Dicationic triple-decker complexes with a bridging boratabenzene ligand

Alexander R. Kudinov *, Dmitry A. Loginov, Zoya A. Starikova, Pavel V. Petrovskii
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, GSP-1, Russia

Received 23 October 2001; received in revised form 2 December 2001; accepted 5 December 2001

Abstract

New dicationic triple-decker complexes with a bridging boratabenzene ligand [$\left.\mathrm{Cp} * \mathrm{Fe}\left(\mu-\eta: \eta-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right) \mathrm{ML}\right] \mathrm{X}_{2}$ ($\mathrm{ML}=\mathrm{CoCp}$ *, $\mathbf{6}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} ; \mathrm{RhCp}, 7\left(\mathrm{BF}_{4}\right)_{2} ; \mathrm{IrCp}, \mathbf{8}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} ; \mathrm{Ru}\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right), \mathbf{9}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} ; \mathrm{Ru}\left(\eta-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5\right), \mathbf{1 0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} ; \mathrm{Ru}\left(\eta-\mathrm{C}_{6} \mathrm{Me}_{6}\right)$, $\left.\mathbf{1 1}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right)$ were synthesized by stacking reactions of $\mathrm{Cp} * \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)(\mathbf{2})$ with the corresponding half-sandwich fragments [ML] ${ }^{2+}$. The structure of $\mathbf{1 0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ was determined by X-ray diffraction study. © 2002 Published by Elsevier Science B.V.

Keywords: Boron; Cobalt; Iridium; Iron; Rhodium; Ruthenium; Boratabenzene; Sandwich compounds; Triple-decker complexes; X-ray structure

1. Introduction

Boron-containing heterocycles are known to possess high propensity to the formation of triple-decker complexes. Many examples of such complexes were prepared using five-membered heterocycles containing one, two or three boron atoms [1-3]. Boratabenzene anion 1 is the simplest six-membered boron-containing heterocycle. Although chemistry of its metal derivatives is rather well studied [4], only several examples of μ-boratabenzene triple-decker complexes have been reported [5].

1

Herein we describe the synthesis of new dicationic triple-decker complexes with a bridging boratabenzene ligand as well as the results of X-ray diffraction study of one of them.

2. Results and discussion

2.1. Synthesis of triple-decker complexes $\left[C p * F e\left(\mu-\eta: \eta-C_{5} H_{5} B M e\right) M L\right] X_{2}$

Electrophilic stacking of sandwich compounds with cationic half-sandwich fragments is an effective method for the preparation of cationic triple-decker complexes [6]. In particular, using this method the complexes with bifacially bonded cyclopentadienyl [6a,7], phospholyl [8], pentaphospholyl [9], and borole [10] ligands have been prepared. Three μ-boratabenzene dicationic complexes $\mathbf{3 - 5}$ have been also prepared with the use of the same method, viz. by reaction of the fragments $\left[\mathrm{Cp}^{*} \mathrm{M}^{\prime}\right]^{2+}$ with boratabenzene complexes $\mathrm{Cp} * \mathrm{Fe}(\eta-$ $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}$) (2) or $\mathrm{Cp} * \mathrm{Ru}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)$ [5].

2

3: $M=F e, M^{\prime}=R h$
4: $M=F e, M^{\prime}=I r$
5: $M=R u, M^{\prime}=R h$

Using stacking reactions of 2 with dicationic fragments $[\mathrm{LM}]^{2+}$ we were able to prepare new dicationic 30 -electron triple-decker complexes $\mathbf{6}-\mathbf{1 1}$ with a bridging boratabenzene ligand (Scheme 1, the anions are omitted for clarity). The fragments $[\mathrm{LM}]^{2+}$ were gener-

[^0]ated in form of labile solvates by reactions of the halide

Table 1
${ }^{1} \mathrm{H}$ - and ${ }^{11} \mathrm{~B}$-NMR data for complexes $2[5 \mathrm{a}]$ and $\mathbf{6 - 1 1}$

Chemical shifts in ppm, coupling constants in Hz .
${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{NO}_{2}$.
${ }^{\mathrm{b}}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$.
${ }^{\mathrm{c}}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.
complexes $\left[\mathrm{LMX}_{2}\right]_{2}(\mathrm{LM}=\mathrm{Cp} * \mathrm{Co}, \mathrm{CpRh}$, (arene) Ru , $\mathrm{X}=\mathrm{Cl} ; \mathrm{LM}=\mathrm{CpIr}, \mathrm{X}=\mathrm{I}$) with $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ or AgBF_{4} in nitromethane ${ }^{1}$. Alternatively, the fragment $[\mathrm{CpRh}]^{2+}$ was generated using $\mathrm{CpRhI}_{2}(\mathrm{CO})$. It is noteworthy that the fragments $\left[\mathrm{Cp}^{*} \mathrm{Co}\right]^{2+},[\mathrm{CpRh}]^{2+}$, and $[\mathrm{CpIr}]^{2+}$ were not previously used for the synthesis of tripledecker complexes.

Triflate or tetrafluoroborate salts of triple-decker cations $6-\mathbf{1 1}^{2}$ were isolated as deep-coloured solids with the yields ca. $50-60 \%$. They were characterized by ${ }^{1} \mathrm{H}$ - and ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ spectroscopy (Table 1) and elemental analysis. Signals of boratabenzene ring protons are down-field shifted and the signals of boron atoms are

Scheme 1.

[^1]up-field shifted as compared with the corresponding signals for sandwich compound 2 . The same pattern has been observed for compounds $3-5$ [5].

The complexes 6-11 are moderately air-stable, complex 7 being the less stable among them. They are readily soluble in MeNO_{2} with the formation of rather stable solutions. However, they undergo nucleophilic degradation in strongly coordinating solvents (e.g. MeCN), the rate being dependent on the fragment LM. Thus, CpRh complex 7 is immediately destroyed by MeCN (with colour change from violet to orange), while CpIr complex 8 reacts within 5 min. However, $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}$ complex 9 decomposes only within ca. 10 h . More rapid nucleophilic degradation of rhodium and iridium complexes as compared with the ruthenium analogue is apparently connected with higher oxidation state of Rh and Ir atoms. In accordance with ${ }^{1} \mathrm{H}$ - and ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ data, complexes $\mathbf{7}$ and $\mathbf{8}$ decompose regioselectively with elimination of 2 via nucleophilic attack at Rh or Ir atom; in the case of $\mathbf{8}$ the formation of the acetonitrile complex $\left[\mathrm{CpIr}(\mathrm{MeCN})_{3}\right]^{2+}$ was also detected. Pentamethylated analogues $\mathbf{3}$ and $\mathbf{4}$ have been shown to decompose in a similar way [5b]. In contrast, degradation of 9 proceeds by two pathways: (a) by nucleophilic attack at Ru atom to give 2 and $[(\eta-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mathrm{MeCN})_{3}\right]^{2+}$; (b) by the attack at Fe atom to give $\left[\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)\right]^{+} \quad\left(\mathrm{cf} . \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}-\right.\right.\right.$ $\left.\mathrm{BPh})]^{+}[15]\right)$; the ratio of the products formed by ways (a) and (b) being ca. 2:1. Lower selectivity of nucleophilic degradation of 9 is apparently connected with comparable susceptibility to nucleophilic attack of both metal atoms.

2.2. Structure of $\left[C p^{*} F e\left(\mu-\eta: \eta-C_{5} H_{5} B M e\right) R u-\right.$ $\left.\left(\eta-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$

The structure of triple-decker cation $\mathbf{1 0}$ is shown in Fig. 1 and selected bond lenghts and angles are given in

Fig. 1. Structure of cation 10. Hydrogen atoms are omitted for clarity.

Table 2. The cation $\mathbf{1 0}$ consists of three cyclic frames $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right.$ and $\left.\mathrm{Cp}{ }^{*}\right)$, between which two metal atoms (Ru and Fe) are located. The planes of cyclic ligands are ca. parallel; the dihedral angles $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe} / \mathrm{Cp}^{*}$ are equal to $2.0(4)$ and $1.4(5)^{\circ}$, respectively. The six-membered cycles are eclipsed. The metal-to-ring distances (Δ) are as follows: $\mathrm{Ru} \cdots \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe} \quad 1.725(3), \quad \mathrm{Fe} \cdots \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}$ 1.571(3) $\AA, \mathrm{Ru}^{\cdots} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3} 1.679(3) \AA$ and $\mathrm{Fe} \cdots \mathrm{Cp}^{*}$ $1.657(4) \AA$. It is noteworthy that $\Delta\left(\mathrm{Ru} \cdots \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)$ and $\Delta\left(\mathrm{Fe} \cdots{ }^{\circ} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)$ values are close to the corresponding average statistic standard values for metal- $\left(\eta-\mathrm{C}_{6} \mathrm{R}_{6}\right)$ bonding ($\Delta\left(\mathrm{Ru}^{\cdots} \mathrm{C}_{6} \mathrm{R}_{6}\right) 1.745 \AA, \Delta\left(\mathrm{Fe} \cdots \mathrm{C}_{6} \mathrm{R}_{6}\right) 1.563 \AA$ [16]). However, $\Delta\left(\mathrm{Ru}_{\cdots} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}\right)(1.679 \AA)$ and $\Delta\left(\mathrm{Fe} \cdots \mathrm{Cp}^{*}\right)(1.657 \AA)$ values for $\mathbf{1 0}$ are shorter than the corresponding standard values ($\Delta\left(\mathrm{Ru}^{\cdots} \mathrm{C}_{6} \mathrm{R}_{6}\right) 1.745 \AA$, $\left.\Delta\left(\mathrm{Fe} \cdots \mathrm{C}_{5} \mathrm{R}_{5}\right) 1.739 \AA\right)$. These data suggest that π-bonding of Ru and Fe atoms with boratabenzene ring is very similar to the bonding with $\mathrm{C}_{6} \mathrm{R}_{6}$, while bonding with terminal rings $\left(\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right.$ and $\left.\mathrm{Cp}^{*}\right)$ is stronger than that usually observed for these rings. The bonds $\mathrm{Ru}(1)-\mathrm{B}(1)$ $(2.340(8) \AA)$ and $\mathrm{Fe}(1)-\mathrm{B}(1)(2.242(9) \AA)$ are considerably longer than the corresponding bonds $\mathrm{Ru}(1)-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)(2.221-2.278 \AA$, av. $2.248 \AA$) and $\mathrm{Fe}(1)-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)(2.094-2.167 \AA$, av. $2.130 \AA)$. This fact is consistent with the larger covalent radius of boron versus carbon ${ }^{3}$ and may also have an electronic origin. The boratabenzene intra-ring bonds $\mathrm{B}-\mathrm{C}$ ($1.51(1), 1.56(1) \AA$) are longer than the bonds $\mathrm{C}-\mathrm{C}$ (1.42-1.44(1) A). The difference between intra-ring bonds causes asymmetry of exocyclic valent angles $\left(\mathrm{C}(1) \mathrm{B}(1) \mathrm{C}(2) 125.4(7), \mathrm{C}(1) \mathrm{B}(1) \mathrm{C}(6) \quad 122.5(7)^{\circ}\right)$. The

[^2]ring is slightly folded along the line $\mathrm{C}(2) \cdots \mathrm{C}(6)$ away from the ruthenium atom, the folding angle being 1.5°.

3. Conclusion

Using stacking reactions of boratabenzene complex 2 with dicationic half-sandwich fragments a series of new dicationic triple-decker complexes with bifacially bonded boratabenzene ligand was synthesized thus illustrating that this ligand is very perspective for creation of new triple-decker complexes.

Table 2
Selected bond lengths [\AA] and angles [${ }^{\circ}$] for cation $\mathbf{1 0}$

Bond lengths			
$\mathrm{Ru}(1)-\mathrm{C}(17)$	$2.168(8)$	$\mathrm{Fe}(1)-\mathrm{C}(7)$	$2.062(9)$
$\mathrm{Ru}(1)-\mathrm{C}(20)$	$2.179(8)$	$\mathrm{Fe}(1)-\mathrm{C}(11)$	$2.064(8)$
$\mathrm{Ru}(1)-\mathrm{C}(21)$	$2.181(9)$	$\mathrm{Fe}(1)-\mathrm{C}(4)$	$2.094(8)$
$\mathrm{Ru}(1)-\mathrm{C}(19)$	$2.183(8)$	$\mathrm{Fe}(1)-\mathrm{C}(3)$	$2.115(7)$
$\mathrm{Ru}(1)-\mathrm{C}(22)$	$2.187(9)$	$\mathrm{Fe}(1)-\mathrm{C}(5)$	$2.115(7)$
$\mathrm{Ru}(1)-\mathrm{C}(18)$	$2.221(8)$	$\mathrm{Fe}(1)-\mathrm{C}(2)$	$2.159(7)$
$\mathrm{Ru}(1)-\mathrm{C}(4)$	$2.228(8)$	$\mathrm{Fe}(1)-\mathrm{C}(6)$	$2.167(8)$
$\mathrm{Ru}(1)-\mathrm{C}(3)$	$2.231(8)$	$\mathrm{Fe}(1)-\mathrm{B}(1)$	$2.242(9)$
$\mathrm{Ru}(1)-\mathrm{C}(6)$	$2.249(8)$	$\mathrm{B}(1)-\mathrm{C}(2)$	$1.511(11)$
$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.255(7)$	$\mathrm{B}(1)-\mathrm{C}(6)$	$1.558(11)$
$\mathrm{Ru}(1)-\mathrm{C}(5)$	$2.278(7)$	$\mathrm{B}(1)-\mathrm{C}(1)$	$1.605(12)$
$\mathrm{Ru}(1)-\mathrm{B}(1)$	$2.340(8)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.430(10)$
$\mathrm{Fe}(1)-\mathrm{C}(10)$	$2.055(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.424(11)$
$\mathrm{Fe}(1)-\mathrm{C}(8)$	$2.059(8)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.436(11)$
$\mathrm{Fe}(1)-\mathrm{C}(9)$	$2.060(8)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.441(11)$
Bond angles			
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{B}(1)$	$123.0(7)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{B}(1)$	$123.1(7)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.0(7)$	$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{C}(6)$	$112.0(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.9(8)$	$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{C}(1)$	$125.4(7)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.9(7)$	$\mathrm{C}(6)-\mathrm{B}(1)-\mathrm{C}(1)$	$122.5(7)$

4. Experimental

4.1. General

The reactions were carried out under an inert atmosphere in dry solvents, unless otherwise stated. The isolation of products was conducted in air. Starting materials 2 [5b], $\left[\mathrm{Cp} * \mathrm{CoCl}_{2}\right]_{2}$ [18], $\left[\mathrm{CpRhCl}_{2}\right]_{2}$ [19], $\mathrm{CpRhI}_{2}(\mathrm{CO})[20],\left[\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \operatorname{IrCl}\right]_{2}[21],\left[\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ [22], $\quad\left[\left(\eta-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5\right) \mathrm{RuCl}_{2}\right]_{2} \quad[22]$, and $\quad[(\eta-$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ [23] were prepared as described in the literature. ${ }^{1} \mathrm{H}$ - and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were recorded on a Bruker AMX-400 spectrometer (${ }^{1} \mathrm{H}$ 400.13; ${ }^{11} \mathrm{~B} 128.38 \mathrm{MHz}$) relative to residual protons of the solvents $\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left({ }^{11} \mathrm{~B}\right.$, external standard).

4.2. Synthesis of $\left[\mathrm{CpIrI}_{2}\right]_{2}$

Ethylene was bubbled through a suspension of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{IrCl}\right]_{2}(447 \mathrm{mg}, 1.00 \mathrm{mg}$ equiv.) in THF (10 ml) for $0.5 \mathrm{~h} . \mathrm{CpTl}(280 \mathrm{mg}, 1.04 \mathrm{mmol})$ was added to the solution and the mixture was stirred for 1 h . The solvent was removed in vacuo and the residue was extracted with petroleum ether. After removal of the solvent in vacuo a white solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{ml})$ and a solution of $\mathrm{I}_{2}(254 \mathrm{mg}, 1 \mathrm{mmol})$ in the same solvent was added (an inert atmosphere is not necessary). The reaction mixture was stirred for 4 h . The brown precipitate formed was centrifuged off and washed by acetone until washings become colorless. After drying in vacuo the complex $\left[\mathrm{CpIrI}_{2}\right]_{2}$ was obtained as a brown solid, yield $465 \mathrm{mg}(91 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d^{6}, \mathrm{ppm}\right): ~ \delta 6.00(\mathrm{~s}, \mathrm{Cp})$.

4.3. Synthesis of $\left[C p * F e\left(\mu-\eta: \eta-C_{5} H_{5} B M e\right) M L\right] X_{2}$ (6-11)

$\mathrm{MeNO}_{2}(1 \mathrm{ml})$ was added to a mixture of $\left[\mathrm{LMX}_{2}\right]_{2}$ $\left(\mathrm{LM}=\mathrm{Cp} * \mathrm{Co}, \quad \mathrm{CpRh}, \quad\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}, \quad\left(\eta-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-\right.\right.$ $\left.1,3,5) \mathrm{Ru},\left(\eta-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}, \mathrm{X}=\mathrm{Cl} ; \mathrm{LM}=\mathrm{CpIr}, \mathrm{X}=\mathrm{I}\right)$ or $\mathrm{CpRhI}_{2}(\mathrm{CO})$ (0.071 mg equiv.) and $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ or AgBF_{4}-3dioxane (0.142 mmol). The reaction mixture was stirred for ca. 0.5 h . The precipitate of AgX was centrifuged off and the solution obtained was added to $\mathrm{Cp} * \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BMe}\right)(20 \mathrm{mg}, 0.071 \mathrm{mmol})$. The solution was stirred for 2 h . Ether (ca. 10 ml) was added to precipitate a bright-coloured solid, which was filtered off and reprecipitated twice from acetone by ether.
$6\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, green, yield $28 \mathrm{mg}(51 \%)$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{BCoF}_{6} \mathrm{FeO}_{6} \mathrm{~S}_{2}$: C, $43.43 ; \mathrm{H}, 4.95 \%$. Found: C, 43.49; H, 4.92\%.
$7\left(\mathrm{BF}_{4}\right)_{2}$, violet, yield $32 \mathrm{mg}(72 \%)$ from $\left[\mathrm{CpRhCl}_{2}\right]_{2}$ or $23 \mathrm{mg}(43 \%)$ from $\mathrm{CpRhI}_{2}(\mathrm{CO})$. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~B}_{3} \mathrm{~F}_{8} \mathrm{FeRh}: \mathrm{C}, 40.44 ; \mathrm{H}, 4.53 \%$. Found: C, 39.79; H, 4.42\%.
$\mathbf{8}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, red, yield $39 \mathrm{mg}(66 \%)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BF}_{6} \mathrm{FeIrO}_{6} \mathrm{~S}_{2}$: C, 32.99 ; H, 3.37%. Found: C, 32.92 ; H, 3.30\%.
$\mathbf{9}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, red, yield $27 \mathrm{mg}(50 \%)$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BF}_{6} \mathrm{FeO}_{6} \mathrm{~S}_{2} \mathrm{Ru}: \mathrm{C}, 37.96$; H, 3.85%. Found: C, 37.80 ; H, 3.84%.
$\mathbf{1 0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, red, yield $32 \mathrm{mg}(56 \%)$. Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BF}_{6} \mathrm{FeO}_{6} \mathrm{~S}_{2} \mathrm{Ru}: \mathrm{C}, 40.46 ; \mathrm{H}, 4.40 \%$. Found: C, 40.01; H, 4.33%.
$\mathbf{1 1}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, red, yield $36 \mathrm{mg}(60 \%)$. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{BF}_{6} \mathrm{FeO}_{6} \mathrm{~S}_{2} \mathrm{Ru}$: C, $42.72 ; \mathrm{H}, 4.90 \%$. Found: C, 42.07; H, 4.93\%.

4.4. X-ray crystallography

4.4.1. Crystal structure analysis of $\mathbf{1 0}$

Crystals of $\mathbf{1 0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ were obtained by slow diffusion of petroleum ether and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex. Single-crystal X-ray diffraction experiments were carried out with a Bruker SMART 1000 CCD area detector, using graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation ($\lambda=0.71073 \AA, \omega$-scans with a 0.3° step in ω and 10 s per frame exposure, $2 \theta<59.8^{\circ}$) at 110 K . Low temperature of the crystals was maintained with a Cryostream (Oxford Cryosystems) open-flow N_{2} gas cryostat. The structure was solved by direct method and refined by full-matrix least squares against F^{2} in anisotropic approximation [24]. All hydrogen atoms were placed in the geometrically calculated positions and included in the refinement using the riding model approximation with the $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3} groups, where $U_{\text {eq }}(\mathrm{C})$ is the equivalent isotropic temperature factor of the carbon atom bonded to the corresponding H atom.

4.4.2. Crystal data

$\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BF}_{6} \mathrm{FeO}_{6} \mathrm{RuS}_{2} \quad(M=801.40)$, monoclinic, space group $P 2_{1} / c, a=16.677$ (3), $b=17.738(4), c=$ 10.534(2) $\AA, \quad \beta=90.604(3), \quad V=3116(1) \AA^{3}, \quad Z=4$, $D_{\text {calc }}=1.708 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.160 \mathrm{~mm}^{-1}, F(000)=1624$, crystal size $0.35 \times 0.20 \times 0.15 \mathrm{~mm}, T_{\min } / T_{\max } 0.353 /$ 0.802 , No. of measured and independent reflections 27198 and $8753, R_{\text {int }}=0.119$, No. of parameters used in refinement 397, $R_{1}=0.0733$ (from 2652 unique reflections with $I>2 \sigma(I)$) and $w R_{2}=0.1957$ (from all 8753 unique reflections).

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 172158 for $\mathbf{1 0}$. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant Nos. 99-03-33106; 99-0790133; 00-03-32807) and the Federal Target Program 'Integration' (Grant No. AO 115).

References

[1] (a) G.E. Herberich, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 1, Pergamon Press, New York, 1982, p. 381;
(b) G.E. Herberich, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 1, Pergamon Press, New York, 1995, p. 197 C.E. Housecroft, Volume Ed.
[2] (a) W. Siebert, Adv. Organomet. Chem. 18 (1980) 301;
(b) W. Siebert, Angew. Chem. Int. Ed. Engl. 24 (1985) 943;
(c) W. Siebert, Pure App. Chem. 59 (1987) 947;
(d) W. Siebert, Usp. Khim. 60 (1991) 1553 Russ. Chem. Rev. 60 (1991) 784 (English Translation);
(e) W. Siebert, Adv. Organomet. Chem. 35 (1993) 187.
[3] (a) R.N. Grimes, Coord. Chem. Rev. 28 (1979) 47;
(b) R.N. Grimes, Pure Appl. Chem. 63 (1991) 369;
(c) R.N. Grimes, in: G.A. Olah, K. Wade, R.E. Williams (Eds.), Electron-Deficient Boron and Carbon Clusters, Wiley, New York, 1991, p. 261;
(d) R.N. Grimes, Chem. Rev. 92 (1992) 251;
(e) R.N. Grimes, Coord. Chem. Rev. 143 (1995) 71.
[4] (a) G.E. Herberich, H. Ohst, Adv. Organomet. Chem. 25 (1986) 199;
(b) G.E. Herberich, Boratabenzene Chemistry Revisited, in: W. Siebert (Ed.), Advances in Boron Chemistry, The Royal Society of Chemistry, Cambridge, UK, 1997, p. 211 Special Publication No. 201;
(c) G.C. Fu, Adv. Organomet. Chem. 47 (2001) 101.
[5] (a) G.E. Herberich, U. Englert, D. Pubanz, J. Organomet. Chem. 459 (1993) 1;
(b) G.E. Herberich, U. Englert, B. Ganter, C. Lamertz, Organometallics 15 (1996) 5236.
[6] (a) G.E. Herberich, U. Englert, F. Marken, P. Hofmann, Organometallics 12 (1993) 4039;
(b) A.R. Kudinov, M.I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim. (1999) 1636. [Russ. Chem. Bull. 48 (1999) 1615 (Engl. Transl.)].
[7] (a) H. Werner, A. Salzer, Synth. Inorg. Met. Org. Chem. 2 (1972) 239 ;
(b) A. Salzer, H. Werner, Angew. Chem. Int. Ed. Engl. 11 (1972) 930;
(c) A.R. Kudinov, M.I. Rybinskaya, Yu.T. Struchkov, A.I. Yanovskii, P.V. Petrovskii, J. Organomet. Chem. 336 (1987) 187; (d) P.O. Lumme, U. Turpeinen, A.R. Kudinov, M.I. Rybinskaya, Acta Crystallogr. Sect. C 46 (1990) 1410;
(e) A.R. Kudinov, A.A. Fil'chikov, P.V. Petrovskii, M.I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim. (1999) 1364. [Russ. Chem. Bull. 48 (1999) 1352 (Engl. Transl.)].
[8] (a) G.E. Herberich, B. Ganter, Organometallics 16 (1997) 522; (b) A.R. Kudinov, D.A. Loginov, S.N. Ashikhmin, A.A. Fil'chikov, L.S. Shul'pina, P.V. Petrovskii, Izv. Akad. Nauk, Ser. Khim. (2000) 1647 [Russ. Chem. Bull. 49 (2000) 1637 (Engl. Transl.)];
(c) G.E. Herberich, B. Ganter, Inorg. Chem. Commun. 4 (2001) 100.
[9] (a) O.J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber. 122 (1989) 2049;
(b) A.R. Kudinov, D.A. Loginov, P.V. Petrovskii, M.I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim. (1998) 1625. [Russ. Chem. Bull. 47 (1998) 1583 (Engl. Transl.)];
(c) A.R. Kudinov, P.V. Petrovskii, M.I. Rybinskaya, Izv. Akad. Nauk, Ser. Khim. (1999) 1374. [Russ. Chem. Bull. 48 (1999) 1362 (Engl. Transl.)];
(d) A.R. Kudinov, D.A. Loginov, Z.A. Starikova, P.V. Petrovskii, M. Corsini, P. Zanello, Eur. J. Inorg. Chem. (in press).
[10] (a) G.E. Herberich, B.J. Dunne, B. Hessner, Angew. Chem. Int. Ed. Engl. 28 (1989) 737;
(b) G.E. Herberich, U. Büschges, B.J. Dunne, B. Hessner, N. Klaff, D.P.J. Köffer, K.M. Peters, J. Organomet. Chem. 372 (1989) 53;
(c) A.R. Kudinov, D.A. Loginov, D.V. Muratov, P.V. Petrovskii, Izv. Akad. Nauk, Ser. Khim. (2001) 1267. [Russ. Chem. Bull. 50 (2001) 1332 (Engl. Transl.)].
[11] (a) H. Yamazaki, Bull. Chem. Soc. Jpn. 44 (1971) 582;
(b) A.A. Bezrukova, V.S. Khandkarova, V.G. Andrianov, Yu.T. Struchkov, A.Z. Rubezhov, Izv. Akad. Hauk SSSR, Ser. Khim. (1987) 2071. [Bull. Acad. Sci. USSR, Div. Chem. Sci. (1987) 1922 (Engl. Transl)].
[12] J.M. Mayer, J.C. Calabrese, Organometallics 3 (1984) 1292.
[13] M. Dziallas, A. Höhn, H. Werner, J. Organomet. Chem. 330 (1987) 207.
[14] L.P. Szajek, J.R. Shapley, Organometallics 10 (1991) 2512.
[15] G.E. Herberich, C. Engelke, W. Pahlmann, Chem. Ber. 112 (1979) 607.
[16] H.B. Burgi, J.D. Dunitz (Eds.), Structure Correlation, vol. 2, VCH, Weinheim, New York, 1994, p. 767.
[17] A.J. Gordon, R.A. Ford, The Chemist's Companion, Wiley, New York, 1972, p. 82.
[18] M.J. Macazaga, S. Delgado, R.M. Medina, J.R. Masaguer, J. Organomet. Chem. 277 (1984) 423.
[19] J.W. Kang, K. Moseley, P.M. Maitlis, J. Am. Chem. Soc. 91 (1969) 5970.
[20] R.B. King, Inorg. Chem. 5 (1966) 82.
[21] A. van der Ent, A.L. Onderdelinden, Inorg. Synth. 14 (1973) 92.
[22] M.A. Bennett, A.K. Smith, J. Chem. Soc. Dalton Trans. (1974) 233.
[23] M.A. Bennett, T.-N. Huang, T.W. Matheson, A.K. Smith, Inorg. Synth. 21 (1982) 74.
[24] shelxtl (Version 5.01), Bruker (1998). Bruker AXS Inc. Madison, WI, USA.

[^0]: * Corresponding author.

 E-mail address: arkudinov@ineos.ac.ru (A.R. Kudinov).

[^1]: ${ }^{1}$ Complex $\left[\mathrm{CpIrI}_{2}\right]_{2}[11]$, which was used for the generation of the fragment $[\mathrm{C} \mathrm{CIr}]^{2+}$, was prepared by a simple high-yield procedure based on the reaction of I_{2} with $\mathrm{CpIr}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$. The latter was obtained by one-pot procedure [12] (based on the reaction of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{IrCl}\right]_{2}$ with $\mathrm{C}_{2} \mathrm{H}_{4}$ to give $\left[\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{IrCl}\right]_{2}$ with subsequent treatment with $\mathrm{CpTl})$ and used without purification. Overall yield of $\left[\mathrm{CpIrI}_{2}\right]_{2}$ from $\left[\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{IrCl}\right]_{2}$ is 91%. Direct reaction of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{IrCl}\right]_{2}$ with CpTl gives a mixture of $\mathrm{CpIr}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}$ [13] and $\mathrm{CpIr}\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)$ [14]; only the former reacts with I_{2} to give $\left[\mathrm{CpIrI}_{2}\right]_{2}$, while the latter gives $\left[\mathrm{Cp}_{2} \mathrm{Ir}\right]^{+}$.
 ${ }^{2}$ Usually $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$was used as a counter-ion with the exception of cation 7, which was isolated as the tetrafluoroborate salt since we were unable to prepare its triflate salt in analytically pure form.

[^2]: ${ }^{3}$ Covalent radii: $0.82 \AA$ (boron), $0.77 \AA$ (carbon) [17].

