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Abstract

3-(Trialkylsilyl)- and 3-(trialkylgermyl)-2-propynals as well as 2-propynal react with secondary phosphine oxides by carbonyl

group under mild conditions (�/10 to 22 8C) to give corresponding tertiary phosphine oxides with acetylenic and hydroxyl moieties

in quantitative yield. The reactivity of the aldehydes in this reaction drops in the following order: HC�/CC(O)H�/Me3SiC�/

CC(O)H�/Et3GeC�/CC(O)H. # 2002 Elsevier Science B.V. All rights reserved.
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1-(Diorganylphosphoryl)-3-[trialkylsilyl(or germyl)]-2-propyn-1-ols

1. Introduction

Reaction of a,b-acetylenic aldehydes with nucleophi-

lic reagents (e.g. amines, thiols, etc.) follows the scheme

of 1,4-addition to afford the corresponding Michael

adducts [1,2] or products of their subsequent cyclization

[3,4]. 3-(Trialkylsilyl)- and 3-(trialkylgermyl)-2-propy-

nals react with NH- and SH-acids as ambident electro-

philes with participation of carbonyl group and (or)

acetylenic moiety depending on both reaction conditions

and the nature of heteroatom in the initial reagents [5].

At the same time there is no data on the reactivity of

PH-acids in this reaction, although it would contribute

to the theoretical aspects of chemistry of element

substituted acetylenic aldehydes and lead to new con-

venient routes to the synthesis of new polyfunctional Si-,

Ge- and P-containing compounds, prospective polyden-

tate amphiphilic ligands for design of new metal

complex catalysts (including the chiral ones) [6�/11]. In

the present paper, taking available 3-(trimethylsilyl)-

and 3-(triethylgermyl)-2-propynals (1, 2) [5] and bis(2-

phenethyl)- and bis[2-(2-pyridyl)ethyl]phosphine oxides

(3, 4) [12] as an example, the data on the reaction of

acetylenic aldehydes with secondary phosphine oxides
are presented for the first time.

2. Results and discussion

2.1. Synthesis

Secondary phosphine oxides 3, 4 readily add to

propynals 1, 2 under mild conditions (�/10 to 22 8C,
THF or methanol) regioselectively at C�/O group to give

tertiary phosphine oxides 5�/7 in almost quantitative

yield.

The asymmetric carbon atom in phosphine oxides 5�/

7 gives rise to non-equivalence of signals of carbon

atoms in phenethyl and pyridylethyl groups. Moreover,

in 1H-NMR spectrum of compound 7 the signals of

protons in pyridylethyl groups are also non-equivalent.
2-Propynal 8 reacts with phosphine oxide 3 in the

same way to form 1-(diphenethylphosphoryl)-2-propyn-

1-ol (9).
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2.2. Reactivity

The reactivity of propynals 1 and 2 towards phos-

phine oxide 3 was evaluated using the method of

competitive reactions. According to the literature data

[5], the basicities of triethylgermylpropynal is higher

than that of triethylsilylpropynal. At the same time the

basicities of trimethyl- and triethylsilylpropynals are

comparable [5].

The dynamics of conversion of aldehydes 1, 2 and

formation of the corresponding phosphine oxides 5, 6

was monitored by the 1H-NMR spectra. For this

purpose, a THF solution of propynals 1, 2 and

phosphine oxide 3 in 1:1:2.2 molar ratio, respectively,

was used; the reaction was carried out in an NMR tube

at room temperature.

The process of formation of hydroxyphosphine oxides

5, 6 in the reaction mixture was resulting in an increase

of the intensity of trimethylsilyl protons (0.10 ppm, s)

for 5 and CH2-protons of triethylgermyl group (0.81

ppm, s) in the case of 6. The intensities of the

corresponding peaks of protons from propynals 1

(0.20 ppm, s) and 2 (0.94 ppm, q) have been synchro-

nously decreasing.
The data obtained prove that in the reaction with

phosphine oxide 3 trimethylsilylpropynal 1 is more

active than triethylgermylpropynal 2. Thus, in the first

10 min of the reaction the concentration of formed

phosphine oxide 5 is almost three times higher than that

of phosphine oxide 6. After 20 min this ratio decreases

to 2 and after 40 min to 1.5. Then the formation rates

for compounds 5 and 6 become relatively equal and

after 3.5 h the ratio of trimethylsilyl (5) and triethylger-

myl (6) products reaches 1.2. Relative rate constants for

the formation of hydroxyphosphine oxides 5 and 6

become 10.7 and 4.1 mol l min�1, respectively. A higher

reactivity of trimethylsilylpropynal 1 in the studied

reaction is caused by a stronger electron withdrawing

effect of trimethylsilylethynyl group as compared with

triethylgermylethynyl group. As a result, transition state

A in the case of propynal 1 is more stable.

In order to qualitatively estimate the relative reactiv-

ity of propynal 8, an experiment was carried out in an

NMR tube for a mixture of propynals 8 and 1, in the

reaction with phosphine oxide 3. Comparison and

analysis of the 1H- and 31P-NMR spectra have shown

that the rate of the formation of phosphine oxide 9 is

higher than that for phosphine oxide 5. Thus, 10 min

after mixing the reagents 1, 3, 8 in THF at �/10 8C, the

signal at dP 49.42 ppm resultant from phosphine oxide 9

was first to appear whereas the signals of protons of

phosphine oxide 5 in the 1H-NMR spectrum were

absent.

3. Conclusions

Reaction of acetylenic aldehydes with secondary

phosphine oxides represents a new convenient approach

for the synthesis of previously unknown polyfunctional

chiral tertiary phosphine oxides. The reactivity of the

ambident electrophiles 1, 2, 8 in this process follows the

order: HC�/CC(O)H�/Me3SiC�/CC(O)H�/Et3GeC�/

CC(O)H, which is in accordance with the literature

data on the activity of these aldehydes towards the N-

and S-nucleophiles [5].
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4. Experimental

4.1. General

The 1H-, 13C- and 31P-NMR spectra were taken on
Bruker DPX 400 and DPX 250 spectrometers in CDCl3
solutions; HMDS as an internal standard, 85% H3PO4

as an external one, respectively. All chemical shifts are

presented relative to HMDS. In 13C-NMR spectra of

compounds 5�/7 (the signals were attributed using 2D

(1H and 13C) experiment techniques HSQC [13] and

HMBC [14]) the signals of two quarternary carbon

atoms of the C�/C fragment appear at 90�/100 ppm
region. IR spectra were recorded on a Bruker IFS 25

instrument in KBr pellets and in thin film. Investigation

of the formation dynamics for hydroxyphosphine oxides

5, 6 was performed using a 3% molar solutions of

aldehydes 1, 2 and phosphine oxide 3 in THF (molar

ratio 1:2:3�/1:1:2.2) were used. These solutions were

mixed and placed in an NMR tube at �/15 8C. 1H-

NMR spectra were recorded at a temperature of 22 8C
(proton chemical shifts were registered relative to THF).

4.2. 1-(Diphenethylphosphoryl)-3-(trimethylsilyl)-2-

propyn-1-ol (5)

To a solution of 0.20 g (0.77 mmol) of phosphine

oxide 3 in 1 ml of THF, a solution of 0.10 g (0.77 mmol)

of 3-(trimethylsilyl)-2-propynal in 1 ml of THF was
added during 10 min at �/10 8C. After removal of

cooling, the solution was stirred at room temperature

(r.t.) for 1 h and 20 min. THF was removed in vacuum,

the residue was washed with ether. Yield 98%, m.p.

124�/125 8C (hexane). Anal. Calc. for C22H29O2PSi: C,

68.72; H, 7.60; P, 8.05; Si 7.30. Found: C, 68.63; H, 7.41;

P, 7.94; Si, 7.02%. 1H-NMR (250 MHz, CDCl3): d 0.23

(s, 9H, 3CH3), 2.23 (m, 4H, 2PCH2), 3.04 (m, 4H,
2PhCH2 ), 4.85 (d, 2JPH�/10.2 Hz, 1H, CH), 5.82 (br s,

1H, OH), 7.32 (m, 10H, 2Ph). 13C{1H}-NMR (250

MHz, CDCl3): d 0.26 (s, Si(CH3)3), 26.28; 27.90 (d,
1JPC�/60.0 Hz, PCH2), 27.60 (d, 2JPC�/4.1 Hz,

PhCH2), 61.70 (d, 1JPC�/77.2 Hz, CH), 94.76 (d,
3JPC�/6.9 Hz, �/C �/Si(CH3)3), 100.77 (s, CH�/C �/),

126.44; 126.59 (s, Cp , Ph), 128.17 (s, Co , Ph), 128.69;

128.76 (s, Cm , Ph), 140.89; 141.24 (d, 3JPC�/13.3 Hz, Ci ,
Ph).31P-NMR (400 MHz, CDCl3): d 48.70 (s). IR (KBr,

cm�1): 3108�/3027 (OH), 2172 (C�/C), 1149 (P�/O),

1250, 842, 757 (Si�/C).

4.3. 1-(Diphenethylphosphoryl)-3-(triethylgermyl)-2-

propyn-1-ol (6)

Obtained analogously to 5 from 0.12 g (0.46 mmol) of
phosphine oxide 3 and 0.10 g (0.46 mmol) of 3-

(triethylgermyl)-2-propynal in 2 ml of THF at a

temperature of �/10 to 22 8C (2.5 h). Yield 98%, m.p.

88�/90 8C (hexane). Anal. Calc. for C25H35GeO2P: C,

63.73; H, 7.49; Ge, 15.41; P, 6.57. Found: C, 63.80; H,

7.50; Ge, 15.25; P, 6.03%. 1H-NMR (250 MHz, CDCl3):

0.92 (m, 6H, 3CH2), 1.12 (m, 9H, 3CH3), 2.20 (m, 4H,
2PCH2), 3.03 (m, 4H, 2PhCH2), 4.91 (d, 2JPH�/10.7 Hz,

1H, CH), 6.15 (br s, 1H, OH), 7.32 (m, 10H, 2Ph).
13C{1H}-NMR (250 MHz, CDCl3): d 5.86 (s, GeCH2),

9.29 (s, CH3), 27.32; 28.36 (d, 1JPC�/60.0 Hz, PCH2),

27.76 (d, 2JPC�/4.0 Hz, PhCH2), 61.92 (d, 1JPC�/77.2

Hz, CH), 92.64 (d, 3JPC�/7.8 Hz, �/C �/Ge(C2H5)3),

101.49 (s, CH�/C �/), 126.48; 126.64 (s, Cp , Ph), 128.27 (s,

Co , Ph), 128.73; 128.80 (s, Cm , Ph), 141.06; 141.46 (d,
3JPC�/13.3 Hz, Ci , Ph).31P-NMR (400 MHz, CDCl3): d

49.18 (s). IR (KBr, cm�1): 3118�/3018 (OH), 2165 (C�/

C), 1147 (P�/O), 1202, 700, 580 (Ge�/C).

4.4. 1-bis[2-(2-Pyridinyl)ethyl]phosphoryl-3-

(trimethylsilyl)-2-propyn-1-ol (7)

Obtained analogously to 5 from 0.18 g (0.69 mmol) of

phosphine oxide 4 and 0.09 g (0.69 mmol) of 3-

(trimethylsilyl)-2-propynal in 2 ml of methanol at a

temperature of 22 8C (10 h). Yield 98%, viscous liquid.
Anal. Calc. for C20H27N2O2PSi: C, 62.15; H, 7.04; N,

7.25; P, 8.01; Si, 7.27. Found: C, 62.21; H, 7.07; N, 7.24;

P, 7.98; Si, 7.22%. 1H-NMR (250 MHz, CDCl3): 0.12 (s,

9H, 3CH3), 2.30; 2.36 (m, 4H, 2PCH2), 3.18; 3.31 (m,

4H, 2CH2), 3.82 (br s, 1H, OH), 4.69 (d, 2JPH�/10.8 Hz,

1H, CH), 7.11 (m, 2H, H5�/Py), 7.23 (m, 2H, H3�/Py),

7.61 (m, 2H, H4�/Py), 8.48 (m, 2H, H6�/Py). 13C{1H}-

NMR (250 MHz, CDCl3): �/0.54 (s, Si(CH3)3), 23.67;
24.61 (d, 1JPC�/64.8 Hz, PCH2), 28.43; 29.34 (d, 2JPC�/

4.2 Hz, PyCH2), 60.51 (d, 1JPC�/76.9 Hz, CH), 94.43

(d, 3JPC�/6.9 Hz, �/C �/Si(CH3)3), 100.26 (s, CH�/C �/),

121.76; 121.97 (s, C5�/Py), 123.17; 123.58 (s, C3�/Py),

136.99; 137.39 (s, C4�/Py), 148.70; 149.05 (s, C6�/Py),

160.08; 160.24 (d, 3JPC�/13.0 Hz, C2�/Py). 31P-NMR

(400 MHz, CDCl3): d 49.27 (s). IR (film, cm�1): 3175�/

3010 (OH), 2169 (C�/C), 1150 (P�/O), 1250, 846, 762
(Si�/C).

4.5. 1-(Diphenethylphosphoryl)-2-propyn-1-ol (9)

Obtained analogously from 0.10 g (0.39 mmol) of

phosphine oxide 3 (in 1 ml of THF) and 0.05 g (0.9

mmol) of 2-propynal (in 1.5 ml of THF) at �/10 to

22 8C during 30 min. Yield 100%, viscous liquid of

dark-red color. Anal. Calc. for C19H21O2P: C, 73.06; H,

6.78; P, 9.92. Found: C, 73.16; H, 6.78; P, 9.95%. 1H-
NMR (400 MHz, CDCl3): 2.19 (m, 4H, 2PCH2), 2.61 (s,

1H, �/CH), 2.97 (m, 4H, 2PhCH2), 4.82 (d, 2JPH�/10.4

Hz, 1H, CH), 6.35 (br s, 1H, OH), 7.21 (m, 10H, 2Ph).
31P-NMR (400 MHz, CDCl3): d 49.42 (s).
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