

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 654 (2002) 221-223

www.elsevier.com/locate/jorganchem

Note

The reaction of $Cp_2^*ZrMe_2$ with $[CPh_3][B(C_6F_5)_4]$: triphenylethane does *not* form η^n -arene complexes with $[Cp_2^*ZrMe]^+$

Simon J. Lancaster*, Manfred Bochmann*

Wolfson Materials and Catalysis Centre, School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Received 22 January 2002; received in revised form 8 February 2002; accepted 8 February 2002

Abstract

In response to a recent paper concerning the formation of a putative arene complex, $[Cp_2^*Zr(CH_3)\eta - C_6H_5C(C_6H_5)_2CH_3][B(C_6F_5)_4]$ from the reaction of $Cp_2^*ZrMe_2$ with $[CPh_3][B(C_6F_5)_4]$ in CD_2Cl_2 at -78 °C, we present data showing that this reaction leads in fact to a mixture of $[(Cp_2^*ZrMe)_2(\mu-Me)][B(C_6F_5)_4]$ and $[Cp_2^*ZrMe \cdots B(C_6F_5)_4]$, while NMR signals attributed to η -arene coordination of triphenylethane are due to unreacted CPh_3^+ ($Cp^* = \eta$ - C_5Me_5). © 2002 Published by Elsevier Science B.V.

Keywords: Zirconocene cations; Triphenylmethyl cation; Arene coordination

In a recent paper [1], Casey and Carpenetti presented low-temperature NMR spectroscopic data which were interpreted as evidence for the coordination of one of the phenyl rings of triphenylethane to $[Cp_2^*ZrCH_3]^+$ (Eq. (1)), as indicated by ¹H-NMR signals at δ 7.67 (*ortho*), 7.87 (*meta*) and 8.25 (*para*) (CD₂Cl₂, -78 °C). Surprisingly, there was no interchange between bound and free phenyl groups up to the decomposition temperature of ca. 0 °C, and there was no displacement of the coordinated arene by added toluene. On addition of THF, the low-field resonances disappeared.

$$Cp^{*}_{2}Zr \begin{pmatrix} CH_{3} \\ CH_{3} \end{pmatrix} \xrightarrow{[CPh_{3}][B(C_{6}F_{5})_{4}]} Cp^{*}_{2}Zr \begin{pmatrix} \bigoplus \\ Cp^{*}_{2}Zr \end{pmatrix} \xrightarrow{Ph}_{Ph} (B(C_{6}F_{5})_{4}] \bigoplus (1)$$

The data were illustrated by a partial ¹H-NMR of the aromatic region (fig. 1 of ref. [1]). However, this spectrum had a rather familiar appearance since we had observed a similar pattern numerous times before, in cases where the reaction of a metallocene dialkyl with $[CPh_3][B(C_6F_5)_4]$ had not gone to completion. Indeed, the ¹H-NMR values quoted in [1] for the 'coordinated' phenyl ring are essentially identical to those reported [2]

0022-328X/02/\$ - see front matter O 2002 Published by Elsevier Science B.V. PII: S 0 0 2 2 - 3 2 8 X (0 2) 0 1 3 1 9 - 0

for pure [CPh₃][B(C₆F₅)₄]. Similarly, the ¹³C-NMR signals of δ 130.5, 139.6, 142.9 and 143.5 quoted in [1] compare well with δ 129.8, 138.8, 142.4 and 142.7 for the *o*-, *i*-, *m*- and *p*-C resonances, respectively, of [CPh₃][B(C₆F₅)₄] (CD₂Cl₂, -78 °C).

We decided therefore to reproduce the reaction between $Cp_2^*ZrMe_2$ (1) and $[CPh_3][B(C_6F_5)_4]$ (2). Following the reaction of an equimolar mixture of 1 and 2 in CD_2Cl_2 at -78 °C showed the formation of two zirconocene products (Fig. 1): the homobinuclear cation, $[(Cp_2^*ZrMe)_2(\mu-Me)]^+ [B(C_6F_5)_4]^-$ (3), as indicated by signals for the bridging (δ -2.31) and terminal $(\delta - 0.17)$ methyl signals with relative intensities of 1:2, and the (possibly solvated) mononuclear product, $[Cp_2^*ZrMe^+ \cdots B(C_6F_5)_4]$ (4), as evidenced by a peak at δ 0.37 [5,6] (Scheme 1). These signals are accompanied by those for free triphenylethane and unreacted trityl cation. If 1 and 2 are combined in a 2:1 molar ratio, only the spectrum of 3 is observed, with no indication of 4and no signals in the 7.6-8.3 ppm region. Homobinuclear methyl-bridged titanocene and zirconocene cations are known for a variety of Cp ligands [2-4], and cation 3 has previously been reported by Marks et al. [5].

Under low-temperature conditions, the reaction of the binuclear cation 3 with 2 is slow, and a fraction of the initial amount of 2 remains unreacted. However, on warming to -40 °C compound 3 is fully converted to

^{*} Corresponding authors. Fax: +44-1603-592044.

Fig. 1. ¹H-NMR spectrum of a mixture of 1 and 2 (molar ratio 1:1) (300.13 MHz, CD_2Cl_2 , -60 °C). Under these conditions, products 4 and 3 are formed in a relative ratio of 1.28:1.

mononuclear 4. There is also some evidence for the onset of decomposition in the chlorinated solvent at that temperature. The assumption of the presence of excess 2 in the spectra given in [1] would account for a number of observations, such as the reported failure to observe an exchange between 'free' and 'coordinated' phenyl groups of Ph₃CMe or with toluene, and the inability to freeze out a lower-symmetry coordination mode on cooling 1-2 mixtures to -135 °C.

The addition of THF to the mixtures of **3** and **4** generated in the above experiment leads to the formation of $[Cp_2^*ZrMe(THF)]^+$ (**5**) [7]. In the case of **3**, this reaction proceeds with the liberation of **1** which readily reacts with any remaining **2** to give more **5**. This reaction sequence explains Casey's observation that the low field signals disappear on THF addition, and only resonances for free triphenylethane are seen.

Arene π -coordination would, of course, be difficult in a sterically highly hindered metallocene such as $[Cp_2^*ZrMe]^+$. There are, however, a few authenticated cases in more open environments. In 1990, we reported the first arene complex of a zirconium(IV) alkyl, $Zr(CH_2Ph)_3(\eta-C_6H_5BPh_3)$, where a much wider chemical shift range was observed, δ 6.22 (*para*), 6.59 (*meta*) and 8.25 (*ortho*) (400 MHz, CD₂Cl₂, -40 °C) [8]. Horton described BPh₄⁻ anion coordination for a number of complexes L₂ZrMe(η -C₆H₅BPh₃), where a similarly wide range of chemical shifts is observed, and suspected η^2 - or η^3 -bonding for steric reasons [9]. Cationic half-sandwich complexes of zirconium and hafnium form rather stable 16-electron η^6 -complexes

with toluene [10–12]. In summary, we have shown that the reaction of $Cp_2^*ZrMe_2$ and $[CPh_3][B(C_6F_5)_4]$ in CD_2Cl_2 at low temperatures leads to the formation of a mixture of the homobinuclear complex, $[(Cp_2^*ZrMe)_2(\mu-Me)][B(C_6F_5)_4]$ and a mononuclear compound, $[Cp_2^*ZrMe^+\cdots B(C_6F_5)_4]$. If the reagents are employed in a 1:1 ratio, excess $[CPh_3][B(C_6F_5)_4]$ is present in the mixture. *There is no evidence for the claimed coordination of triphenylethane* [13].

1. Experimental

All manipulations were performed under nitrogen using standard Schlenk techniques. Deuterated CH_2Cl_2 was stored over 4 Å molecular sieves and degassed by several freeze-thaw cycles. The compounds $Cp_2^*ZrMe_2$ [14] and [CPh₃][B(C₆F₅)₄] [2] were prepared according to published procedures; the latter was recrystallised from CH_2Cl_2 and used as the solvate, $1 \cdot CH_2Cl_2$. NMR spectra were recorded on a Bruker Avance DPX300 spectrometer. ¹H- and ¹³C-NMR spectra are referenced to residual solvent resonances.

1.1. $Cp_2^*ZrMe_2/[CPh_3][B(C_6F_5)_4]$ in a 1:1 ratio

Samples of 43 mg (0.11 mmol) crystalline $1 \cdot CH_2Cl_2$ and 111 mg (0.11 mmol) **2** were each dissolved in 0.3 ml CD_2Cl_2 and cooled to -78 °C. The two solutions were injected into a pre-cooled NMR tube. The NMR tube was shaken and inserted into the pre-cooled probe (-78 °C) of the NMR spectrometer.

3: ¹H-NMR (300.13 MHz, CD₂Cl₂, -78 °C): δ 1.79 (s, 60H, C₅Me₅), -0.17 (s, 6H, ZrCH₃), -2.31 (s, 3H, μ -CH₃). ¹³C- (74.47 MHz, CD₂Cl₂, -78 °C): δ 120.92 (C₅Me₅), 45.95 (ZrCH₃), 26.65 (μ -CH₃), 11.33 (C₅Me₅).

Ph₃CMe: ¹H-NMR (300.13 MHz, CD₂Cl₂, -78 °C): δ 7.23–7.21 (m, 9H, *m*, *p*-C₆H₅), 7.05 (m, 6H, *o*-C₆H₅), 2.14 (s, 3H, (C₆H₅)₃CCH₃). ¹³C- (74.47 MHz, CD₂Cl₂, -78 °C): δ 148.29 (*i*-Ph), 128.02 (*o*-Ph), 127.41 (*m*-Ph), 125.54 (*p*-Ph), 51.51 (Ph₃CMe), 29.39 ((C₆H₅)₃CMe).

4: ¹H-NMR (300.13 MHz, CD₂Cl₂, -78 °C): δ 1.89 (s, 30H, C₅Me₅), 0.36 (s, 3H, ZrMe). ¹³C- (74.47 MHz, CD₂Cl₂, -78 °C): δ 124.81 (C₅Me₅), 54.52 (Zr-CH₃), 11.08 (C₅Me₅).

1.2. $Cp_2^*ZrMe_2/[CPh_3][B(C_6F_5)_4]$ in a 3:1 ratio

Following a similar procedure to that described for the 1:1 ratio above, using 74 mg (0.19 mmol) $1 \cdot CH_2Cl_2$ and 70 mg (0.07 mmol) **2**. The ¹H-NMR spectrum shows the formation of **3**, together with unreacted **1**. The NMR data are identical to those given above.

References

- C.P. Casey, D.W. Carpenetti, II, J. Organomet. Chem. 642 (2002) 120.
- [2] M. Bochmann, S.J. Lancaster, J. Organomet. Chem. 434 (1992) C1.
- [3] M. Bochmann, S.J. Lancaster, Angew. Chem. Int. Ed. Engl. 33 (1994) 1634.
- [4] M. Bochmann, S.J. Lancaster, J. Organomet. Chem. 497 (1995) 55.
- [5] Y.X. Chen, M.V. Metz, L. Li, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 120 (1998) 6287.
- [6] A.D. Horton, A.G. Orpen, Organometallics 10 (1991) 3910.
- [7] J.J.W. Eshuis, Y.Y. Tan, J.H. Teuben, J. Renkema, J. Mol. Catal. 62 (1990) 277.
- [8] M. Bochmann, G. Karger, A.J. Jaggar, J. Chem. Soc. Chem. Commun. (1990) 1038.
- [9] A.D. Horton, J.H.G. Frijns, Angew. Chem. Int. Ed. Engl. 30 (1991) 1152.
- [10] D.J. Gillis, M.J. Tudoret, M.C. Baird, J. Am. Chem. Soc. 115 (1993) 2543.
- [11] M. Bochmann, O.B. Robinson, S.J. Lancaster, M.B. Hursthouse, S.J. Coles, Organometallics 14 (1995) 2456.
- [12] D.J. Gillis, R. Quyoum, M.J. Tudoret, Q.Y. Wang, D. Jeremic, A.W. Roszak, M.C. Baird, Organometallics 15 (1996) 3600.
- [13] Note added at the request of Casey et al.: "Casey and Carpenetti agree that their assignment of $[Cp_2^*Zr(CH_3)\eta-C_6H_5C(C_6H_5)_2CH_3]$ [B(C₆F₅)₄] is incorrect. They believe that their claim of the corresponding hydride $[Cp_2^*Zr(H)\eta-C_6H_5C(C_6H_5)_2CH_3]$ [B(C₆F₅)₄] is likely to be incorrect also".
- [14] J.M. Manriquez, D.R. McAlister, R.D. Sanner, J.E. Bercaw, J. Am. Chem. Soc. 100 (1978) 2716.