ar CH), 146.6 (ar C_q), 151.0 (ar C_q). ²⁹Si-NMR (C₆D₆): $\delta = +0.4$ (Si 2), -4.5 (Si 1). MS (FAB, NOE), m/z (%): 603 (100) [M⁺ – 1]. ### 3.1.10.
1,1,2,2-Tetrakis[2-(dimethylaminomethyl)-phenyl]disilane [12] (18a) 110 mg (0.12 mmol) of 1 and 112 mg (0.38 mmol) of 17a were dissolved in 0.5 ml of C₆D₆ and heated for 3 days at 70 °C and additional 2 days at 90 °C. The cloudy solution was filtered. Removing of the solvent from the filtrate in vacuo left behind 223 mg (96%) of 18a as a colorless solid (m.p. 90-92 °C). ¹H-NMR (C_6D_6) : $\delta = 1.91$ (s, 24H, NMe₂), 3.35, 3.57 (AB System, ${}^{2}J_{AB} = 14 \text{ Hz}$, 8H, CH₂N), 5.51 (s (dd, ${}^{1}J_{SiH} = 200$ Hz, ${}^{3}J_{HH} = 2$ Hz), 2H, SiH), 6.99 (ddd, ${}^{3}J = {}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 7.16 (ddd, ${}^{3}J = {}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 7.28 (d, ${}^{3}J = 7$ Hz, 4H, ar H), 7.68 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H). ${}^{13}C\text{-NMR}$ (CDCl₃): $\delta = 44.9 \text{ (NMe}_2), 64.5 \text{ (CH}_2\text{N)}, 125.8 \text{ (ar CH)}, 128.3 \text{ (ar}$ CH), 128.4 (ar CH), 136.1 (ar C_q), 137.6 (ar CH), 145.2 (ar C₉). ¹³C-NMR (C₆D₆): $\delta = 45.0$ (NMe₂), 65.3 (CH₂N), 126.3 (ar CH), 128.6 (ar CH), 128.9 (ar CH), 137.6 (ar C_o), 138.2 (ar CH), 145.7 (ar C_o). ²⁹Si-NMR (C_6D_6) : $\delta = -41.5$. IR (KBr): $\tilde{v} = 2140$ cm⁻¹. MS (FAB, 3-NBA), m/z (%): 593 (1) [M⁺-H], 297 (100) $[(M/2)]^+$. Anal. Calc. for $C_{36}H_{50}N_4Si_2$ (595.0): C, 72.67; H, 8.47; N, 9.42. Found: C, 72.58; H, 8.53; N, 9.37%. ### 3.1.11. 1,2-Dichloro-1,1,2,2-tetrakis[2-(dimethylamino-methyl)phenyl]disilane (18b) A solution of 50 mg (56 μ mol) of 1 and 62 mg (0.17 mmol) of 17b in 0.5 ml of C_6D_6 was heated for 4.5 h at 50 °C. The solvent was removed in vacuo leaving behind 102 mg (91%) of crude **18b**, which was solved in 2 ml of hexane. On cooling the solution to -20 °C for 4 days, 77 mg (68%) of **18b** were obtained as a white solid ¹H-NMR (C₆D₆): $\delta = 1.80$ (s, 24H, NMe₂), 3.20, 3.46 (AB system, ${}^{2}J_{AB} = 14$ Hz, 8H, CH₂N), 6.83 (dd, ${}^{3}J = 7$ Hz, ${}^{3}J = 7$ Hz, 4H, ar H), 7.07 (ddd, ${}^{3}J = 7$ Hz, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 7.52 (d, ${}^{3}J = 7$ Hz, 4H, ar H), 8.00 (d, ${}^{3}J = 7$ Hz, 4H, ar H). ${}^{13}\text{C-NMR}$ (C₆D₆): $\delta =$ 45.4 (NMe₂), 63.9 (CH₂N), 126.4 (ar CH), 128.9 (ar CH), 130.7 (ar CH), 133.2 (ar C_q), 137.5 (ar CH), 146.8 (ar C_0). ²⁹Si-NMR (C_6D_6): $\delta = -2.9$. MS (EI, 70 eV), m/z (%): 662 (<1)) [M]⁺, 627 (10) [M⁺-Cl], 331 (85) $[(M/2)]^+$, 178 (100) $[C_{12}H_6Si]^+$. Anal. Calc. for $C_{36}H_{48}Cl_2N_4Si_2$ (663.9): C, 65.13; H, 7.29; N, 8.44. Found: C, 65.08; H, 7.61; N, 8.35%. ### 3.1.12. 1-Chloro-1,1,2,2-tetrakis[2-(dimethylamino-methyl)phenyl]disilane (18c) A solution of 85 mg (96 μ mol) of 1 and 95 mg (0.29 mmol) of 17c in 0.8 ml of C₆D₆ was heated for 6 h at 50 °C. The solvent was removed in vacuo leaving behind 175 mg (97%) of **18c** as a colorless solid (m.p. 80-82 °C). ¹H-NMR (C₆D₆): $\delta = 1.83$ (s, 12H, NMe₂), 1.96 (s, 12H, NMe₂), 3.31, 3.37 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 3.39, 3.60 (AB system, ${}^{2}J_{AB} = 14$ Hz, 4H, CH₂N), 5.90 (s, (d, ${}^{1}J_{SiH} = 201$ Hz), 1H, SiH), 6.98 $(dd, {}^{3}J = 7 Hz, {}^{3}J = 7 Hz, 2H, ar H), 7.05-7.23 (m, 6H,$ ar H), 7.40 (d, ${}^{3}J = 7$ Hz. 2H, ar H), 7.44 (d, ${}^{3}J = 7$ Hz, 2H, ar H), 8.04 (d, ${}^{3}J = 8$ Hz, 2H, ar H), 8.28 (d, ${}^{3}J = 8$ Hz, 2H, ar H). ¹³C-NMR (C_6D_6): $\delta = 45.0$ (NMe₂), 45.1 (NMe₂), 64.1 (CH₂N), 64.8 (CH₂N), 126.2 (ar CH), 126.4 (ar CH), 128.3 (ar CH), 128.8 (ar CH), 129.4 (ar CH), 129.9 (ar CH), 133.9 (ar C_q), 137.0 (ar C_{q}), 137.7 (ar CH), 138.8 (ar CH), 145.7 (ar C_{q}), 146.3 (ar C_0). ²⁹Si-NMR (C_6D_6): $\delta = -44.8$ (Si 2), -8.6 (Si 1). Anal. Calc. for C₃₆H₄₉ClN₄Si₂ (629.4): C, 68.70; H, 7.85; N, 8.90. Found: C, 68.57; H, 7.90; N, 8.82%. ### 3.1.13. 1-{Bis[2'-(dimethylaminomethyl)phenyl]-chlorosilyl}-1-chlorodibenzo[b,d]silole (**20**) A solution of 2.21 g (2.49 mmol) of **1** and 1.88 g (7.47 mmol) of **19** in 40 ml of toluene was stirred for 17 h at 55 °C. The solvent was removed in vacuo and the remaining yellow–orange solid was washed with 20 ml of dry hexane to give 3.05 g (75%) of **20** as yellow crystals (m.p. 85–86 °C), which are, according to ¹H-NMR spectrum, contaminated with traces of an unidentified compound. ¹H-NMR (C_6D_6): $\delta = 1.66$ (s, 12H, NMe₂), 2.90, 3.40 (AB system, 4H, CH₂N, ² J_{AB} = 13 Hz), 7.03 (ddd, ³J=³J= 7 Hz, ⁴J= 1 Hz, ar H, 2H), 7.12–7.18 (m, 8H, ar H), 7.49 (d, ³J= 8 Hz, 2H, ar H), 7.90 (dd, ³J= 6 Hz, ⁴J= 1 Hz, 2H, ar H), 8.38 (dd, ³J= 8 Hz, ⁴J= 1 Hz, 2H, ar H). ¹³C-NMR (C_6D_6): δ = 45.1 (NMe₂), 64.3 (CH₂N), 121.6 (ar CH), 126.9 (ar CH), 128.2 (ar CH), 128.5 (ar CH), 130.4 (ar CH), 131.6 (ar CH), 134.0 (ar C_q), 134.3 (ar CH), 136.4 (ar C_q), 137.4 (ar CH), 145.9 (ar C_q), 148.0 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = -1.0$, -19.0. # 3.1.14. 1-Chloro-1-{bis[2'-(dimethylaminomethyl)-phenyl]chlorosilyl}-2,3,4,5-tetraphenyl-1-silacyclo-pentadiene (22) A solution of 610 mg (1.34 mmol) of **21** and 400 mg (0.45 mmol) of 1 in 10 ml of toluene was stirred for 4 h at 65 °C. The solvent was removed in vacuo leaving behind 1.00 g (98%) of 22 as yellow crystals (m.p. 94–96 °C). ¹H-NMR (C_6D_6): $\delta = 1.78$ (s, 12H, NMe₂), 2.92, 3.41 (AB System, ${}^{2}J_{AB} = 13$ Hz, CH₂N, 4H), 6.72-6.87 (m, ar H, 12H), 6.95 (ddd, ${}^{3}J={}^{3}J=7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H), 7.02–7.15 (m, 8H, ar H), 7.28 $(dd, {}^{3}J = 8 Hz, {}^{4}J = 1 Hz, ar H, 4H), 8.23 (d, {}^{3}J = 8 Hz,$ 2H, ar H). ¹³C-NMR (C₆D₆): $\delta = 45.5$ (NMe₂), 64.1 (CH₂N), 126.1 (ar CH), 126.6 (ar CH), 126.8 (ar CH), 128.3 (ar CH), 128.5 (ar CH), 129.3 (ar CH), 130.1 (ar CH), 130.2 (ar CH), 130.3 (ar CH), 134.2 (ar C₀), 138.0 (ar CH), 138.5 (ar C_q), 138.8 (ar C_q) 140.6 (ar C_q), 145.7 (ar C_q), 156.7 (ar C_q). ²⁹Si-NMR (C₆D₆): $\delta = 0.6$, -26.4. MS (FAB (NOE), pos. mode), m/z (%): 753/ 751 (1/2) [M + 1]⁺, 715 (2) [M⁺-Cl, correct isotope pattern]. ### 3.1.15. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2-phenyl-1,2,2-trichlorodisilane (**24a**) A solution of 527 mg (0.60 mmol) of 1 and 284 μl (1.78 mmol) in 10 ml of toluene was stirred for 7 days at room temperature (r.t.). After removing the solvent in vacuo 10 ml of hexane were added to the residue and the resulting suspension was filtered. The solvent was removed from the filtrate in vacuo leaving behind 768 mg (85%) of **24a** as a viscous oil. 1 H-NMR (6 D₆): $\delta = 1.78$ (s, 12H, NMe₂), 2.90, 3.43 (AB system, 2 J_{AB} = 13 Hz, 4H, CH₂N), 6.97–7.16 (m, 9H, ar H), 7.89–7.97 (m, 2H, ar H), 8.29–8.33 (m, 2H, ar H). 13 C-NMR (6 D₆): $\delta = 45.5$ (NMe₂), 64.3 (CH₂N), 127.0 (ar CH), 128.1 (ar CH), 128.7 (ar CH), 130.6 (ar CH), 131.0 (ar CH), 132.9 (ar C_q), 134.6 (ar CH), 135.2 (ar C_q), 137.2 (ar CH), 146.0 (ar C_q). 29 Si-NMR (6 D₆): $\delta = 9.5$ (PhSiCl₂), -23.6 (Ar₂SiCl). #### 3.1.16. Reaction of **1** with **25** A solution of 258 mg (0.29 mmol) of 1 and 215 mg (0.80 mmol) of 25 in 5 ml toluene was stirred for 5 days at r.t. The suspension was filtered. After removal of the solvent from the filtrate in vacuo 293 mg (99%) of 17b were obtained as a colorless solid. The white solid, which was filtered off, was insoluble in hydrocarbons, etheral solvent and halogenated solvents. Anal. for the precipitate found: C, 51.65; H, 6.59; N, 6.09%. # 3.1.17. 1,2-Dichloro-1-[2-(dimethylaminomethyl)-phenyl]-2,2-diphenyl-1-(2,4,6-trimethylphenyl)disilane (26b) A solution of 432 mg (0.51 mmol) of 3 and 315 μl (1.50 mmol) of 9b in 20 ml of toluene was stirred for 3 days at 80 °C. The solvent was removed in vacuo and 20 ml of pentane were added to the residue. The resulting suspension was filtered leaving behind 642 mg (80%) of **26b** as colorless crystals (m.p. 130–132 °C). ¹H-NMR (C₆D₆): $\delta = 1.82$ (s, o-Me, 6H), 2.04 (s, p-Me, 3 H), 2.47 (s, NMe₂, 6H), 2.43, 3.37 (AB system, $^{2}J_{AB} = 13 \text{ Hz}, 2H, CH_{2}N), 6.64 \text{ (s, ar H, 2H)}, 6.90-7.13$ (m, ar H, 10H), 7.69 (dd, ${}^{3}J = 6$ Hz, 2H, ar H), 8.14 (dd, ${}^{3}J = 8$ Hz, ${}^{4}J = 3$ Hz, 2H, ar H). ${}^{13}C$ -NMR ($C_{6}D_{6}$): $\delta = 21.0$ (Me), 25.3 (Me), 45.8 (CH₃N), 64.9 (CH₂N), 127.2 (ar CH), 128.2 (ar CH), 129.6 (ar CH), 130.0 (ar CH), 130.2 (ar CH), 130.5 (ar CH), 134.0 (ar C₀), 134.5 (ar C_q), 134.9 (ar C_q), 136.5 (ar CH), 136.7 (ar CH), 138.5 (ar CH), 139.4 (ar C_q), 144.6 (ar C_q), 145.5 (ar C_{q}), 146.0 (ar C_{q}). ²⁹Si-NMR ($C_{6}D_{6}$): $\delta = -2.1$ $(SiPh_2Cl)$, -15.0 (SiArMesCl). # 3.1.18. 1-Chloro-1-{[2'-(dimethylaminomethyl)-phenyl][(2,4,6-trimethylphenyl]chlorosilyl}-2,3,4,5-tetraphenyl-1-silacyclopentadiene (29) A solution of 799 mg (1.75 mmol) of 21 and 511 mg (0.61 mmol) of 3 in 20 ml of toluene was heated for 24 h at 90 °C. The solvent was removed in vacuo and the residue was suspended in 20 ml of pentane. After filtration of the suspension 453 mg (35%) of 29 remained as a white solid (m.p. 73-75 °C). ¹H-NMR (C_6D_6) : $\delta = 1.76$ (s, 6H, o-Me), 2.00 (s, 3H, p-Me), 2.31 (s, 6H, NMe₂), 2.65 3.10 (AB system, ${}^{2}J_{AB} = 13$ Hz, 2H, CH₂N), 6.53 (s, ar H, 2H), 6.66-7.23 (br.m, 19H, ar H), 7.40 (dd, ${}^{3}J = 8$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H), 7.49 (d, $^{3}J = 7$ Hz, 2H, ar H), 8.31 (dd, $^{3}J = 8$ Hz, $^{4}J = 1$ Hz, 1H, ar H). ¹³C-NMR (C₆D₆): $\delta = 21.4$ (Me), 25.2 (Me), 45.6 (NMe₂), 64.7 (CH₂N), 125.6 (ar CH), 126.2 (ar CH), 126.3 (ar CH), 126.7 (ar CH), 126.8 (ar CH), 127.6 (ar CH), 127.8 (ar CH), 128.1 (ar CH), 128.5 (ar CH), 128.8 (ar CH), 128.9 (ar CH), 129.3 (ar CH), 129.5 (ar CH), 129.7 (ar CH), 129.8 (ar CH), 129.9 (ar CH), 129.9 (ar CH), 130.0 (ar CH), 130.1 (ar CH), 134.3 (ar CH), 135.9 (ar C_q), 137.1 (ar C_q), 138.2 (ar CH), 138.5 (ar C_q), 138.6 (ar C_q), 138.8 (ar C_q), 139.5 $(ar C_q)$, 139.6 $(ar C_q)$, 141.1 $(ar C_q)$, 144.0 $(ar C_q)$, 145.4 $(ar C_q)$, 155.3 $(ar C_q)$, 156.9 $(ar C_q)$, 157.3 $(ar C_q)$. ²⁹Si-NMR (C₆D₆): $\delta = 0.6$, -21.3. MS (FAB, 3-NBA),
m/z (%): 736/38/40 (70/54/14) [M⁺ + H], 700/02/04 (50/ 24/<1) [(M⁺-Cl], 316/318 (30/10) [ArMesClSi]⁺. ### 3.1.19. 1,2,2-Trichloro-1-[2-(dimethylaminomethyl)-phenyl]-1,2-bis-(2,4,6-trimethylphenyl)disilane (31) A solution of 1.49 g (1.80 mmol) of **3** and 1.34 g (5.30 mmol) of **30** in 35 ml of toluene was stirred for 17 h at 85 °C. The solvent was removed in vacuo and 30 ml of hexane were added to the remaining solid. The resulting suspension was filtered to yield 2.30 g (82%) of 31 as colorless crystals (m.p. 116-119 °C). ¹H-NMR (C_6D_6) : $\delta = 1.74$ (s, 6H, CH₃), 2.00 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), 2.47 (s, 6H, CH₃), 2.50 (s, 6H, CH₃), 2.81 3.42 (AB system, ${}^{2}J_{AB} = 13$ Hz, 2H, CH₂), 6.59 (s, 4H, ar H), 6.99-7.22 (m, 3H, ar H), 8.32 (d, $^{3}J = 7$ Hz, 1H, ar H). ¹³C-NMR (C₆D₆): $\delta = 20.9$ (p-Me), 25.4 (o-Me), 26.0 (o-Me), 45.3 (NMe₂), 64.5 (CH₂N), 127.5 (ar CH), 128.8 (ar CH), 129.8 (ar CH), 130.5 (ar CH), 130.8 (ar CH), 133.8 (ar C_q), 137.6 (ar CH), 140.2 (ar C_q), 141.2 $(ar C_q)$, 144.7 $(ar C_q)$, 145.5 (ar CH), 145.7 $(ar C_q)$, 146.3 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = 9.4$ (SiMesCl₂), -9.0 (SiArMesCl). MS (EI, 70 eV), m/z (%): 533 (16) [M⁺, correct isotope pattern], 380/82/84 (100/76/18) $[M^+ + H-Mes-Cl]$, 350/52/54 (28/24/8) [380-2 Me], (64/22) [MesArClSi]⁺, 306/308 316/318 [MesArCl₂Si⁺-H-NMe₂], 217/19 (44/20) [MesCl₂Si]⁺, 120 (100) [MesH]⁺, 105 (68) [MesH⁺–Me]. #### 3.1.20. Reaction of 1 with 32b A solution of 100 mg (296 μ mol) of **32b** and 88 mg (99 μ mol) of **1** in 0.4 ml of C_6D_6 was heated for 60 h at 90 °C. The ¹H-NMR and ²⁹Si-NMR spectra of the product mixture showed that, besides a small amount of **32b**, dichlorosilane **17b** and dichlorodisilane **18b** were formed as major products in a 4:1 ratio. #### 3.1.21. Reaction of **1** with **32a** A solution of 72 mg (0.27 mmol) of 32a and 80 mg (0.09 mmol) of 1 in 0.4 ml of C_6D_6 was heated for 84 h at 90 °C. In the product mixture small amounts of 33a were identified by comparing the ¹H-NMR spectrum with that of an authentic sample besides the starting materials and unknown compounds. #### 3.1.22. Reaction of 1 with 27b A solution of 47 mg (0.14 mmol) of **27b** and 40 mg (45 μ mol) of **1** in 0.5 ml of C_6D_6 was heated for 2 h at 45 °C. ¹H-NMR spectroscopic analysis showed **18b** to be the major product besides minor amounts of **17b** and **27b**. #### 3.1.23. Reaction of **3** with **17b** A solution of 52 mg (0.14 mmol) of **17b** and 40 mg (47 μ mol) of **3** in 0.5 ml of C₆D₆ was heated for 2 h at 85 °C. ¹H-NMR spectroscopic analysis showed **18b** to be the major product besides minor amounts of **27b** and **17b**. ### 3.1.24. 2-(Dimethylaminomethyl)phenyl-(2,4,6-trimethylphenyl)silane (27a) A solution of 460 mg (1.31 mmol) **27b** in 5 ml of a 1:1 mixture of THF-Et₂O (1:1) was added to a stirred suspension of 105 mg (2.76 mmol) of LiAlH₄ in 5 ml of Et₂O at 0 °C. The suspension was warmed to r.t., the solvent was removed in vacuo and 15 ml of Et₂O were added to the residue. After filtration of the resulting suspension 0.5 ml of H₂O was added to the filtrate at -78 °C. The resulting suspension was warmed to r.t. and filtered. The solvent was removed in vacuo from the filtrate leaving behind 279 mg (75%) of 27a as a colorless oil. ¹H-NMR (C_6D_6): $\delta = 1.96$ (s, 6H, NMe₂), 2.18 (s, 3H, p-Me), 2.45 (s, 6H, o-Me), 3.29 (s, 2H, CH₂N), 5.28 (s(d, ${}^{2}J_{SiH} = 209$ Hz), 2H, SiH), 6.83 (s, 2H, ar H), 6.98 (dd, $2^{.3}J = 7$ Hz, 1H, ar H), 7.08 (d, $^{3}J = 7$ Hz, 1H, ar H), 7.10 (d, $^{3}J = 7$ Hz, 1H, ar H), 7.56 (d, ${}^{3}J = 7$ Hz, 1H, ar H). ${}^{13}\text{C-NMR}$ (C₆D₆): $\delta = 21.3$ (Me), 23.7 (Me), 43.9 (NMe₂), 64.5 (CH₂N), 127.2 (ar CH), 127.9 (ar CH), 128.7 (ar CH), 129.7 (ar CH), 130.7 (ar C_q), 133.2 (ar C_q), 137.5 (ar CH), 138.7 $(ar C_q)$, 144.7 $(ar C_q)$, 146.5 $(ar C_q)$. ²⁹Si-NMR (C_6D_6) : $\delta = -55.6$ (dt, ${}^{1}J_{SiH} = 209$ Hz, ${}^{4}J_{SiH} = 6$ Hz). MS (EI, 70 eV), m/z (%): 282 (4) [M⁺ – 1], 237 (5) $[M^{+}-H-HNMe_{2}]$, 223 (12) $[M^{+}-CH_{2}NMe_{2}-Me-H]$, 164 (100) [M⁺-Mes], 148 (30) [M⁺-H-Ar], 135 (8) $[ArH]^+$, 119 (20) $[Mes]^+$, 91 (12) $[C_7H_7]^+$, 58 (18) $[CH_2NMe_2]^+$. Anal. Calc. for $C_{18}H_{25}NSi$ (283.49): C 76.26; H, 8.89, Found: C 76.56; H, 9.12%. #### 3.1.25. Reaction of 1 with 27a A solution of 50 mg (0.18 mmol) of **27a** and 52 mg (59 μ mol) of **1** in 0.5 ml of C₆D₆ was heated for 2 h at 60 °C and additional 15 h at 80 °C. The ¹H-NMR spectrum of the product mixture showed the signals of **17a** besides that of starting material **27a**; no signals of **1** could be detected. #### 3.1.26. Reaction of 3 with 17a A solution of 45 mg (0.15 mmol) of **17a** and 42 mg (50 μ mol) of **3** in 0.5 ml of C_6D_6 was heated for 18 h at 90 °C. The ¹H-NMR spectrum of the product mixture showed the signals of **27a** besides that of starting material **17a**; no signals of **1** could be detected. #### 3.2. Formation of trisilanes by silvlene insertion ### 3.2.1. 1,3-Dichloro-1,1-bis[2-(dimethylaminomethyl)-phenyl]-2,2,3,3-tetraphenyltrisilane (36) A solution of 100 mg (0.11 mmol) of 1 and 147 mg (0.34 mmol) of 35 in 0.5 ml of C₆D₆ was heated for 16 h at 45 °C. ¹H-NMR spectroscopic analysis of the reaction mixture at this point showed that still some 35 was present, although all 1 was consumed. Addition of further 15 mg (0.02 mmol) of 1 and heating for additional 3 h at 60 °C did not lead to further conversion. The solvent was removed in vacuo and the residue was suspended in 5 ml of pentane. After filtration of the suspension, the filtrate was reduced in vacuo to half of its volume and stored overnight at 3 °C leading to 85 mg (35%) of 36 as colorless crystals (m.p. 106–108 °C), which were still contaminated with traces of 35. ¹H- NMR (C_6D_6): $\delta = 1.71$ (s; 12H, NMe₂), 3.17, 3.23 (AB system, ${}^{2}J_{AB} = 14 \text{ Hz}$, 4H, CH₂N), 6.95–7.15 (m, 14H, ar H), 7.18 (ddd, ${}^{3}J={}^{3}J=8$ Hz, ${}^{4}J=1$ Hz, 2H, ar H), 7.55 (d, ${}^{3}J = 8$ Hz, 2H, ar H), 7.60 (dd, ${}^{3}J = 8$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 7.87 (dd, ${}^{3}J = 8$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 8.02 (d, ${}^{3}J = 7$ Hz, 2H, ar H). ${}^{13}\text{C-NMR}$ (C_6D_6) : $\delta = 45.0$ (NMe₂), 63.8 (CH₂N), 126.4 (ar CH), 128.1 (ar CH), 128.3 (ar CH), 128.9 (ar CH), 129.8 (ar CH), 130.3 (ar CH), 130.6 (ar CH), 132.9 (ar C₀), 134.0 (ar C_q), 135.1 (ar C_q), 135.8 (ar CH), 137.6 (ar CH), 138.0 (ar CH), 146.6 (ar C_q). ²⁹Si-NMR (C₆D₆): $\delta = +$ 3.3 (SiCl), +1.2 (SiCl), -38.3 (SiPh₂). MS (EI, 70 eV), m/z (%): 730 (1) [M]⁺, 695 (1) [M⁺-Cl], 598/596 (4/5) $[M^+-Ar]$, 333/331 (3/9) $[Ar_2SiCl]^+$, 297 (18) $[Ar_2SiH]^+$, 259 (100), 217 (52) [Ph₂SiCl]⁺, 182 (23) [Ph₂Si]⁺. C₄₂H₄₄N₂Si₃Cl₂ (730.2189): correct HRMS. ### 3.2.2. 1,1,3,3-Tetrakis[2-(dimethylaminomethyl)-phenyl]-2,2-diphenyltrisilane (37a) (a) A solution of 201 mg (0.23 mmol) of 1 and 326 mg (0.68 mmol) of 10a in 10 ml of toluene was heated for 6 days at 90 °C. The cloudy solution was filtered and the solvent was removed in vacuo from the filtrate leaving behind 467 mg (89%) of 37a as a colorless oil. (b) Heating of a solution of 33 μl (0.18 mmol) of **9a** and 106 mg (0.12 mmol) of 1 in 0.5 ml of C_6D_6 for 6 days at 90 °C gave after removal of the solvent 125 mg (90%) of **37a**. ¹H-NMR (C_6D_6): $\delta = 1.89$ (s, 24H, NMe₂), 3.31, 3.43 (AB system, ${}^{2}J_{AB} = 14$ Hz, 8H, CH₂N), 5.85 (s (d, ${}^{1}J_{SiH} = 197$ Hz), 2H, SiH), 6.91 (dd, $^{3}J = 7$ Hz, $^{3}J = 7$ Hz, 4H, ar H), 7.03–7.16 (m, 10H, ar H), 7.45 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 7.57 (d, ${}^{3}J = 7$ Hz, 4H, ar H), 7.63 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 2$ Hz, 2H, ar H). ¹³C-NMR (C₆D₆): $\delta = 45.1$ (NMe₂), 64.5 (CH₂N), 126.1 (ar CH), 128.1 (ar CH), 128.9 (ar CH), 129.3 (ar CH), 134.4 (ar C_q), 135.9 (ar C_q), 136.5 (ar CH), 137.5 (ar CH), 138.4 (ar CH), 146.1 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = -40.8$ (dt, ${}^{1}J_{SiH} = 198$ Hz, ${}^{3}J_{SiH} = 6$ Hz, SiAr₂H), -41.4 (SiPh₂). ### 3.2.3. 1,3-Dichloro-1,1,3,3-tetrakis[2-(dimethyl-aminomethyl)phenyl]-2,2-diphenyltrisilane (37b) (a) A solution of 0.90 g (1.01 mmol) of 1 and 1.67 g (3.03 mmol) of 10b in 8 ml of toluene was heated for 2 h at 70 °C. The solvent was removed in vacuo, the resulting residue was suspended in 10 ml of pentane and the suspension was filtered. The remaining solid was dissolved in a mixture of ca. 1 ml of THF and 2 ml of hexane. Storing the solution at +3 °C for 16 h yielded 2.10 g (78%) of 37b as colorless crystals. (b) A solution of 21.4 g (24 mmol) of 1 and 7.5 ml (36 mmol) of 9b in 100 ml of toluene was heated for 2 h at 70 °C. The solvent was removed in vacuo, 6.18 g of the resulting residue (total: 30 g) were suspended in 100 ml of pentane and the suspension was filtered. The remaining solid was dissolved in a mixture of ca. 10 ml of THF and 20 ml of hexane. The solution was kept at + 3 °C overnight and 4.70 g (76%) of 37b was isolated as colorless crystals (m.p. 161-162 °C). ¹H-NMR (C_6D_6) : $\delta = 1.77$ (s; 24H, NMe₂), 3.16, 3.24 (AB system, $^{2}J_{AB} = 14 \text{ Hz}, 8H, CH_{2}N), 6.95-7.10 (m, 10H, ar H),$ 7.20 (ddd, ${}^{3}J = 8$ Hz, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 7.70 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 8.00–8.15 (m, 8H, ar H). ¹³C-NMR (C₆D₆): $\delta = 44.1$ (NMe₂), 63.4 (CH₂N), 126.1 (ar CH), 128.4 (ar CH), 128.9 (ar CH), 129.7 (ar CH), 130.8 (ar CH), 133.7 (ar C_q), 134.1 (ar C_q), 137.6 (ar CH), 138.5 (ar CH), 146.8 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = +5.5 \text{ (SiAr}_2\text{Cl)}, -36.7 \text{ (SiPh}_2). MS (FAB, NOE,$ pos. mode), m/z (%): 846 (3) [M⁺ + H], 807 (100); (EI, 70 eV), m/z (%): 550/548 (8/12) [M⁺-Ar₂Si], 416/414 (79/100) [M⁺-Ar₂Si-Ar]. Anal. Calc. for C₄₈H₅₈N₄-Si₃Cl₂ (846.17): C, 68.13; H, 6.91, Found: C 68.05; H, 6.83%. #### 3.3. Formation of disilanes by nucleophilic substitution ### 3.3.1.
1,1,2,2-Tetrakis[2-(dimethylaminomethyl)-phenyl]disilane (18a) A suspension of 13.63 g (40.9 mmol) of 17c in 200 ml of toluene and 1.92 g (49.1 mmol) of finely cut potassium was stirred for 48 h at r.t. The suspension was filtered and the solvent was removed from the filtrate in vacuo leaving behind 11.02 g (91%) of 18a as an analytically pure, crystalline solid (m.p. 91–92 °C). ### 3.3.2. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2,2,2-trimethyldisilane (6b) (a) A suspension of 2.50 g (7.60 mmol) **18a**, 626 mg (16.00 mmol) finely cut potassium and 1.26 ml (9.97 mmol) of Me₃SiCl (5) in 20 ml of toluene was stirred for 4 days at r.t. The suspension was filtered and the solvent was removed from the filtrate in vacuo leaving behind the crude product as an oil. Distillation at 200 °C/ 10^{-3} torr gave 1.34 g (49%) of **6b** as colorless oil. (b) 13 mg (1.9 mmol) of finely cut lithium were added to a solution of 560 mg (0.94 mmol) of 18a in 10 ml of THF and the resulting suspension was stirred for 16 h at r.t. After filtration of the suspension 0.27 ml (2.1 mmol) of 5 were added to the filtrate at -78 °C and the solution was allowed to warm up to r.t. The solvent was removed in vacuo and the residue was suspended in 15 ml of Et₂O. The suspension was filtered and the solvent was removed in vacuo from the filtrate. Kugelrohr distillation of the remaining oil yielded to 439 mg (63%) of **6b** as a colorless oil (boiling point (b.p.) 180 °C/0.001 torr). ¹H-NMR (C_6D_6): $\delta = 0.30$ (s; 9H, SiMe₃), 1.94 (s; 12H, NMe₂), 3.35, 3.42 (AB system, ${}^{2}J = 13$ Hz, 4H, CH₂N), 5.27 (s (d, ${}^{1}J_{SiH} = 186$ Hz); 1H, SiH), 7.08-7.22 (m, 4H, ar H), 7.34 (d, $^{3}J=7$ Hz, 2H, ar H), 7.74 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 2$ Hz, 2H; ar H). ¹³C-NMR (C₆D₆): $\delta = -0.1$ (SiMe₃), 45.0 (NMe₂), 64.4 (CH₂N), 126.4 (ar CH), 128.9 (ar CH), 129.5 (ar CH), 136.1 (ar C_q), 137.4 (ar CH), 146.0 (ar C_q). 29 Si-NMR (C₆D₆): $\delta = -17.6$ (SiMe₃), -39.6 (d, $^{1}J_{\text{SiH}} = 186$ Hz, SiAr₂H). IR (film): $\tilde{v} = 2125$ cm⁻¹ (SiH). MS (EI, 70 eV) m/z (%): 369 (8) [M⁺-H], 355 (4) [M⁺-Me], 326 (10) [M⁺-NMe₂], 297 (100) [M⁺-SiMe₃], 236 (55) [M⁺-Ar], 134 (7) [Ar]⁺, 73 (14) [SiMe₃]⁺, 58 (12) [CH₂NMe₂]⁺. Anal. Calc. for C₂₁H₃₄N₂Si (370.68): C 68.23; H, 9.00; N, 7.58; Found: C 68.16; H, 8.93; N, 7.37%. ### 3.3.3. 1-Chloro-2,2-bis[2-(dimethylaminomethyl)phenyl]-1,1-bis(2,4,6-trimethylphenyl)disilane (33c) A suspension of 2.60 g (4.38 mmol) of **18a** and 100 mg (14.4 mmol) of finely cut lithium in 42 ml of THF was vigorously stirred for 19 h at r.t. The liquid phase was transferred through a Teflon cannula by means of a positive argon pressure to a solution of 2.57 g (7.60 mmol) of 32b in 20 ml of THF at 0 °C during 10 min. The reaction mixture was allowed to warm up to r.t. and was stirred for additional 20 h. The solvent was removed in vacuo and the residue suspended in 50 ml of hexane. After filtration of the suspension the remaining residue was washed several times by recondensation of the solvent. The filtrate was concentrated in vacuo to a volume of ca. 7 ml. At -20 °C 3.41 g (75%) of 33c precipitated from the solution as colorless crystals (m.p. 155 °C). ¹H-NMR (C₆D₆): $\delta = 1.95$ (s; 12H, NMe₂), 2.04 (s; 6H, Me), 2.36 (s; 12H, Me), 2.95, 3.36 (AB system, ${}^{2}J = 14$ Hz, 4H, CH₂N), 5.93 (s (d, ${}^{1}J_{SiH} = 204$ Hz); 1H, SiH), 6.61 (s, 4H, ar H), 7.01 (ddd, ${}^{3}J = {}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H), 7.19 (ddd, ${}^{3}J = {}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H), 7.47 (d, ${}^{3}J = 7$ Hz, 2H, ar H), 8.22 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H). ${}^{13}\text{C-NMR}$ (C_6D_6) : $\delta = 20.9$ (Me), 24.4 (Me), 45.2 (NMe₂), 63.9 (CH₂N), 126.3 (ar CH), 128.8 (ar CH), 129.7 (ar CH), 130.0 (ar CH), 132.9 (ar C_q), 133.0 (ar C_q), 138.5 (ar CH), 139.5 (ar C_q), 144.2 (ar C_q), 146.4 (ar C_q). ²⁹Si-NMR (C₆D₆): $\delta = +1.8$ (SiMes₂Cl), -44.8 (d, ${}^{1}J_{SiH} =$ 204 Hz, SiAr₂H). MS (EI, 70 eV), m/z (%): 598 (< 1) $[M]^+$, 562 (1) $[Ar_2Si=SiMes_2^+]$, 553 (1) $[M^+-NMe_2-H]$, 538 (3) $[M^+-CH_2NMe_2-2H]$, 464 (11) $[M^+-Ar]$, 331 (6) [M⁺-Ar₂Si], 297 (100) [Ar₂SiH]⁺, 120 (22) [MesH]⁺, 58 (8) $[CH_2NMe_2]^+$. $C_{36}H_{47}N_2Si_2Cl$ (548.1637): correct HRMS. Anal. Calc. for C₃₆H₄₇N₂Si₂Cl (599.41): C 72.14; H, 7.90; Found: C 72.88; H, 8.27%. ### 3.3.4. 1,1,3,3-Tetrakis[2-(dimethylaminomethyl)-phenyl]-2,2-dimethyltrisilane (38) A suspension of 317 mg (0.53 mmol) of **18a** and 8 mg (1.2 mmol) of finely cut lithium in 5 ml of THF was stirred at r.t. for 3.5 h. After 1.5 h of supersonic irradiation it was stirred for additional 1 h at r.t. The suspension was filtered and the filtrate was transferred through a Teflon cannula by means of a positive argon pressure to solution of 0.2 ml (1.6 mmol) of 7a in 5 ml of THF at 0 °C. The resulting suspension was stirred for 12 h at r.t. and filtered. The solvent was removed from the filtrate and the residue was suspended in 10 ml of hexane. After filtration the solvent was removed from the filtrate in vacuo leaving behind 334 mg (97%) of crude 38 as a viscous oil. Distillation at 300 $^{\circ}$ C/10⁻⁴ torr gave 151 mg (43%) of ¹H-NMR spectroscopically pure 38. ¹H-NMR (C_6D_6): $\delta = 0.50$ (s, 6H, SiMe₂), 1.95 (s, 24H, NMe₂), 3.39 (s, 8H, CH₂N), 5.43 (s (d, ${}^{1}J_{SiH} =$ 191 Hz); 2H, Ar₂SiH), 7.01 (dd, ${}^{3}J={}^{3}J=7$ Hz, 4H, ar H), 7.14 (ddd, ${}^{3}J = 7$ Hz, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 4H, ar H), 7.35 (d, ${}^{3}J = 7$ Hz, 4H, ar H), 7.67 (d, ${}^{3}J = 7$ Hz, 4H, ar H). ¹³C-NMR (C₆D₆): $\delta = -2.7$ (SiMe₂), 44.9 (NMe₂), 64.8 (CH₂N), 126.3 (ar CH), 128.9 (ar CH), 129.4 (ar CH), 135.9 (ar C_a), 137.8 (ar CH), 145.6 (ar C_0). ²⁹Si-NMR (C_6D_6): $\delta = -36.1$ (d, ${}^{1}J_{siH} = 191$ Hz, Ar_2SiH), -44.2 (Me₂Si). IR (film): $\tilde{v} = 2124$ cm⁻¹. MS (EI, 70 eV), m/z (%): 650 (1) [M⁺–2H], 608 (1) [M⁺ $-NMe_2$], 564 (1) [M⁺-2NMe₂], 355 (4) [M⁺-Ar₂SiH], 297 (100) [Ar₂SiH]⁺, 281 (4) [Ar₂SiH⁺–Me–H], 238 (5) $[Ar_2SiH^+-NMe_2-Me]$, 209 (6) $[Ar_2SiH^+-2NMe_2]$, 134 (2) $[Ar]^+$, 58 (4) $[CH_2NMe_2]^+$. ### 3.3.5. 1-Chloro-1-[2-(dimethylaminomethyl)-phenyl]-1,2,2-tris(2,4,6-trimethylphenyl)disilane (**39a**) A solution of 1.45 g (3.20 mmol) Mes₂SiHLi in 20 ml of toluene was added dropwise over 10-15 min to a solution of 1.12 g (3.20 mmol) of 27b in 20 ml of toluene at 0 °C. The resulting suspension was stirred 2 h at 0 °C and for additional 2 h at r.t. The solvent was evaporated in vacuo and 40 ml of pentane were added to the residue. The resulting suspension was filtered and the filtrate was concentrated in vacuo to 5 ml. After 1 week at r.t. 225 mg (13%) of 39a were obtained as colorless crystals (m.p. 153–155 °C). $(CDCl_3)$: $\delta = 1.84$ (s, 6H, NMe₂), 1.92 (s, 6H, Me), 2.23 (s, 3H, Me), 2.25 (s, 3H, Me), 2.26 (s, 3H, Me), 2.30 (s, 3H, Me), 2.34 (s, 3H, Me), 2.79, 3.37 (AB system, ${}^{2}J_{AB} = 13$ Hz, 2H, CH₂N), 5.36 (d, ${}^{1}J_{SiH} = 188$ Hz, 1H, SiH), 6.66 (s, 2H, ar H), 6.80 (s, 4H, ar H), 6.92–6.98 (m, 1H, ar H), 7.22–7.30 (m, 3H, ar H). ¹³C-NMR (CDCl₃): $\delta = 21.1$ (Me), 24.0 (Me), 24.5 (Me), 24.7 (Me), 45.1 (NMe₂), 63.8 (CH₂N), 126.4 (ar CH), 128.1 (ar C_q), 128.5 (ar CH), 128.7 (ar CH), 129.3 (ar CH), 129.6 (ar CH), 130.6 (ar C_q), 130.6 (ar C_q), 134.8 (ar C_q), 136.8 (ar CH), 138.7 (ar C_q), 139.8 (ar C_{q}), 145.0 (ar C_{q}), 145.6 (ar C_{q}). ²⁹Si-NMR (CDCl₃): $\delta = 1.5 \text{ (SiAr}_2\text{Cl)}, -51.4 \text{ (SiMes}_2\text{H)}. \text{ MS (EI, 70 eV)},$ m/z (%): 583 (3) [M]⁺, 463 (2) [M⁺-Mes-H], 448 (8) $[M^+-Ar]$, 418 (4) $[M^+-Ar-2Me-H]$, 316 (100) [MesArClSi]⁺, 147 (9) [MesSi]⁺, 133 (4) [C₉H₁₁N]⁺, 91 (2) $[C_7H_7]^+$, 58 (2) $[CH_2NMe_2]^+$. #### 3.4. Transformations of disilanes ### 3.4.1. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2,2,2-trimethyldisilane (**6b**) A suspension of 62 mg (0.15 mmol) of **6a** and 10.0 mg (0.53 mmol) of LiAlH₄ in 2 ml of Et₂O was stirred for 15 min at r.t. The solvent was removed in vacuo and the residue was suspended in 5 ml of wet hexane. The resulting suspension was filtrated and the solvent was removed from the filtrate in vacuo leaving behind 28 mg (51%) of **6b** as a colorless, ¹H-NMR spectroscopically pure oil. ### 3.4.2. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2,2-dimethyldisilane (8d) 436 mg (1.1 mmol) of a 3:1 mixture of **8b** and **8c** were suspended in 10 ml of Et₂O. This suspension was added dropwise at 0 °C to a suspension of 73 mg (1.9 mmol) of LiAlH₄ in 10 ml of Et₂O. After stirring for 1 h at r.t. the solvent was removed in vacuo and the residue was suspended in 10 ml of hexane. After filtration the solvent was removed from the filtrate leaving behind 342 mg as a viscous oil. It was stirred with wet Et₂O, the solvent was removed in vacuo and distillation of the remaining oil at 200 °C/ 10^{-3} torr gave 184 mg (47%) of **8d** at 200 °C/10⁻³ torr. ¹H-NMR (C₆D₆): $\delta = 0.28$ $(d, {}^{3}J = 4 \text{ Hz}, 6H, \text{SiMe}_{2}), 1.90 \text{ (s, 12H, NMe}_{2}), 3.29,$ 3.39 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 4.35 (dsep, $^{3}J = 4$ Hz, $^{3}J = 2$ Hz, 1H, SiMe₂H), 5.23 (d, $^{3}J = 2$ Hz (d, ${}^{1}J_{SiH} = 193 \text{ Hz}$); 1H, SiAr₂H), 7.07–7.24 (m, 6H, ar H), 7.77 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 2$ Hz, 2H, ar H). ${}^{13}C$ -NMR (C_6D_6) : $\delta = -4.6$ (SiMe₂), 44.7 (NMe₂), 65.1 (CH₂N), 126.5 (ar CH), 128.8 (ar CH), 129.2 (ar CH), 136.1 (ar C_q), 137.5 (ar CH), 145.9 (ar C_q). ²⁹Si-NMR (C_6D_6) : $\delta = -37.1$ (dsep, ${}^1J_{SiH} = 179$, ${}^2J_{SiH} = 7$ Hz, $SiMe_2H$), -35.0 (d, ${}^{1}J_{SiH} = 193$ Hz, $SiAr_2H$). IR (film): $\tilde{v} = 2108 \text{ cm}^{-1}$. MS (EI, 70 eV), m/z (%): 355 (1) $[M^+-H]$, 311 (8) $[M^+-NMe_2-H]$, 297 (100) $[M^+$ $-SiMe_2H$], 252 (18) [M⁺ $-SiMe_2H$ $-NMe_2$ -H], 222 (19) $[M^+-Ar]$, 162 (4) $[ArSi]^+$, 134 (3) $[Ar]^+$, 58 (5) $[CH_2NMe_2]^+$. $C_{20}H_{32}N_2Si_2$ (356.2104): correct HRMS. ### 3.4.3.
1,1-Bis[2-(dimethylaminomethyl)phenyl]-2,2-diphenyldisilane (10a) A suspension of 56 mg (1.50 mmol) of LiAlH₄ and 187 mg (0.63 mmol) of a 2:1 mixture of **10c** and **10d** in 3 ml of Et₂O was stirred for 20 min at r.t. The solvent was removed in vacuo and 5 ml of hexane were added to the residue. After filtration of the resulting suspension the solvent was removed from the filtrate leaving behind 167 mg (96%) of **10a**. ### 3.4.4. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2,2-bis-(4-methylphenyl)disilane (12b) 65 mg (1.71 mmol) of LiAlH₄were added at 0 °C to a suspension of 534 mg (0.98 mmol) of **12a** in 15 ml of Et₂O, and the suspension was stirred for 1 h at r.t. 31 ul of H₂O were added to the reaction mixture at -78 °C, the solvent was removed in vacuo and 10 ml of hexane were added to the remaining solid. The suspension was filtered and the solvent was removed from the filtrate leaving behind 452 mg (91%) of 12b as a colorless waxy solid. ¹H-NMR (C_6D_6): $\delta = 1.87$ (s, 12H, NMe₂), 2.03 (s, 6H, CH₃), 3.32, 3.34 (AB system, $^{2}J_{AB} = 7$ Hz, 4H, CH₂N), 5.51 (d, $^{3}J = 3$ Hz (d, $^{1}J_{SiH} =$ 188 Hz); 1H, SiH), 5.65 (d, ${}^{3}J = 3$ Hz (d, ${}^{1}J_{SiH} = 198$ Hz), 1H, SiH), 6.96 (d, ${}^{3}J = 7$ Hz, 4H, ar H), 7.02–7.25 (m, 6H, ar H), 7.64 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 7.84 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H). ${}^{13}C\text{-NMR}$ (C₆D₆): $\delta = 21.4$ (CH₃), 44.8 (NMe₂), 65.1 (CH₂N), 126.4 (ar CH), 128.9 (ar CH), 129.0 (ar CH), 129.1 (ar CH), 131.8 (ar C_a), 135.3 (ar C_a), 136.6 (ar CH), 138.2 (ar CH), 138.5 (ar C_0), 146.0 (ar C_0). ²⁹Si-NMR (C_6D_6): $\delta = -31.5$ (d, ${}^{1}J_{SiH} = 190$ Hz, $SiPh_{2}H$), -42.2 (d, $^{1}J_{SiH} = 194 \text{ Hz}, \text{ SiAr}_{2}\text{H}). \text{ MS (EI, 70 eV)}, m/z (\%): 507$ (1) $[M^+-H]$, 463 (8) $[M^+-NMe_2-H]$, 448 (8) $[M^+$ $-NMe_2-Me-H$], 374 (10) [M⁺-Ar], 297 (100) [M⁺ 253 (4) $[M^+-(MeC_6H_4)_2SiH -(MeC_6H_4)_2SiH$, NMe_2-H], 238 (8) $[M^+-(MeC_6H_4)_2SiH-NMe_2-Me]$. ### 3.4.5. 2,2-Bis(4-chlorophenyl)-1,1-bis[2-(dimethyl-aminomethyl)phenyl]disilane (14b) 80 mg (2.12 mmol) of LiAlH₄ were added at 0 °C to a suspension of 653 mg (1.06 mmol) of 14a in 15 ml of Et₂O, and the suspension was stirred for 1 h at r.t. 38 μl of H₂O were added to the reaction mixture at -78 °C, the solvent was removed in vacuo and the residue was suspended with 10 ml of hexane. The suspension was filtered and the solvent was removed from the filtrate leaving behind 380 mg (65%) of 14b as a colorless waxy solid. ¹H-NMR (C_6D_6): $\delta = 1.78$ (s, 12H, NMe₂), 3.25 (s, 4H, CH₂N), 5.22 (d, ${}^{3}J = 3$ Hz (d, ${}^{1}J_{\text{SiH}} = 190 \text{ Hz}$, 1H, SiH), 5.47 (d, ${}^{3}J = 3 \text{ Hz}$ (d, ${}^{1}J_{\text{SiH}} = 201 \text{ Hz}$), 1H, SiH), 6.98 (ddd, ${}^{3}J = {}^{3}J = 7 \text{ Hz}$, $^{4}J = 2$ Hz, 2H, ar H), 7.06–7.12 (m, 8H, ar H), 7.32 (d, ${}^{3}J = 8$ Hz, 4H, ar H), 7.65 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 4$ Hz, 2H, ar H). ¹³C-NMR (C_6D_6): $\delta = 44.6$ (NMe₂), 65.0 (CH₂N), 126.5 (ar CH), 128.5 (ar CH), 129.3 (ar CH), 133.7 (ar C_q), 134.6 (ar C_q), 135.8 (ar C_q), 137.7 (ar CH), 137.7 (ar CH), 137.9 (ar CH), 145.9 (ar C_q). ²⁹Si-NMR (C₆D₆): $\delta = -43.0$ (d, ${}^{1}J_{SiH} = 203$ Hz), -31.0 (d, ${}^{1}J_{SiH} = 192 \text{ Hz}$). MS (EI, 70 eV), m/z (%): 547 (1) $[M^+-H]$, 503 (2) $[M^+-NMe_2-H]$, 488 (6) $[M^+$ $-NMe_2-Me-H$], 414 (7) [M⁺-Ar], 297 (100) [M⁺ (100) $[M^+-(ClC_6H_4)_2SiH -(ClC_6H_4)_2SiH$], 253 NMe_2-H]. ### 3.4.6. 1,1-Bis[2-(dimethylaminomethyl)phenyl]-2-phenyldisilane (**24b**) To a suspension of 656 mg (1.29 mmol) of **24a** in 10 ml of Et_2O 70 mg (1.80 mmol) of $LiAlH_4$ were added at 0 °C and the suspension was stirred for 45 min at r.t. The solvent was removed in vacuo and the residue was suspended in 10 ml of wet hexane. The resulting suspension was filtered and the solvent was removed from the filtrate leaving behind 210 mg (41%) of 24b as a colorless oil. ¹H-NMR (C_6D_6): $\delta = 1.82$ (s, 12H, NMe₂), 3.24, 3.32 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 4.68 (d, ${}^{3}J = 2$ Hz (d, ${}^{1}J_{SiH} = 186$ Hz), 2H, SiH₂), 5.37 (t, ${}^{3}J = 2$ Hz (d, ${}^{1}J_{SiH} = 206$ Hz), 1H, SiH), 6.99-7.17 (m, 9H, ar H), 7.59-7.64 (m, 2H, ar H), 7.88 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H). ${}^{13}C$ -NMR ($C_{6}D_{6}$): $\delta = 44.6 \text{ (NMe}_2), 65.2 \text{ (CH}_2\text{N)}, 126.6 \text{ (ar CH)}, 128.0 \text{ (ar}$ CH), 128.9 (ar CH), 128.9 (ar CH), 128.9 (ar CH), 133.4 (ar C_o), 135.6 (ar C_o) 136.5 (ar CH), 137.6 (ar CH), 146.7 (ar C_q). ²⁹Si-NMR (C₆D₆): $\delta = -42.1$ (dtt, ${}^{1}J_{\text{SiH}} = 205$ Hz, ${}^{2}J_{\text{SiH}} = 6$ Hz, ${}^{3}J_{\text{SiH}} = 5$ Hz, Ar₂SiH), -56.3 (dtt, ${}^{1}J_{SiH} = 186$ Hz, ${}^{2}J_{SiH} = 6$ Hz, ${}^{3}J_{SiH} = 5$ Hz, PhSiH₂). IR (film): $\tilde{v} = 2134 \text{ cm}^{-1}$. MS (EI, 70 eV), m/z(%): 403 (1) [M⁺-H], 359 (3) [M⁺-NMe₂-H], 344 (4) $[M^+-NMe_2-Me-H]$, 297 (34) $[M^+-PhSiH_2]$, 281 (8) $[M^+-PhSiH_2-Me-H]$, 270 (6) $[M^+-Ar]$, 253 (57) $[M^+$ -PhSiH₂-NMe₂], 238 (100) $[M^+-PhSiH_2-CH_2 NMe_2-H$], 208 (23) $[M^+-PhSiH_2-2NMe_2-H]$, 164 (62) $[M^+-PhSiH_2-Ar+H]$, 148 (7) $[M^+-PhSiH_2-Ar-Me]$, 134 (4) [Ar]⁺, 119 (16) [Ar⁺–Me], 105 (8) [Ar⁺–2Me + H], 91 (6) $[C_7H_7]^+$, 58 (16) $[CH_2NMe_2]^+$, 44 (4) [NMe₂]⁺. C₂₄H₃₂N₂Si₂ (404.2104): correct HRMS. ### 3.4.7. 1,1-Bis(2,4,6-trimethylphenyl)-2,2-bis(2-(dimethylaminomethyl)phenyl]disilane (33a) A suspension of 500 mg (0.83 mmol) of 33c and 134 mg (3.53 mmol) of LiAlH₄ in 10 ml of Et₂O was stirred for 2 h at r.t. and refluxed for additional 13 h. After addition of 240 μ l (13 mmol) of H₂O at -78 °C the mixture was allowed to warm to r.t. and was stirred for 30 min. The solvent was removed in vacuo and the residue was extracted once with 30 ml and twice with 5 ml of hexane. The solvent was removed in vacuo from the collected filtrates leaving behind 310 mg (65%) of 33a as an NMR spectroscopically pure, white solid (m.p. 45–48 °C). ¹H-NMR (C_6D_6): $\delta = 1.90$ (s, 12H, NMe₂), 2.07 (s, 6H, Me), 2.31 (s, 12H, Me), 3.04, 3.41 (AB system, ${}^{2}J_{AB} = 13$ Hz, 4H, CH₂N), 5.75, 5.86 (AB system, ${}^{3}J_{AB} = 8$ Hz, 2H, $Si_{2}H_{2}$), 6.65 (s, 4H, ar H), 6.93 (ddd, ${}^{3}J={}^{3}J=7$ Hz, ${}^{4}J=1$ Hz, 2H, ar H), 7.13 (ddd, ${}^{3}J = {}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H), 7.37 (d, ${}^{3}J = 7$ Hz, 2H, ar H), 7.77 (dd, ${}^{3}J = 7$ Hz, ${}^{4}J = 1$ Hz, 2H, ar H). ¹³C-NMR (C_6D_6): $\delta = 21.0$ (Me), 24.2 (Me), 45.0 (NMe₂), 64.3 (CH₂N), 126.5 (ar CH), 128.8 (ar CH), 129.0 (ar CH), 129.3 (ar CH), 130.7 (ar C₀), 135.4 $(ar C_a)$, 137.2 (ar CH), 138.6 $(ar C_a)$, 145.1 $(ar C_a)$, 146.0 (ar C_0). ²⁹Si-NMR (C_6D_6): $\delta = -41.8$ (d, ${}^1J_{SiH} =$ 205 Hz, SiAr₂H), -55.7 (dd, ${}^{1}J_{SiH} = 178$ Hz, ${}^{2}J_{SiH} = 9$ Hz, SiMes₂H). MS (EI, 70 eV), m/z (%): 563 (30) $[M^+-H]$, 297 (37) $[Ar_2SiH]^+$, 91 (100) $[C_7H_7]^+$. ### 3.4.8. 1-[2-(Dimethylaminomethyl)phenyl]-1,2,2-tris-(2,4,6-trimethylphenyl)disilane (39b) A suspension of 445 mg (0.76 mmol) of **39a** and 280 mg (11.73 mmol) of LiAlH₄ in 20 ml of Et₂O was refluxed for 19 h. The suspension was filtered and the solvent was removed from the filtrate in vacuo. Distillation of the crude product (170 °C/10⁻⁴ torr) gave 197 mg (47%) of **39b** as a colorless oil. ${}^{1}\text{H-NMR}$ (C₆D₆): $\delta = 1.85$ (s, 6H, NMe₂), 2.06 (s, 6H, Me), 2.10 (s, 3H, Me), 2.32 (s, 6H, Me), 2.35 (s, 6H, Me), 2.43 (s, 6H, Me), 2.98, 3.30 (AB system, ${}^{2}J_{AB} = 13$ Hz, 2H, CH₂N), 5.89, 5.94 (AB system, ${}^{3}J_{AB} = 7$ Hz, 2H, SiH), 6.65 (s, 4H, ar H), 6.72 (s, 2H, ar H), 6.92 (dd, ${}^{3}J={}^{3}J=8$ Hz, 1H, ar H), 7.12 (dd, ${}^{3}J={}^{3}J=8$ Hz, 1H, ar H), 7.28 (d, ${}^{3}J = 8$ Hz, 1H, ar H), 7.98 (d, ${}^{3}J = 8$ Hz, 1H, ar H). ¹³C-NMR (C₆D₆): $\delta = 21.1$ (Me), 24.1 (Me), 24.3 (Me), 24.8 (Me), 30.2 (o-Me), 44.6 (NMe₂), 64.3 (CH₂N), 127.0 (ar CH), 128.7 (ar CH), 128.8 (ar CH), 128.9 (ar CH), 129.1 (ar CH), 129.2 (ar CH), 129.7 (ar CH), 130.5 (ar CH), 130.6 (ar CH), 130.9 (ar CH), 135.8 (ar C_a), 138.3 (ar CH), 138.5 (ar CH), 138.5 (ar CH), 138.9 (ar CH), 144.6 (2·ar C_a), 145.1 (2·ar C_a), 145.3 (ar C_a), 145.5 (2·ar C_q), 146.8 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = -$ 44.9 (d, ${}^{1}J_{SiH} = 199$ Hz, SiArMesH), -55.9 (dd, $^{1}J_{\text{SiH}} = 179 \text{ Hz}, ^{4}J_{\text{SiH}} = 7 \text{ Hz}, \text{ SiMes}_{2}\text{H}). \text{ MS (EI, } 70$ eV), m/z (%): 548 (8) [M⁺-H], 430 (12) [M⁺-Mes], 414 (20) $[M^+-Ar]$, 400 (4) $[M^+-Mes-2Me]$, 282 (100) [ArMesSiH]⁺, 267 (4) [Mes₂SiH]⁺. ### 3.4.9. 1,2-Dichloro-1,1,2,2-tetrakis[2-(dimethyl-aminomethyl)phenyl]disilane (18b) A suspension of 2.50 g (4.20 mmol) of **18a** and 1.18 g (8.83 mmol) of N-chlorosuccinimide in 50 ml of CCl_4 was stirred for 5 h at 20 °C. The solvent was removed in vacuo, 50 ml of hexane were added to the residue and the resulting suspension was filtered. The filtrate was reduced in vacuo to half of its volume and on cooling for several days at -15 °C 2.01 g (72%) of **18b** were obtained as a colorless solid. ### 3.4.10. 1-Chloro-1,1,2,2-tetrakis[2-(dimethyl-aminomethyl)phenyl]disilane (18c) A suspension of 2.27 g (3.81 mmol) of **18a** and 1.07 g (8.00 mmol) of *N*-chlorosuccinimide in 40 ml of hexane was stirred for 6 h at 20 °C. The suspension was filtered and the filtrate was reduced to half of its volume in vacuo. On cooling to -6 °C 1.43 g (59%) of **18c** were obtained as colorless crystals (m.p. 80–82 °C). The mother liquor contained further **18c** as main component besides traces of **18b**. ### 3.4.11. 1,2-Dichloro-2,2-bis[2-(dimethylaminomethyl)-phenyl]-1,1-bis(2,4,6-trimethylphenyl)disilane (33b) A solution of 1.00 g (1.67 mmol) of 33c in 10 ml of CCl₄ was added dropwise to a stirred suspension of 245 mg (1.84 mmol) of *N*-chlorosuccinimide in 10 ml of CCl₄. After stirring for 2 h at r.t. the suspension was filtered and the
remaining solid was washed several times by recondensation of the solvent. The solvent was removed from the filtrate in vacuo leaving behind the crude product. It was suspended in 35 ml of hexane and the resulting suspension was filtered. The solvent was removed from the filtrate in vacuo leaving behind 819 mg (77%) of 33b as NMR spectroscopically pure, colorless solid (m.p. 63–65 °C). ¹H-NMR (C₆D₆): $\delta = 2.00$ (s, 12H, NMe₂), 2.04 (s, 6H, Me), 2.41 (s, 12H, Me), 3.22, 3.65 (AB system, ${}^{2}J_{AB} = 15$ Hz, 4H, CH₂N), 6.63 (s, 4H, ar H), 6.92 (dd, ${}^{3}J={}^{3}J=7$ Hz, 2H, ar H), 7.24 $(dd, {}^{3}J = 7 Hz, {}^{3}J = 8 Hz, 2H, ar H), 7.86 (d, {}^{3}J = 8 Hz,$ 2H, ar H), 8.06 (d, ${}^{3}J = 7$ Hz, 2H, ar H). ${}^{13}C$ -NMR (C_6D_6) : $\delta = 20.9$ (Me), 25.0 (Me), 45.3 (NMe₂), 63.2 (CH₂N), 126.0 (ar CH), 129.3 (ar CH), 130.2 (ar CH), 131.0 (ar CH), 132.5 (ar C_q), 137.9 (ar CH), 140.0 (ar C_q), 144.5 (ar C_q), 147.6 (ar C_q). ²⁹Si-NMR (C_6D_6): $\delta = -0.2$ (SiMes₂Cl), -4.8 (SiAr₂Cl). MS (FAB, NOE), m/z (%): 631 (100) [M⁺-H]. #### 3.5. Thermal stability of di- and trisilanes #### 3.5.1. Silylene extrusion from 36 A solution of 20 mg (27 μmol) of **36** and 13 μl (118 μmol) of **40** was heated in an NMR tube at 110 °C. After 13 h the ¹H-NMR spectrum of the mixture showed signals of a 1:1 mixture of **35** and **41** [11] besides that of left over **40**. #### 3.5.2. Silylene extrusion from 37b (a) A solution of 20 mg (24 μ mol) of **37b** and 13 μ l (118 μ mol) of **40** in 0.4 ml of C_6D_6 was heated in an NMR tube at 70 °C. After 18 h, the ¹H-NMR spectrum showed signals of a 1:1 mixture of **10b** and **41** besides that of left over **40**. (b) A solution of 47 mg (56 μ mol) of **37b** and 12 μ l (56 μ mol) of **9b** in 0.4 ml of C_6D_6 was heated in an NMR tube at 70 °C for 18 h. The ¹H-NMR spectrum showed only the signals of **10b** besides traces of left over **9b**. #### 3.5.3. Attempted silvlene extrusion from 35 A solution of 20 mg (46 μ mol) of **35** and 26 μ l (229 μ mol) of **40** in 0.4 ml of C₆D₆ was heated in an NMR tube at 110 °C for 10 h. According to the ¹H-NMR spectrum, the composition of the reaction mixture was unchanged. #### 3.5.4. Attempted silvlene extrusion from 42 A solution of 20 mg (33 μ mol) 7 and 19 μ l (166 μ mol) of 42 in 0.4 ml of C_6D_6 was heated in an NMR tube at 90 °C for 15 h. According to the ¹H-NMR spectroscopic analysis the composition of the reaction mixture was unchanged. #### 3.5.5. Silylene extrusion from 10b A solution of 20 mg (36 μ mol) of **10b** and 20 μ l (182 μ mol) of **40** in 0.4 ml of C_6D_6 was heated in an NMR tube at 110 °C. After 12 h ¹H-NMR spectroscopic analysis showed the signals of **9b** and **41** besides those of starting material; the grade of conversion was 20%. Further heating did not result in increased amounts of **9b** and **41**, but favors the formation of decomposition products of unknown structure. #### 3.5.6. Silylene extrusion from 18b A solution of 60 mg (90 μ mol) of **18b** and 0.10 ml (0.91 mmol) of **40** in 0.4 ml of C_6D_6 was heated for 19 h at 70 °C. The ¹H-NMR spectrum showed the signals of starting materials and traces of an unidentified decomposition product. To this solution 5 mg (6 μ mol) of **1** were added and the mixture was heated at 65 °C for 19 h. ¹H-NMR spectroscopic analysis showed besides signals of excess **40** only the signals of a 1:1 mixture of **17b** and **41**. #### 3.5.7. Silvlene extrusion from 28b A solution of 30 mg (0.05 mmol) of **28b** and 27 μ l (0.24 mmol) of **40** in 0.4 ml of C_6D_6 in an NMR tube was heated at 90 °C. ¹H-NMR spectroscopy showed the mixture to be unchanged after 24 h. About 1 mg of **3** was added to this mixture and heating at 90 °C was resumed for additional 15 h. The ¹H-NMR spectrum showed besides signals of excess **40** only the signals of a equimolar mixture of **27b** and 1-[2'-(dimethylaminomethyl)-phenyl]-1-mesityl-3,4-dimethylsilacyclopent-3-ene. #### 3.5.8. Single crystal X-ray diffraction analysis of 39a Monoclinic, space group $P2_1/n$, a = 8.572(2), b =37.4218(17), c = 10.322(2) pm, $\beta = 96.10(3)^{\circ}$; V =3292.9(11) Å³, $\rho_{\rm calc} = 1.179 \text{ g cm}^{-3}$, 2Θ range from 4 to 51°, $(-10 = h = 10, 0 = k = 45, 0 = l = 12), \text{ Mo-K}_{\alpha}$ $\lambda = 71.073$ pm, T = 133 K, crystal dimensions $0.5 \times$ 0.4×0.4 mm, 33 615 reflections, 6039 independent $(R_{\rm int} = 0.0361)$ reflections were used for the structure refinement; final R values: $R_1 = 0.0412$ [$I > 2\sigma(I)$], $wR_2 = 0.1014$ (all data), residual electron density: 0.298 and -0.253 e Å⁻³. The structure was solved by direct methods using SHELXS [32] and refined against F^2 using a full matrix least squares target (SHELXL-97) [33]. The *R*-values were defined as $R_1 = [\Sigma || F_o| - F_c ||^2 / \Sigma |F_o|^2]$ and $wR_2 = \Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$. The Si-bound hydrogen atom was localized in the difference Fourier map and refined with the help of 1,3-distance restraints. The other hydrogen atoms were set at geometrically calculated positions and refined using a riding model. #### 4. Supplementary material Further details of the crystal structure determinations may be obtained from the Director of the Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB2 1EZ. #### Acknowledgements This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. #### References - [1] See e.g.: (a) M. Weidenbruch, K. Kramer, A. Schäfer, J.K. Blum, Chem. Ber. 118 (1985) 107; - (b) J. Belzner, N. Detomi, H. Ihmels, M. Noltemeyer, Angew. Chem. 106 (1994) 1949; Angew. Chem. Int. Ed. Engl. 33 (1994) 1854: - (c) M. Söldner, M. Sandor, A. Schier, H. Schmidbaur, Chem. Ber. Recl. 533 (1997) 61; - (d) K. Tamao, M. Asahara, T. Saeki, A. Toshimitsu, Chem. Lett. (1999) 335. - [2] R. West, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II: A Review of the Literature 1982–1994, vol. 2, Pergamon Press, Oxford, 1995, p. 77. - [3] See e.g.: (a) W.-C. Joo, J.-H. Hong, S.-B. Choi, H.-E. Son, C.H. Kim, J. Organomet. Chem. 391 (1990) 27; - (b) J.H. Hong, P. Boudjouk, S. Castellino, Organometallics 13 (1994) 3387; - (c) R. West, H. Sohn, U. Bankwitz, J. Calabrese, Y. Apeloig, T. Müller, J. Am. Chem. Soc. 117 (1995) 11608; - (d) W.P. Freeman, T.D. Tilley, G.P.A. Yap, A.L. Rheingold, Angew. Chem. 108 (1996) 960; Angew. Chem. Int. Ed. Engl. 35 (1996) 882. - [4] (a) O. Graalmann, U. Klingebiel, J. Organomet. Chem. 275 (1984) C1; - (b) H. Sohn, R.R. Huddleston, D.R. Powell, R. West, K. Oka, X. Yonghua, J. Am. Chem. Soc. 121 (1999) 2935. - [5] See e.g.: (a) S. Masamune, Y. Kabe, S. Collins, D.J. Williams, J. Am. Chem. Soc. 107 (1985) 5552; (b) M. Weidenbruch, A. Pellmann, Y. Pan, S. Pohl, W. Saak, H. - Marsmann, J. Organomet. Chem. 450 (1993) 67. - [6] (a) T. Kawase, S.A. Batcheller, S. Masamune, Chem. Lett. (1987) 227; - (b) K. Tamao, G.R. Sun, A. Kawachi, S. Yamaguchi, Organometallics 16 (1997) 780; - (c) J. Heinicke, S. Mantey, Heteroatom Chem. 9 (1998) 311. - [7] Experiments and calculations show that this reaction possesses no activation energy: (a) R. Becerra, H.M. Frey, B.P. Mason, R. Walsh, M.S. Gordon, J. Chem. Soc. Faraday Trans. 91 (1995) 2723; - (b) S. Sakai, M. Nakamura, J. Phys. Chem. 97 (1993) 4960. - [8] P.P. Gaspar, R. West, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, vol. 2, Wiley, Chichester, 1998, p. 2463. - [9] See e.g.: (a) Y.-S. Chen, P.P. Gaspar, Organometallics 1 (1982) - (b) U. Herzog, R. Richter, E. Brendler, G. Roewer, J. Organomet. Chem. 507 (1996) 221; - (c) J. Belzner, U. Dehnert, H. Ihmels, M. Hübner, P. Müller, I. Usón, Chem. Eur. J. 5 (1998) 852. - [10] For oligosilanes with highly coordinated silicon centers see: (a) I. El-Sayed, Y. Hatanaka, C. Muguruma, S. Shimada, M. Tanaka, - N. Koga, M. Mikami, J. Am. Chem. Soc. 121 (1999) 5095 and references cited therein; - (b) K. Tamao, M. Asahara, G.R. Sun, A. Kawachi, J. Organomet. Chem. 574 (1999) 193; - (c) K. Tamao, M. Asahara, T. Saeki, A. Toshimitsu, Angew. Chem. 111 (1999) 3520; Angew. Chem. Int. Ed. 38 (1999) 3316. - [11] J. Belzner, H. Ihmels, B.O. Kneisel, R.O. Gould, R. Herbst-Irmer, Organometallics 14 (1995) 305. - [12] This compound was prepared earlier by hydrolysis of 1: J. Belzner, J. Organomet. Chem. 430 (1992) C51. - [13] (a) K. Tamao, A. Kawachi, Adv. Organomet. Chem. 38 (1995) 1: (b) J. Belzner, U. Dehnert, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, vol. 2, Wiley, Chichester, 1998, p. 779. - [14] (a) K. Tamao, K. Nagata, M. Asahara, A, Kawachi, Y. Ito, M. Shiro, J. Am. Chem. Soc. 117 (1995) 11592; (b) K. Tamao, Y. Tarao, Y. Nakagawa, K. Nagata, Y. Ito, Organometallics12 (1993) 1113; For calculations addressing the extrusion of coordinated silvlenes from disilanes, see: (c) H. Hildebrandt, B. Engels, Z. Anorg. Allg. Chem. 626 (2000) 400. - [15] The synthesis of this silacyclopentene from 3 and 40 was described earlier (ref. 9c). - [16] In the meantime we succeeded in preparing a stable disilene using this method: J. Belzner, B. Rohde, to be published. - [17] P. Jutzi, in: A.R. Bassindale, P.P. Gaspar (Eds.), Frontiers of Organosilicon Chemistry, Royal Society of Chemistry, Cambridge, 1991, p. 305. - [18] J. Belzner, D. Schär, unpublished results. - [19] Unpublished results of ab initio-calculations at the B3LYP/6- $311 + G^*/B3LYP/6-311 + G^*$ level show that for the dissociation of the parent disilene into two silylenes 55.4 kcal mol⁻¹ are necessary, whereas the dissociation energy of a disilene, which is - vicinally coordinated by two ammonia molecules, to give two silylene–ammonia complexes is only 17.8 kcal mol⁻¹. - [20] E.A. Williams, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of
Organosilicon Compounds, vol. 29, Wiley, Chichester, 1989, - [21] B.J. Helmer, R. West, R.J.P. Corriu, M. Poirier, G. Royo, A. de Saxce, J. Organomet. Chem. 251 (1983) 295. - [22] S.G. Baxter, K. Mislow, J.F. Blount, Tetrahedron 36 (1980) 605. - [23] A. Bondi, J. Phys. Chem. 68 (1964) 441. - [24] D. Kost, I. Kalikhman, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, vol. 2, Wiley, Chichester, 1998, p. 1339. - [25] The orientation of the lone pair vector was determined by summation of three normalized vectors, which are collinear with the three N(1)-C bonds. - [26] It was impossible to prove the purity of some compounds either by elemental analysis or high resolution mass spectroscopy due to their extreme sensitivity towards atmospheric moisture. - [27] (a) R. West, S.S. Zeigler, L.M. Johnson, J. Organomet. Chem. 341 (1988) 187: - (b) D.M. Roddick, R.H. Heyn, T.D. Tilley, Organometallics 8 (1989) 324. - [28] (a) H. Gilman, D. Gorsich, J. Am. Chem. Soc. 77 (1955) 6380; (b) H. Gilman, D. Gorsich, J. Am. Chem. Soc. 80 (1958) 1883. - [29] R. West, M.J. Fink, M.J. Michalczyk, K.J. Haller, J. Michl, Organometallics 3 (1984) 793. - [30] M. Weidenbruch, A. Schäfer, R. Rankers, J. Organomet. Chem. (1980) 171. - [31] (a) S. Mawaziny, J. Chem. Soc. A (1970) 1641; (b) H. Söllradl, E. Hengge, J. Organomet. Chem. 243 (1983) 257. - [32] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467. - [33] G.M. Sheldrick, SHELX-97, Universität Göttingen, Germany 1997