

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 664 (2002) 5-26

www.elsevier.com/locate/jorganchem

Indenyl-amido titanium and zirconium dimethyl complexes: improved synthesis and use in propylene polymerization

Luigi Resconi^{a,*}, Isabella Camurati^a, Cristiano Grandini^{a,1}, Marilisa Rinaldi^{a,2}, Nicoletta Mascellani^b, Orazio Traverso^b

^a Basell Polyolefins, Centro Ricerche G. Natta, CER 158 P.le G. Donegani 12, I-44100 Ferrara, Italy

^b CNR-Centro di Studio su Fotoreattività e Catalisi, Dipartimento di Chimica dell'Università di Ferrara, Via L. Borsari 46, I-44100 Ferrara, Italy

Received 2 April 2002; accepted 12 August 2002

Abstract

The synthesis of a series of indenyl amido titanium dimethyl complexes, by means of the direct synthesis from the ligand, a 2-fold excess of MeLi, and TiCl₄ is reported. The ¹H NMR spectra of the complexes show a quartet structure for the metal-bound methyl groups, due to through-metal proton-proton coupling. Coupling of Ti-methyl protons with protons on the Cp ring is also revealed by COSY 2D-NMR. The performance of the Ti complexes in propylene polymerization, including $[Me_2Si(Me_4C_5)(t-BuN)]TiMe_2$ (1-TiMe₂), [Me₂Si(Ind)(t-BuN)]TiMe₂ (2-TiMe₂) and six other methyl titanium complexes bearing substituted indenyl ligands, has been investigated with different cocatalysts and at different polymerization temperatures and propylene concentrations. All complexes produce amorphous polypropylene (am-PP). The catalytic activity and molecular weight strongly depend on the substitution of the Cp ring: 2-TiMe₂ gives polymers of lower molecular weight, while the presence of a methyl group in position 2 (as in 3-TiMe₂) determines up to 4-fold increase in molecular weight. The type of cocatalyst influences mainly the catalytic activity, the borates being better activators than MAO, but also molecular weight, with again the borates giving higher molecular weights than MAO. 5-TiMe₂-Ph₃CB(C₆F₅)₄ shows an overall activation energy of polymerization of 7.35 kcal mol⁻¹. The rate of chain release is first order in monomer. The following activation energies for overall chain release have been calculated: $\Delta\Delta E^{\ddagger}$ 2-TiMe₂ = 3.4 kcal mol^{-1} , $\Delta\Delta E^{\ddagger}$ 5-TiMe₂ = 3.8 kcal mol⁻¹, $\Delta\Delta E^{\ddagger}$ 3-TiMe₂ = 6.3 kcal mol⁻¹. Even if all the polymers produced are amorphous, 2-TiMe₂ and 5-TiMe₂ show a microstructure unbalanced towards isotacticity, while 3-TiMe₂, 6-TiMe₂ and 8-TiMe₂ are syndiotacticenriched. Chiral induction comes mainly from a weak enantiomorphic site control. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Indenyl amido titanium dimethyl complexes; Amorphous polypropylene

1. Introduction

As part of our continuing interest in amorphous polypropylenes (am - PP) [1–6], we are investigating known and new Group 4 metal complexes with the aim of finding catalysts able to produce am - PP with varying degrees of microstructures and molecular weights, properties that determine the processability

and miscibility of this polyolefin with, for example, isotactic [2,4,5] or syndiotactic polypropylenes [3,4,6].

One of the reference catalysts for the production of high molecular weight *am*-PP is the so-called 'constrained geometry' titanium complex $[Me_2Si(Me_4C_5)(t-BuN)]TiCl_2$ (**1-TiCl_2**) that is used with either AlR₃-B(C₆F₅)₃ or methylalumoxane (MAO) as cocatalysts [7–13].

Both 1-TiCl₂ and $[Me_2Si(Me_4C_5)(t-BuN)]ZrCl_2$ (1-ZrCl₂) have been extensively investigated, and the results show that Ti is clearly superior to Zr within this family of complexes [7–13]. Ligand variations, on the Cp as well as on the type of bridge and the amide substituent, have been pursued. Previous studies by Canich [14] and Waymouth [15] have shown that the

^{*} Corresponding author

E-mail address: luigi.resconi@basell.com (L. Resconi).

¹ Present address: FIS Fabbrica Italiana Sintetici, v.le Milano 26, I-36075 Montecchio Maggiore, Vicenza, Italy.

² Present address: Glaxo Wellcome Medicines Research Center, via Fleming 4, I-37135 Verona, Italy.

Cp substitution pattern has limited influence on the stereoregularity of polypropylene, while both regioregularity and molecular weights are affected to a greater extent. The nature of the bridge affects the catalytic activity in propylene polymerization and, to a minor degree, the polymer microstructure [16]. The steric bulk of the amido substituent generally affects the polymer molecular weight, in a manner, which depends on Cp substitution and monomer type [14,15,17].

The influence of the cocatalyst was also addressed in different studies, although in this case the differences are less clear-cut [18,19].

In order to screen the influence of the π ligands on PP microstructure and molecular weight, we needed a simple and reliable method for the synthesis of different complexes. We have recently reported the successful preparation of a series of dimethylmetallocenes, by means of a one-pot synthesis from the ligand, a 2-fold excess of MeLi, and MtCl₄ (Mt = Ti, Zr, Hf) [20–23]. The same protocol was successfully applied to the synthesis of the dimethylsilylcyclopentadienyl amido complexes of both Zr and Ti, such as [Me₂-Si(Me₄C₅)(*t*-BuN)]TiMe₂ (**1-TiMe₂**) and [Me₂-Si(Me₄C₅)(*t*-BuN)]ZrMe₂ (**1-ZrMe₂**) [21].

We describe here the application of this simplified protocol to the synthesis of a series of indenyl amido titanium complexes, which differ in the substituents on indene. We also describe the results of propylene polymerization, in both liquid monomer and solution, with different cocatalysts and under different polymerization conditions.

2. Results and discussion

2.1. Synthesis of the complexes

1-TiCl₂ has been previously obtained in overall 32% yield from the dilithium salt of the ligand [24], or in 52% yield from the ligand dimagnesium salt [8,15]. Alternatively, **1-TiCl₂** can be prepared in quantitative yield by reaction of the ligand dimagnesium salt (obtained in 79% yield) with Ti(O-*i*-Pr)₄, followed by reaction with SiCl₄ in an overall yield of about 77% from the ligand [8]. **1-TiMe₂** was also obtained from [Me₂Si(Me₄C₅)(*t*-BuN)]Ti(O-*i*-Pr)₂, by reaction of the latter with excess AlMe₃ (100% yield) [8]. The synthesis of **1-ZrCl₂** proceeds in better yield (85% from ZrCl₄(THF)₂ and the dilithium salt of the ligand) [10] while the dimethyl derivative **1-ZrMe₂** has not been reported so far.

With our method, at room temperature, we obtained $1-ZrMe_2$ in high yield (89%, entry 2 in Table 1). The analogous, catalytically more important $1-TiMe_2$ was obtained in 70% yield, which is notably higher than the yields obtained in the conventional three-step procedure [24]. The latter method requires the use of TiCl₃(THF)₃

followed by oxidation, because $TiCl_4$ leads to metal reduction [12]. In our case, $TiCl_4$ could be used without problems, since extensive reduction was not observed. This result shows that also Ti complexes of commercial relevance can be produced conveniently with our procedure.

We then turned our attention to the related (Ind)Si-Me₂(t-BuNH) ligand, which has been investigated by Stevens et al. [7], Herrmann [9], Okuda [11] and Waymouth [15] in the synthesis of asymmetric 'constrained geometry' catalysts. Following the procedure described by Stevens et al. [7], we have first obtained (1-indenyl)dimethylchlorosilane in 89% yield, free from its vinylic isomer but contaminated by 4% bisindenyldimethylsilane; then the final indenyldimethyl(t-BuNH)silane ligand was obtained in 83% yield, in a 75:25 ratio of its allylic and vinylic isomers (Scheme 1).

Okuda reported that conversion of the ligand to the [Me₂Si(Ind)(t-BuN)]TiCl₂ complex occurs in 94% yield following the reaction sequence of Scheme 1, while the following methylation with MeMgCl at -78 °C gave $[Me_2Si(Ind)(t-BuN)]$ TiMe₂ as a yellow oil in 49% yield [11]. Stevens et al. [7] and Waymouth et al. [15] on the other side reported yields of 20-25% using salt methatesis between the TiCl₄(THF)₂ adduct and the dilithio salt of the ligand. [Me₂Si(Ind)(t-BuN)]ZrCl₂ has been analogously prepared by Stevens et al. [7], by reaction of $ZrCl_4(THF)_2$ with the dilithio salt of indenvldimethyl(tbutylamido)silane in 36% yield, while [Me₂Si(Ind)(t-BuN)]ZrMe₂ has not been reported so far. The related $[Me_2Si(Ind)(t-BuN)]Ti(NMe_2)_2$ and $[Me_2Si(Ind)(t-BuN)]Ti(NMe_2)_2$ BuN]Zr(NEt₂)₂ have been prepared by Herrmann in quantitative yield from the corresponding tetrakis(dialkylamido)metals [9].

In our hands with the one-pot method, the novel $[Me_2Si(Ind)(t-BuN)]ZrMe_2$ (2-ZrMe₂) was obtained as a brown solid in 90% yield after extraction, while $[Me_2Si(Ind)(t-BuN)]TiMe_2$ (2-TiMe₂) could be isolated in 70% yield as a dark yellow powder. Analogously, six other Ti dimethyl complexes have been prepared in yields from 61 to 87%. The complexes prepared and reaction yields are listed in Table 1. All samples were purified by a single filtration, yielding dark colored pentane or toluene solutions from which the complexes were isolated by removing the solvents under reduced pressure. Due to the very high solubility of these dimethyl complexes, 1-TiMe₂-8-TiMe₂ have been tested as precatalysts in the polymerization of propylene without further purification.

The indenyl complexes studied in this work are shown in Chart 1.

2.2. NMR characterization

¹H and ¹³C chemical shifts of protons and carbons on the indenyl fragment as well as on Si and Mt are listed in

 Table 1

 All reactions were carried out at room temperature

Label	Complex	Purity $(%$ wt 1 H-NMR)	Vield (%) a
Laber	Complex	Tunty (70wt., 11-1(WIR)	T leiu (70)
1-TiMe ₂	$[Me_2Si(Me_4C_5)(t-BuN)]TiMe_2$	> 95	70
1-ZrMe ₂	$[Me_2Si(Me_4C_5)(t-BuN)]ZrMe_2$	> 98	89
2-TiMe ₂	[Me ₂ Si(Ind)(t-BuN)]TiMe ₂	> 97	70
2-ZrMe ₂	$[Me_2Si(Ind)(t-BuN)]ZrMe_2$	> 98	90
3-TiMe ₂	[Me ₂ Si(2-MeInd)(t-BuN)]TiMe ₂	> 98	70
4-TiMe ₂	$[Me_2Si(3-t-BuInd)(t-BuN)]TiMe_2$	85	66
5-TiMe ₂	[Me ₂ Si(4,7-Me ₂ Ind)(t-BuN)]TiMe ₂	96	61
6-TiMe ₂	[Me ₂ Si(3-PhInd)(t-BuN)]TiMe ₂	90	79
7-TiMe ₂	[Me ₂ Si(2-Me-4-PhInd)(t-BuN)]TiMe ₂	85	86
8-TiMe ₂	[Me ₂ Si(2-Me-Benz[e]Ind)(t-BuN)]TiMe ₂	> 96	87

^a % Weight isolated yield, not corrected by purity.

Table 2a and b, respectively. The assignments follow the numbering scheme shown in Chart 2, for $2-MtMe_2$ (Mt = Ti, Zr)-7-TiMe₂, and in Chart 3 for 8-TiMe₂.

The spectra of **2-MtMe₂** (Mt = Ti, Zr)-**8-TiMe₂** show some common features. The assignments of the ¹H-NMR spectra are based on the bidimensional COSYgs [29] and NOESY [30] spectra. The proton spectra of **2-MtMe₂** are compared in Fig. 1. In the proton spectra, the two methyls on ²⁹Si are identified from the peak multiplicity as they present at the base a doublet due to their coupling with ²⁹Si (I = 1/2, natural abundance = 4.7%).

A peculiarity of the ¹H-NMR spectrum of the titanium complexes is the quartet structure (a broad singlet if resolution is not good enough) showed by the metal-bound methyl groups. The COSY experiments show a proton–proton coupling between the two methyl groups on the metal, accounting for the multiplicity of the signal. A coupling with titanium can be reasonably excluded since the observed quartet is clearly due to the coupling with a nucleus of nearly 100% abundance, while Ti has a low isotopic abundance (⁴⁷Ti = 7.4%, ⁴⁹Ti = 5.4%).

Moreover, coupling of Ti-methyl protons with protons on the Cp ring is also present. The presence of through-metal homo- and heteronuclear long-range couplings was already observed in the case of *meso*- $[C_2H_4(4,7-Me_2-1-Ind)_2]ZrMe_2$ [20]. A coupling between protons H3 and H7 in 2-MtMe₂ (Mt = Ti, Zr), 3-TiMe₂, 7-TiMe₂, 8-TiMe₂ is usually observed owing to a long range coupling (J^5) typical of indenyl systems [25].

The ¹³C-NMR spectra are assigned from DEPT-135, ¹H–¹³C HSQC and ¹H–¹³C HMBC 2D experiments. Protonated carbons are assigned from their cross peaks with directly bonded protons in the ¹H–¹³C HSQC spectrum [26,27]; for quaternary carbons ¹H–¹³C HMBC 2D spectra [28] are used.

In the ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC spectra the quaternary carbon of the *t*-Bu is identified from the cross-peaks with its methyl protons, the carbon C1 is identified from its cross-peaks with Si-methyl protons and with the proton or the methyl protons in position 2.

For more detailed NMR data see the Section 5.

2.3. Propylene polymerization

In order to evaluate to what extent different substituents on the indenyl ring can influence catalyst performance, we tested complexes $2\text{-TiMe}_2\text{-}8\text{-TiMe}_2$ in propylene polymerization under a variety of conditions. Selected polymerization results from 1-TiCl_2 and 1-TiMe_2 –MAO catalysts are also reported for comparison.

Polymerizations in both liquid monomer and in solution were performed to compare catalytic activity, polymer microstructure and molecular weight. Different cocatalysts, namely methylalumoxane (MAO), triphenylcarbenium tetrakis(pentafluorophenyl)borate ([Ph₃-C][B(C₆F₅)₄]), *N*,*N*-dimethylanilinium tetrakis(pentafluorophenyl)borate ([PhNHMe₂][B(C₆F₅)₄]) and tris(pentafluorophenyl)borane (B(C₆F₅)₃), were tested to study the effect of different counterions on catalyst behavior. For some of the catalysts we carried out a deeper investigation by changing polymerization temperature and monomer concentration.

Chart 1. The complexes of the present study.

2.3.1. Propylene polymerization in liquid monomer with MAO cocatalyst

The polymerization results from MAO-activated Ti complexes $1-TiX_2$ (X = Cl, Me), $2-TiMe_2$, $3-TiMe_2$, 7-TiMe₂ and 8-TiMe₂ are compared in Table 3. 4-TiMe₂ and 6-TiMe₂ showed no or very low activity (test not reported in Table 3) and were not further investigated. As expected, 1-TiCl₂ and 1-TiMe₂ behave identically in terms of catalyst activity and molecular weight and tacticity of the polymer. All other catalysts produce am-PP with molecular weights that are strongly influenced by the substitution of the Cp ring and polymerization temperature, and only marginally by the MAO/Ti ratio. Catalysts activities are on the low side, when compared with MAO-activated metallocenes [1]. As observed by Waymouth [15], the unsubstituted indenyl ligand in 2-TiMe₂ induces relatively low molecular weights, even under liquid monomer conditions (see runs 9 and 10 in Table 3). As shown by Spaleck and coworkers for C_2 symmetric ansa-zirconocenes [31], substituting 2-MeInd for Ind as in 3-TiMe₂, 7-TiMe₂ and 8-TiMe₂ generates up to 4-fold increase in molecular weight (compare runs 9-10 with 11-13 in Table 3). For PP from 8-TiMe₂ the molecular weight is lower than expected, although higher than that made with 2-TiMe₂. In turn, 8-TiMe₂ shows the highest catalytic activity. The tetramethylcyclopentadienyl ligand affords the highest molecular weights.

The most representative propylene polymers have been analyzed by ¹³C-NMR. The triad content, racemic dyad excess (% rde [32,33]) and triad tests (*E* and *B* [32,33]) for the determination of the stereocontrol mechanism are reported in Table 3. The methyl pentad region of the spectrum of sample 3 is shown in Fig. 2. The methyl region of spectra of *am*-PP produced by two metallocene-based catalysts, *meso*-C₂H₄(H₄Ind)₂ZrCl₂-MAO [1], and *rac*-CH₂(3-*i*Pr-Ind)₂ZrCl₂-MAO [2], are also shown for comparison in the Fig. 2.

It is apparent that am-PP produced with 1-TiCl₂ (and 1-TiMe₂), although amorphous, have a syndiotacticenriched microstructure, in accordance with the finding of Waymouth [15]. Longer syndiotactic sequences (*rrrrr*) can be observed, although the triad distribution does not enable us to tell what mechanism is operating with this catalysts. On the other side, the very low level of *mmmm* sequences is not consistent with the existence of tight ion pairs during monomer insertion. 1-TiCl₂ shows a negligible effect of polymerization temperature on syndiotacticity, while a strong effect on molecular weight can be noted.

Both 2-TMe₂, sporting the unsubstituted indenyl ligand, and 7-TMe₂ produce nearly atactic PP: the

Table 2		
Chemical	shift	(ppm)

Complex	$C2-CH_3$	H 2	Н 3	H 4	Н5	H 6	H 7	H8 Si-C \underline{H}_3 in	H9 Si $-C\underline{H}_3$ out	H10 Mt–C \underline{H}_3 in	H11 Mt–C \underline{H}_3 out	
(a) ${}^{I}H$												
2-TiMe ₂	_	6.05	7.01	7.48	7.07	6.88	7.46	0.53	0.36	-0.15	0.82	
2-ZrMe ₂	_	6.31	6.68	7.39	7.03	6.92	7.58	0.40,0.60		-0.74	0.24	
3-TiMe ₂	1.99	-	6.76	7.44	7.07	6.89	7.51	0.56	0.46	-0.11	0.85	
4-TiMe ₂	-	6.15	-	7.81	7.11	6.84	7.53	0.63	0.38	-0.12	0.99	
5-TiMe ₂	-	6.19	7.09	-	6.83	6.71	-	0.57	0.39	-0.19	0.78	
6-TiMe ₂	-	6.39	-	7.96	7.08 - 7.18	6.92	7.53	0.61	0.42	0.0065	0.68	
7-TiMe ₂	1.95	-	7.20	-	7.11 - 7.32	6.97	7.52	0.60	0.47	0.005	0.85	
8-TiMe ₂	2.06	-	7.30	-	-	7.21	7.44	0.60	0.49	-0.33	0.83	
Complex	C1	C2-CH3	C 2	C3	C4	C5	C6	C 7	C8 Si-CH3 in	C9 Si-ÇH3 out	C10 Mt-CH ₃ in	C11 Mt-CH3 out
(b) ¹³ C												
2-TiMe ₂	91.86	_	126.84	114.12	125.94	126.07	125.48	127.63	3.96	1.84	57.18	53.85
3-TiMe ₂	89.61	17.98	140.97	115.64	124.90	125.17	124.72	127.81	5.55	5.30	56.57	50.82
4-TiMe ₂	90.05	-	120.98	141.03	126.08	125.25	124.54	127.80	4.60	1.81	57.89	54.46
5-TiMe ₂	92.58	-	128.35	112.32	132.49	125.71	126.71	135.51	5.71	3.48	56.52	52.03
6-TiMe ₂	92.95	-	124.54	129.62	124.62	126.65	125.44	128.00	4.09	1.82	56.33	59.10
7-TiMe ₂	89.99	18.51	141.90	115.73	139.17	125.35	125.75	126.26	6.00	5.58	57.62	51.88
8-TiMe ₂	92.62	18.42	139.85	114.86	131.21	129.22 or 132.35	126.84	124.83	6.01	5.71	56.71	50.80

Chart 3. 8-TiMe₂. The peak numbering does not follow the correct IUPAC numbering, to allow for an easier comparison with the structures of the other complexes.

triads *mm* and *rr* are very similar to each other, and the % rde, although higher than zero, are the lowest, to indicate a marginal tendency toward syndiotacticity. In all other cases, the tendency toward syndiotacticity becomes more marked, following the order $1-TiMe_2 \sim 1-TiCl_2 > 8-TiMe_2 > 3-TiMe_2 > 2-TiMe_2 > 7-TiMe_2$. With the exception of $3-TiMe_2$ and $8-TiMe_2$, all catalysts produce relatively high levels of 2,1-insertions, higher than observed in the corresponding *ansa*-zirconocenes [1].

2.3.2. Propylene polymerization in solution: influence of cocatalyst

MAO-activated **3-TiMe₂**, **5-TiMe₂** and **6-TiMe₂** were also tested at 50 °C in toluene under 3 bar-g of propylene pressure. For **3-TiMe₂**, as expected at lower propylene concentration catalyst activities and molecular weights decrease, while the microstructure remains unchanged.

Given the low activity observed at low pressure for the MAO-activated complexes, the eight Ti complexes were also tested in toluene with $[Ph_3C][B(C_6F_5)_4]$ as cocatalyst and Al(iBu)3 as scavenger. The results are reported in Table 4. Again, 4-TiMe₂ proved almost inactive, followed by 6-TiMe2. In addition, the latter also produces the lowest molecular weights of all catalysts investigated. Hence, we focused our attention on 2-TiMe₂, 3-TiMe₂ and 5-TiMe₂. The tests performed with these three complexes activated by [PhNHMe2]- $[B(C_6F_5)_4]$ are also reported in Table 4. Polymerization experiments were also carried out with $B(C_6F_5)_3$ as the activator, but under our chosen conditions it resulted completely inactive (tests not reported in Table 4). Some authors have already reported the noticeable activity increase from $B(C_6F_5)_3$ to $[Ph_3C][B(C_6F_5)_4]$ [18,34–37], which they attributed to the higher coordination ability of $[MeB(C_6F_5)_3]^-$ compared with $[B(C_6F_5)_4]^-$. In combination with 'constrained geometry' catalysts this interaction could be so strong to prevent the displacement of the anion by the olefin, giving essentially inactive species.

While 1-TiCl₂ is the most active catalyst, among the indenyl-derivatives, 2-TiMe₂ is the most active catalyst when combined with $[Ph_3C][B(C_6F_5)_4]$. A good activity is showed by 3-TiMe₂ and 5-TiMe₂, closely followed by 7-TiMe₂. 8-TiMe₂ is less active, at difference with what observed in liquid monomer with MAO. With these sterically open systems, no simple correlation between ligand structure and activity could be derived.

In the presence of the borate salt $[PhNHMe_2]$ - $[B(C_6F_5)_4]$ all the three complexes tested showed almost

Fig. 1. Aromatic and methyl regions in ¹H-NMR spectra of $[Me_2Si(Ind)(t-BuN)]$ ZrMe₂ (**2-ZrMe₂**, a) and $[Me_2Si(Ind)(t-BuN)]$ TiMe₂ (**2-TiMe₂**, b). Peak assignments according to Chart 2. *, C₆D₅H, 7.15 ppm.

Tabl Prop	e 3 ylene poly	meriza	tion: MAO a	ctivated catalysts												
Run	Catalyst		Cocatalyst	Al/Zr (mol mol^{-1})	Temperature (°C)	Time (min)	Yield (g)	Activity $(kg_{pp} (mmol_{Ti} \times h)^{-1})$	% T1	riads		Rde (%) ^a	E ^b	<i>B</i> ^c	2,1 (%)	$\overline{M}_{\rm w}$
	Туре	μmol							mm	mr	rr					
1	1-TiCl ₂	2.7	MAO	3000	50	60	35.0	12.9	9.6	38.1	52.3	42.6	0.5	1.4	1.3	1 190 800
2	1-TiCl ₂	5.4	MAO	1000	50	60	26.6	4.9								848 200
3	1-TiCl ₂	5.4	MAO	1000	60	60	59.0	10.9	10.5	39.3	50.2	39.7	0.5	1.4	1.3	650 300
4	1-TiCl ₂	5.4	MAO	1000	70	60	63.1	11.6	10.7	41.3	48.0	37.3	0.5	1.2	1.6	420100
5	1-TiCl ₂	5.4	MAO	500	70	60	51.4	9.5								446 900
6	1-TiMe ₂	3.0	MAO	1000	60	60	26.8	8.8	10.5	38.9	50.6	40.0	0.5	1.4	1.6	697 900
7	1-TiMe ₂	6.1	MAO	500	60	60	58.6	9.6								710 500
8	1-TiMe ₂	6.1	MAO	500	70	60	27.9	4.6								424 600
9	2-TiMe ₂	6.2	MAO	1000	60	60	24.9	4.1	24.8	38.9	36.3	11.5	1.3	2.4	1.5	135 400
10	2-TiMe ₂	6.2	MAO	500	70	60	14.0	2.3	26.5	37.7	35.8	9.3	1.4	2.7		103 700
11	3-TiMe ₂	3.0	MAO	1000	60	60	18.3	6.2	15.6	33.1	51.3	35.7	0.9	2.9	0.6	550 800
12	7-TiMe ₂	4.9	MAO	1000	60	60	58.0	11.9	29.4	35.5	35.1	5.7	1.7	3.3	1.1	625 700
13	8-TiMe ₂	5.2	MAO	1000	60	30	80.0	30.8	13.8	38.9	47.3	33.6	0.7	1.7	0.7	194 000

Polymerization conditions: 1-L autoclave, propylene = 300 g, 1 mmol Al(*i*Bu)₃. ^a Rde: racemic dyad excess; % rde = 100([r] - [m]) = % rr - % nm. Positive numbers indicate syndiospecificity, negative ones isospecificity [32,33]. ^b E, enantiomorphic site triad test. E = 2[nm]/[mr] for a syndiotactic polymer; E = 2[rr]/[mr] for an isotactic polymer. E = 1 for perfect site control [32,33]. ^c B, Bernoullian triad test. $B = 4[nm][mr]/[mr]^2$. B = 1 for perfect Bernoullian distribution with chain-end control [32,33].

Fig. 2. Methyl pentad region of ¹³C-NMR spectra ($C_2D_2Cl_4$, 120 °C) of *am*-PP with various degrees of microstructure prepared from 1-TiCl_2-MAO, *meso*-[$C_2H_4(H_4Ind)_2$]ZrCl_2-MAO and *rac*-[CH₂(3-*i*-Pr-Ind)₂]ZrCl_2-MAO in liquid monomer at 60 °C.

the same activity, a little higher than those obtained with MAO, but much lower than in the case of $[Ph_3C][B(C_6F_5)_4]$.

By comparing Table 3 with Table 4, it appears that there is no strong influence on tacticity of propylene concentration (compare runs 11 in Table 3 with 23 in Table 4 for 3-TiMe₂), nor of cocatalyst type: 2-TiMe₂, 3-TiMe₂ and 5-TiMe₂ show the same or very similar degree of stereocontrol when activated by MAO, [Ph₃C][B(C₆F₅)₄], or [PhNHMe₂][B(C₆F₅)₄].

Even if all the polymers produced are essentially atactic, a microstructure unbalanced towards isotacticity is observed for some of them (isotactoid, amorphous polypropylene, *iam*-PP), while some others are syndiotactic-enriched (syndiotactoid, amorphous polypropylene, *sam*-PP). In particular, precatalysts without any substituent on the Cp ring as 2-TiMe₂ [15] and 5-TiMe₂ give rise to *iam*-PP (%*mm* > %*rr*), and it also seems that a substituent in position 4 (5-TiMe₂) could enhance the tendency to isotacticity, as already observed in propylene polymerization in liquid monomer. In the presence of a substituent on the Cp ring (3-TiMe₂, 6-TiMe₂ and 8-TiMe₂) a *sam*-PP is produced (%*mm* < %*rr*). The tendency to isotacticity due to the substituent

in position 4 and that to syndiotacticity due to the substituent in position 2 are perfectly balanced in 7-TiMe₂, which has substituents in both positions 2 and 4: the *am*-PP is then almost completely atactic (%*mm* = 28.9 \approx %*rr* = 31.0). The methyl region of the spectra of three *am*-PPs with different microstructures is shown in Fig. 3.

Quite high levels of 2,1-insertions are observed in most samples, while they are practically absent in those from 3-TiMe₂ and 8-TiMe₂: these two complexes gave the lowest, albeit not nil, amounts of regiomistakes also in liquid monomer. Interestingly, the borate activators induce a higher concentration of regioerrors compared with MAO.

The molecular weight strongly depends on the substitution of the Cp ring: the complex without any substituent gives polymers of lower molecular weight, while the presence of a methyl group in position 2 determines, as in the case of liquid monomer polymerization, a nearly 3-fold increase in molecular weight. The cocatalyst seems to have some influence on molecular weight, with MAO-activated systems producing *am*-PP of lower molecular weights. This effect is most evident in the case of **3-TiMe₂**. If we assume chain transfer to AlMe₃ (from MAO) to be the origin of the lower polymer molecular weight, formation of a less reactive Ti–AlMe₃ complex could also explain the lower activity of MAO-cocatalyzed versus borate-cocatalyzed systems.

2.3.3. Propylene polymerization in solution: influence of monomer concentration

The influence of propylene concentration in the liquid phase was investigated in toluene at 50 °C on 2-TiMe₂, **3-TiMe₂** and **5-TiMe₂**, activated by $[Ph_3C][B(C_6F_5)_4]$, in the propylene pressure range of 2-6 bar, corresponding to propylene concentration of $0.9-3.7 \text{ mol } 1^{-1}$. The different concentrations were obtained by varying the propylene pressure at constant temperature. The results are collected in Table 5. The catalytic activity clearly increases with propylene concentration in the liquid phase, but the trends are not always linear. 2-TiMe₂ shows a nicely linear dependence of activity on [propylene], while 3-TiMe₂ displays a clear higher order dependence. Models have been developed to explain such a non-linear dependence [33], although in the present case the available experimental evidence does not allow us to elect one model over the others. In addition, since catalytic activity is influenced by many variables including possibly different catalyst decay rates, a deviation from a linear dependence on monomer concentration is quite easy.

The microstructure, in terms of triad distribution and amount of 2,1 inserted units, and the molecular weight do not seem to change noticeably with monomer concentration.

L.
Resconi
et
al.
~
Journal
of
[•] Organometallic
Chemistry 664
(2002)
5-26

Table 4 Propylene polymerization in solution with different activators ^a

Run	Catalyst		Cocatalyst	Time (min)	Yield (g)	Activity $(kg_{pp} (mmol_{Ti} \times h)^{-1})$	% Tr	iads		Rde (%) ^b	E ^b	B ^b	2,1 (%)	$\overline{M}_{ m w}$
	Type	μmol					mm	mr	rr					
14	1-TiCl ₂ ^c	1	$[Ph_{3}C][B(C_{6}F_{5})_{4}]$	8	5.2	39.1	13.1	52.2	34.7	21.6	0.5	0.7	2.0	
15	2-TiMe ₂	2	$[Ph_3C][B(C_6F_5)_4]$	5	3.2	19.1	38.8	39.7	21.5	-17.3	1.1	2.1	2.4	109 900
16	3-TiMe ₂	1	$[Ph_3C][B(C_6F_5)_4]$	10	1.9	11.3	20.5	45.3	34.2	13.7	0.9	1.4	0.7	398 200
17	4-TiMe ₂	4	$[Ph_3C][B(C_6F_5)_4]$	25	0.4	0.2								
18	5-TiMe ₂	1	$[Ph_3C][B(C_6F_5)_4]$	10	2.2	13.0	42.6	37.6	19.8	-22.8	1.1	2.4	4.8	111 400
19	6-TiMe ₂	2	$[Ph_3C][B(C_6F_5)_4]$	15	0.8	1.6	9.9	46.8	43.3	33.4	0.4	0.8	6.4	58 000
20	7-TiMe ₂	1	$[Ph_3C][B(C_6F_5)_4]$	10	1.6	9.4	28.9	40.1	31.0	2.1	1.4	2.2	2.2	317 800
21	8-TiMe ₂	1	$[Ph_3C][B(C_6F_5)_4]$	10	1.0	6.1	15.5	46.2	38.3	22.9	0.7	1.1	0.5	326 000
22	3-TiMe ₂	3	MAO	60	1.0	0.3	16.7	39.9	43.4	26.7	0.8	1.8	traces	293 400
23	5-TiMe ₂	3	MAO	45	1.7	0.8	40.4	39.0	20.6	-19.8	1.1	2.2	2.5	73 000
24	6-TiMe ₂	8	MAO	60	1.7	0.1	11.0	48.1	40.9	29.9	0.5	0.8	3.9	35 800
25	2-TiMe ₂	5	$[PhNHMe_2][B(C_6F_5)_4]$	10	2.2	2.6	36.3	38.8	24.9	-11.4	1.3	2.4	1.7	82 900
26	3-TiMe ₂	5	$[PhNHMe_2][B(C_6F_5)_4]$	14	2.8	2.4	20.2	44.3	35.5	15.3	0.9	1.5	1.2	508 600
27	5-TiMe ₂	3.75	$[PhNHMe_2][B(C_6F_5)_4]$	15	2.9	3.1	41.1	37.8	21.1	-20.1	1.1	2.4	3.8	105 200

^a Polymerization conditions: 260 ml Büchi glass autoclave, 100 ml toluene, 0.5 mmol Al(*i*Bu)₃ as scavenger in toluene, $B/Ti = 1 \pmod{mol^{-1}}$, $Al/Ti = 1000 \pmod{mol^{-1}}$, pressure = 3 bar-g, temperature = 50 °C, precontact in toluene (5 ml): 30 s (time necessary to transfer the catalytic solution into the reactor).

^b See footnotes of Table 3.

^c In order to use this dichloride derivative in combination with a borate, **1-TiCl₂** was previously alkylated with $Al(iBu)_3$ (Al/Ti = 50 (mol mol⁻¹), aging = 10 min).

Fig. 3. Methyl pentad region of the 13 C-NMR spectra (C₂D₂Cl₄, 120 °C) of *am*-PP with various degrees of microstructure prepared from 'constrained geometry' catalytic precursors in solution at 50 °C. *, Toluene.

The molecular weight of a polyolefin (here defined by the average degree of polymerization, \bar{P}_n , estimated from \bar{M}_w , see Section 3) made with single center catalysts (which operate by coordination polyinsertion mechanism) is given by the ratio between the overall rate of propagation (R_p) and the sum of all rates of chain release reactions (R_r) [32,33,38].

$$\bar{P}_{\rm n} = \frac{\sum R_{\rm p}}{\sum R_{\rm r}}$$

Assuming for simplicity a first order reaction rate with respect to monomer concentration, that is: $R_p = k_p$ [M], when the average degree of polymerization is independent from monomer concentration, as in the present case, then the rate of chain release is first order in monomer: $R_r = k_r$ [M]. Whether this is due to direct β -H transfer to the coordinated monomer or to associative displacement following a unimolecular β -H transfer [38] cannot be established with the data at hand.

2.3.4. Propylene polymerization in solution: effect of polymerization temperature

Tests at different polymerization temperatures were carried out with the same three catalytic systems already used for the study of the effect of monomer concentration. The tests were performed under the same monomer concentration (1.85 mol 1^{-1}), by modulation of the propylene pressure determined by Aspen Plus calculation.

The results are collected in Table 6. The catalytic activity seems to increase with the polymerization temperature, but some trends are not completely linear for the reasons described above. For **5-TiMe₂** a linear dependence of the catalytic activity from the temperature is observed in the range 20–80 °C, and the Arrhenius plot ln(Activity) = ln $A - \Delta E^{\ddagger}/RT$ gives an overall activation energy ΔE^{\ddagger} **5-TiMe₂** for the polymerization process of 7.35 kcal mol⁻¹. This value is very similar, even if slightly lower, to those obtained with metallocene catalysts (in the range of 10–15 kcal mol⁻¹ [39]).

The isotacticity degree shows a slight decrease and the regioinversion content shows a slight increase as the polymerization temperature increases, while the \bar{M}_w strongly decreases. The Arrhenius plots of $\ln \bar{P}_n$ (estimated from \bar{M}_w , see Section 3) versus $1/T_p$ for the three catalysts are reported in Fig. 4. From the slope of the line the $\Delta\Delta E^{\ddagger}$ (activation energy barrier for chain release) can be calculated for the three catalysts:

 $\Delta \Delta E^{\ddagger} \ \mathbf{2} \cdot \mathbf{TiMe_2} = 3.4 \text{ kcal mol}^{-1},$ $\Delta \Delta E^{\ddagger} \ \mathbf{5} \cdot \mathbf{TiMe_2} = 3.8 \text{ kcal mol}^{-1},$ $\Delta \Delta E^{\ddagger} \ \mathbf{3} \cdot \mathbf{TiMe_2} = 6.3 \text{ kcal mol}^{-1}.$

2.3.5. Mechanism of enantioface selectivity

The exact determination of pentad distribution of these samples is difficult, due to the presence of considerable amount of erythro (*E*) and threo (*T*) 2,1 units. In isotactic polypropylene, the chemical shift of the methyl of a propylene unit close to the $2,1_E$ unit overlaps with the *mmrr* signal. On the other hand, no assignments are available for the same methyl in a non isotactic environment and for the methyl of a propylene near to a $2,1_T$ unit. It is not yet possible to introduce corrections in the experimental integrals to take into account the presence of signals due to propylene units near to regioerrors.

The experimental pentad distribution for the three samples is reported in Table 7. As these samples have a slight tendency towards isotacticity, to understand what mechanism of enantioface selectivity is operating, the *B* (for chain end control) and *E* (for enantiomorphic site control) triad tests were applied, using triads calculated from the experimental pentads. As the *E* test is close to 1 for all three samples (see Tables 3-6), we can conclude that chiral induction comes mainly form a weak enantiomorphic site control.

$ \frac{1}{\text{Type} \ \mu\text{mol}} $	Run	Catalyst		Pressure (bar-g)	$[Propylene]_{l.p.} (mol 1^{-1})^{b}$	Time (min)	Yield (g)	Activity $(kg_{pp} (mmol_{Ti} \times h)^{-1})$	% Tı	riads		Rde ^c	$E^{\rm c}$	$B^{\rm c}$	2,1 (%)	$\overline{M}_{ m w}$
282-TiMe21.71 0.87 7 0.6 3.0 38.8 39.6 21.7 -17.1 1.1 2.1 2.7 105200 292-TiMe2 1.7 2 1.57 7 2.6 13.2 38.8 39.6 21.7 -17.1 1.1 2.1 2.7 105200 152-TiMe223 2.26 5 3.2 19.1 38.8 39.7 21.5 -17.3 1.1 2.1 2.4 109900 30 2-TiMe2 1.5 4 2.95 5 3.0 24.0 35.7 39.3 25.0 -10.8 1.3 2.3 1.6 122500 32 3 -TiMe2 1.3 1 0.87 15 1.1 3.4 29.1 35.7 39.3 25.0 -10.8 1.3 2.3 1.6 122500 32 3 -TiMe2 1.3 1 0.87 15 1.1 3.4 20.7 45.1 34.2 13.5 0.9 1.4 0.5 398200 33 3 -TiMe2 1 2 2.5 9 2.7 18.2 2.5 45.3 34.2 13.7 0.9 1.4 0.5 398200 34 3 -TiMe2 1 4 2.95 9 2.7 18.2 2.00 44.8 35.2 15.2 0.9 1.4 0.5 392600 35 3 -TiMe2 1 2 1.57 10 1.8 8.5 40.5 <t< th=""><th></th><th>Туре</th><th>μmol</th><th></th><th></th><th></th><th></th><th></th><th>mm</th><th>mr</th><th>rr</th><th>%</th><th></th><th></th><th></th><th></th></t<>		Туре	μmol						mm	mr	rr	%				
292-TiMe21.721.5772.613.2108 300152-TiMe2232.2653.219.138.839.721.5 -17.3 1.12.12.4109 900302-TiMe21.542.9553.024.035.739.325.0 -10.8 1.32.31.6122 500312-TiMe2153.6573.429.135.739.325.0 -10.8 1.32.31.6122 500323-TiMe2121.57100.85.0 -10.8 1.32.31.6122 500333-TiMe2121.57100.85.0 -10.8 1.32.31.6122 500343-TiMe2142.9592.718.2 -10.8 3.4.213.70.91.40.5398 200353-TiMe2153.6553.036.520.044.835.215.20.91.40.5342 600365-TiMe2121.57101.88.540.538.021.5 -18.9 1.12.43.9105 200375-TiMe2121.57100.74.23.021.5 -18.9 1.12.43.9105 200385-TiMe2122.56102.213.042.637.6	28	2-TiMe ₂	1.7	1	0.87	7	0.6	3.0	38.8	39.6	21.7	-17.1	1.1	2.1	2.7	105 200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	2-TiMe ₂	1.7	2	1.57	7	2.6	13.2								108 300
302-TiMe21.542.9553.024.0127 300312-TiMe2153.6573.429.1 35.7 39.3 25.0 -10.8 1.3 2.3 1.6 $122 500$ 323-TiMe21.310.87151.1 3.4 20.7 45.1 34.2 13.5 0.9 1.4 0.5 279400 333-TiMe212 1.57 10 0.8 5.0 420100 420100 163-TiMe213 2.26 10 1.9 11.3 20.5 45.3 34.2 13.7 0.9 1.4 0.5 398200 34 3-TiMe214 2.95 9 2.7 18.2 -10.8 35.2 15.2 0.9 1.4 0.5 398200 35 3-TiMe215 3.65 5 3.0 36.5 20.0 44.8 35.2 15.2 0.9 1.4 0.5 342600 36 5-TiMe21.251 0.87 10 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 105200 37 $5-TiMe2$ 1 2 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 38 $5-TiMe2$ 1 4 2.95 10 3.2 19.4 40.7 38.0 21.3 -19	15	2-TiMe ₂	2	3	2.26	5	3.2	19.1	38.8	39.7	21.5	-17.3	1.1	2.1	2.4	109 900
312-TiMe215 3.65 7 3.4 29.1 35.7 39.3 25.0 -10.8 1.3 2.3 1.6 122500 323-TiMe2 1.3 1 0.87 15 1.1 3.4 20.7 45.1 34.2 13.5 0.9 1.4 0.5 279400 333-TiMe212 1.57 10 0.8 5.0 420100 163-TiMe213 2.26 10 1.9 11.3 20.5 45.3 34.2 13.7 0.9 1.4 0.5 398200 343-TiMe214 2.95 9 2.7 18.2 -10.8 35.2 15.2 0.9 1.4 0.5 398200 353-TiMe215 3.65 5 3.0 36.5 20.0 44.8 35.2 15.2 0.9 1.4 0.5 342600 365-TiMe2121.57 10 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 105200 375-TiMe212 1.57 10 0.7 4.2 -14.9 1.1 2.4 4.8 111400 38 5-TiMe213 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 38 5-TiMe215 3.65 10 1.7 10.4 <td< td=""><td>30</td><td>2-TiMe₂</td><td>1.5</td><td>4</td><td>2.95</td><td>5</td><td>3.0</td><td>24.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>127 300</td></td<>	30	2-TiMe ₂	1.5	4	2.95	5	3.0	24.0								127 300
323-TiMe21.31 0.87 15 1.1 3.4 20.7 45.1 34.2 13.5 0.9 1.4 0.5 279400 333-TiMe212 1.57 10 0.8 5.0 420100 163-TiMe213 2.26 10 1.9 11.3 20.5 45.3 34.2 13.7 0.9 1.4 0.5 279400 34 3-TiMe213 2.26 10 1.9 11.3 20.5 45.3 34.2 13.7 0.9 1.4 0.5 398200 34 3-TiMe214 2.95 9 2.7 18.2 20.5 45.3 34.2 13.7 0.9 1.4 0.5 398200 35 3-TiMe215 3.65 5 3.0 36.5 20.0 44.8 35.2 15.2 0.9 1.4 0.5 342600 36 5-TiMe21 2.5 1 0.87 10 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 105200 37 $5-TiMe_2$ 1 2 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 38 $5-TiMe_2$ 1 4 2.95 10 3.2 19.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900 39 $5-TiM$	31	2-TiMe ₂	1	5	3.65	7	3.4	29.1	35.7	39.3	25.0	-10.8	1.3	2.3	1.6	122 500
333-TiMe2121.5710 0.8 5.0 420 100163-TiMe213 2.26 10 1.9 11.3 20.5 45.3 34.2 13.7 0.9 1.4 0.5 $398 200$ 343-TiMe214 2.95 9 2.7 18.2 20.5 45.3 34.2 13.7 0.9 1.4 0.5 $398 200$ 353-TiMe215 3.65 5 3.0 36.5 20.0 44.8 35.2 15.2 0.9 1.4 0.5 $342 600$ 365-TiMe21 2.5 1 0.87 10 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 $105 200$ 375-TiMe2121.5710 0.7 4.2 -114500 -14.5 -14.8 111400 385-TiMe213 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 38 5-TiMe214 2.95 10 3.2 19.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900	32	3-TiMe ₂	1.3	1	0.87	15	1.1	3.4	20.7	45.1	34.2	13.5	0.9	1.4	0.5	279 400
163-TiMe2132.26101.911.320.545.334.213.7 0.9 1.4 0.5 398 200343-TiMe2142.9592.718.2365 900365 900353-TiMe2153.6553.036.520.044.835.215.2 0.9 1.4 0.5 342 600365-TiMe21.2510.87101.88.540.538.021.5-18.91.12.43.9105 200375-TiMe2121.57100.74.21414.0014.0014.0014.00185-TiMe2132.26102.213.042.637.619.8-22.81.12.44.8111400385-TiMe2142.95103.219.4101.710.440.738.021.3-19.31.12.43.6109.900	33	3-TiMe ₂	1	2	1.57	10	0.8	5.0								420100
343-TiMe2142.9592.718.2365 900353-TiMe2153.6553.036.520.044.8 35.2 15.2 0.9 1.4 0.5 342600 365-TiMe21.2510.8710 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 105200 375-TiMe212 1.57 10 0.7 4.2 114500 114500 185-TiMe213 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 385-TiMe214 2.95 10 3.2 19.4 -19.3 1.1 2.4 3.6 109900 395-TiMe215 3.65 10 1.7 10.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6	16	3-TiMe ₂	1	3	2.26	10	1.9	11.3	20.5	45.3	34.2	13.7	0.9	1.4	0.5	398 200
353-TiMe215 3.65 5 3.0 36.5 20.0 44.8 35.2 15.2 0.9 1.4 0.5 342600 365-TiMe2 1.25 1 0.87 10 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 105200 375-TiMe212 1.57 10 0.7 4.2 1.1 2.4 3.9 105200 185-TiMe213 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 385-TiMe214 2.95 10 3.2 19.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900	34	3-TiMe ₂	1	4	2.95	9	2.7	18.2								365 900
365-TiMe2 1.25 1 0.87 10 1.8 8.5 40.5 38.0 21.5 -18.9 1.1 2.4 3.9 105200 37 5-TiMe2 1 2 1.57 10 0.7 4.2 114500 18 5 -TiMe2 1 3 2.26 10 2.2 13.0 42.6 37.6 19.8 -22.8 1.1 2.4 4.8 111400 38 5 -TiMe2 1 4 2.95 10 3.2 19.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900 39 5 -TiMe2 1 5 3.65 10 1.7 10.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900	35	3-TiMe ₂	1	5	3.65	5	3.0	36.5	20.0	44.8	35.2	15.2	0.9	1.4	0.5	342 600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	5-TiMe ₂	1.25	1	0.87	10	1.8	8.5	40.5	38.0	21.5	-18.9	1.1	2.4	3.9	105 200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	5-TiMe ₂	1	2	1.57	10	0.7	4.2								114 500
38 5-TiMe2 1 4 2.95 10 3.2 19.4 106800 39 5-TiMe2 1 5 3.65 10 1.7 10.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900	18	5-TiMe ₂	1	3	2.26	10	2.2	13.0	42.6	37.6	19.8	-22.8	1.1	2.4	4.8	111400
3 9 5-TiMe ₂ 1 5 3.65 10 1.7 10.4 40.7 38.0 21.3 -19.3 1.1 2.4 3.6 109900	38	5-TiMe ₂	1	4	2.95	10	3.2	19.4								106 800
	39	5-TiMe ₂	1	5	3.65	10	1.7	10.4	40.7	38.0	21.3	-19.3	1.1	2.4	3.6	109 900

Table 5							
Propylene polymerization	in	solution	at	different	monomer	concentrations	a

^a Polymerization conditions: 260 ml Büchi glass autoclave, 100 ml toluene, 0.5 mmol Al(*i*Bu)₃ as scavenger in toluene, $[Ph_3C][B(C_6F_5)_4]$ as cocatalyst, $B/Ti = 1 \pmod{1}$, temperature = 50 °C, precontact in toluene (5 ml): 30 s (time necessary to transfer the catalytic solution into the reactor). ^b Propylene concentration in liquid phase in mol 1⁻¹, obtained by interpolation of values calculated from Redlich–Kwong–Soave equations (see Section 3).

^c See footnotes in Table 3.

Table 6 Propylene polymerization in solution at different temperatures ^a

Run	Catalyst		Pressure (bar-g)	Temperature (°C)	Time (min)	Yield (g)	Activity $(kg_{pp} (mmol_{Ti} \times h)^{-1})$	% Tr	iads		Rde (%) ^b	$E^{\rm b}$	<i>B</i> ^b	2,1 (%)	$\overline{M}_{\rm w}$
	Туре	μmol						mm	mr	rr					
40	2-TiMe ₂	1.7	0.85	21	8	0.7	3.1	37.8	38.5	23.7	-14	1.2	2.4	2.4	190 400
41	2-TiMe ₂	2.0	1.9	46.5	10	2.7	8.0								138 700
42	2-TiMe ₂	1.8	3.3	63	7	2.3	11.1								93100
43	2-TiMe ₂	1.8	5.0	80	5	1.2	8.2	32.8	42.1	25.1	-7.7	1.2	1.9	2.7	74400
44	3-TiMe ₂	1.5	0.85	20	10	1.5	6.2	19.9	44.6	35.5	15.6	0.9	1.4	traces	1 0 3 6 7 0 0
45	3-TiMe ₂	1.5	1.9	44	8	2.0	10.0								433 500
46	3-TiMe ₂	1.5	3.3	65	10	3.8	15.4								253 900
47	3-TiMe ₂	1.5	5.0	80	15	3.6	9.7	19.1	48.6	34.1	15.0	0.8	1.2	1.2	160 600
48	5-TiMe ₂	1.0	0.85	23	12	0.2	1.0	41.8	37.6	20.6	-21.1	1.1	2.4	3.3	210 400
49	5-TiMe ₂	1.0	1.9	42.5	12	0.5	2.8								132100
50	5-TiMe ₂	2.0	3.3	62	10	1.6	4.8								90 200
51	5-TiMe ₂	1.25	5.0	79	12	1.8	7.0	37.0	40.1	22.9	-14.2	1.1	2.1	4.1	75800

^a Polymerization conditions: 260 ml Büchi glass autoclave, 100 ml toluene, 0.5 mmol Al(*i*Bu)₃ as scavenger in toluene, $[Ph_3C][B(C_6F_5)_4]$ as cocatalyst, $B/Ti = 1 \pmod{mol^{-1}}$, precontact in toluene (5 ml): 30 s (time necessary to transfer the catalytic solution into the reactor). Propylene concentration in liquid phase: 1.85 mol 1⁻¹. ^b See footnotes of Table 3.

Fig. 4. Arrhenius plots of $\ln(\bar{P}_n)$ vs. $1/T_p$ for **2-TiMe₂** (\bullet , $\Delta\Delta E^+_{release} = 3.4$ kcal/mol), **3-TiMe₂** (\bullet , $\Delta\Delta E^+_{release} = 6.3$ kcal/mol), and **5-TiMe₂** (\bullet , $\Delta\Delta E^+_{release} = 3.8$ kcal/mol).

This result is confirmed by the application of both the Bernoullian (for enantiomorphic site control) and the (symmetric) Markovian (for chain end control) models to the experimental pentad distribution. The calculated pentads are reported in Table 7 together with the probability parameters b (the probability for the insertion of the preferred enantioface in the Bernoullian model) and P(r) (the probability for the formation of an r diad in the Markovian model). In the Table 7 the values of the least-squares fitting L.S. is also reported.

The L.S. of the Bernoullian fitting is always lower that the L.S. of the Markovian one, confirming the results obtained from the *E*-test.

In spite of the non perfect fitting between experimental and calculated pentads (likely due to the presence of 2,1 units), this fitting is good enough for the selection of the model [40].

3. Experimental

3.1. General procedures

All operations were performed under nitrogen by using conventional Schlenk-line techniques. Solvents were purified by degassing with N2 and passing over activated (8 h, N_2 purge, 300 $\,^\circ C)$ $Al_2O_3,$ and stored under nitrogen. MeLi (Fluka or Aldrich), n-BuLi (Aldrich), HexylLi (Aldrich), Me₂SiCl₂ (Aldrich), TiCl₄ (Aldrich), t-BuNH₂ (Aldrich), 2-methylindene (Boulder Scientific), t-butylindene (Boulder Scientific), 4,7-dimethylindene (Boulder Scientific), (Me₄C₅H)Si-Me₂(t-BuNH) (Boulder Scientific), indene (Aldrich), $B(C_6F_5)_3$ (Boulder Scientific), $[Ph_3C][B(C_6F_5)_4]$ and $[PhNHMe_2][B(C_6F_5)_4]$ (Austin) were used as received. $Al(i-Bu)_3$ (Witco) was used as 1 M toluene solution and MAO (methylalumoxane, Witco) was purchased as a 10 wt% solution in toluene and then used as received (liquid propylene tests) or dried under vacuum to remove most of the free trimethylaluminum and used as 1 M toluene solution. Polymerization grade propylene was obtained from the Basell Ferrara plant. All complexes were isolated by filtration and drying from a toluene solution, and characterized by ¹H- and ¹³C-NMR spectroscopy. Elemental analysis in several cases did not give satisfactory results, due to the limited air stability of these dimethyl complexes.

3.2. ¹H- and ¹³C-NMR analysis

The proton and carbon spectra of ligands and metallocenes were obtained using a Bruker DPX 200 spectrometer operating in the Fourier transform mode at room temperature (r.t.) at 200.13 MHz (¹H) and 50.323 MHz (13 C). The samples were dissolved in CDCl₃ or C₆D₆. The residual peak of CHCl₃ or C₆D₅H in the ¹H spectra (7.25 and 7.15 ppm, respectively) and the central peak of the solvent in the ¹³C-NMR spectra (77.00 ppm for CDCl₃ and 128.00 ppm for C_6D_6) were used as references. Proton NMR spectra were acquired with a 15° pulse and 2 s of delay between pulses; 16 or 32 transients were stored for each spectrum. The carbon spectra were acquired with a 45° pulse and 6 s of delay between pulses; about 512 transients were stored for each spectrum. CDCl₃ (Aldrich, 99.8 atom% D) and C_6D_6 (Aldrich, 99.6 atom% D) were dried over P_4O_{10} or CaH₂, distilled, and stored over activated molecular sieves (4-5 Å).

Carbon and proton NMR spectra of polymers were recorded on a Bruker DPX-400 spectrometer operating at 100.61 MHz in the Fourier transform mode, at 120 °C. The samples were prepared by dissolving 40 mg of polymer (for ¹³C) or 10 mg (for ¹H) in 0.5 ml of 1,1,2,2-tetrachloroethane- d_2 at 120 °C. The peaks of the mmmm pentad (21.8 ppm) and of C₂HDCl₂ (5.95 ppm) were used as internal reference in ¹³C- and ¹H-NMR spectra, respectively. Each carbon NMR spectrum was acquired with a 90° pulse, 12 s of delay between pulses and CPD (waltz 16) to remove ¹H-¹³C coupling. About 3000 transients were stored in 32K data points using a spectral window of 60 ppm. Each proton spectrum was acquired with a 45° pulse, 5 s of delay between pulses. About 1K of transients were stored in 32K data points using a spectral window of 16 ppm.

3.3. Molecular weight measurements

The intrinsic viscosity (I.V.) was measured in tetrahydronaphthalene (THN) at 135 °C. The weight average molecular weights of *am*-PP were obtained from their intrinsic viscosity values and the Mark–Houwink– Sakurada parameters derived by Pearson and Fetters: $[\eta] = 1.85 \times 10^{-4} \times (\bar{M}_w)^{0.737}$ [41].

The average degree of polymerization, \bar{P}_n , is estimated from \bar{M}_w by assuming $\bar{M}_w/\bar{M}_n = 2$.

Table 7 Analysis of pentad distribution of samples 18, 24 and 28

Sample		mmmx	rmmr	mmrr	xmrx	rmrm	rrrr	rrrm	mrrm	B ^a	E ^b	b °	$P(r)^{d}$	L.S. ^e
18	Exp	0.3910	0.0299	0.2042	0.1197	0.0522	0.0303	0.0528	0.1199	2.415	1.079			
	Bern	0.4104	0.0343	0.1646	0.1371	0.0685	0.0343	0.0685	0.0823			0.7547		4.21E - 03
	MK	0.3890	0.0500	0.1000	0.2472	0.1000	0.0130	0.0509	0.0500				0.3374	3.58E - 02
28	Exp	0.3796	0.0318	0.2096	0.1284	0.0400	0.0351	0.0541	0.1213	2.426	1.114			
	Bern	0.4011	0.053	0.1640	0.1412	0.0706	0.0353	0.0706	0.0820			0.7493		5.47E - 03
	MK	0.3785	0.0510	0.1020	0.2477	0.1020	0.0141	0.0536	0.0510				0.3446	3.62E - 02
24	Exp	0.3567	0.0470	0.2033	0.1412	0.0459	0.0353	0.0571	0.1136	2.182	1.055			
	Bern	0.3778	0.0379	0.1619	0.1517	0.0759	0.0379	0.0759	0.0810			0.7335		4.67E - 03
	MK	0.3579	0.0530	0.1059	0.2484	0.1059	0.0166	0.0593	0.0530				0.3590	2.96E - 02

^a $B = 4[mm][rr]/[mr]^2$. Chain end control is identified by B = 1. ^b E = 2[rr]/[mr]. Site control is identified by E = 1. ^c b, Probability for the insertion of the preferred enantioface in the Bernoullian model. ^d P(r), Probability for the formation of an r diad in the Markovian model.

^e L.S. = $\Sigma_{\text{penteds}}(xxxx_{\text{exp}} - xxxx_{\text{calc}})^2$.

3.4. GC–*MS* analysis

GC-MS analyses were carried out on a HP 5890-serie 2 gas-chromatograph and a HP 5989B mass spectrometer.

3.5. Determination of monomer concentration

The composition of liquid phase of propylene– toluene mixtures was calculated from the Redlich– Kwong–Soave equations [42–44]. This set of thermodynamic equations was selected among those available in Aspen PlusTM (commercialized by Aspen Technology Inc., Release 9) on the basis of a comparison with the experimental results. The propylene concentration was hence calculated.

3.6. Polymerization in liquid monomer

Batch polymerizations were carried out in a 1-L jacketed stainless-steel autoclave, equipped with magnetically driven stirrer, a 35 ml stainless-steel vial, and connected to a thermostat for temperature control. The reactor was purified by washing with a hexane solution of $Al(iBu)_3$, and then dried by purging with propylene at 80 °C for 1 h. The catalyst–cocatalyst mixture was prepared by dissolving the amount of complex in the required amount of MAO–toluene solution, and aged 10 min at r.t. before being injected into the autoclave.

Al(*i*Bu)₃ (1 mmol) and the amount of propylene reported in Table 3 were charged, at r.t., in the autoclave. It was then thermostated at 2 °C below the polymerization temperature and the catalyst system, prepared as reported above, was injected in the autoclave by means of nitrogen pressure through the stainless-steel vial. The temperature was rapidly raised to the polymerization temperature, and the polymerization was carried out at constant temperature, for the time reported in Table 3. After venting the unreacted monomer and cooling the reactor to r.t., the polymer was dried under reduced pressure, at 60 °C.

3.7. Polymerization in solution

Propylene polymerizations were carried out in a 260 ml Büchi glass autoclave equipped with magnetic stirrer, thermocouple and feeding line for the monomer, purified with nitrogen and kept in a thermostatic bath. Toluene (95 ml) and $Al(iBu)_3$ (0.5 mmol) were introduced into the autoclave and warmed to the polymerization temperature, then the autoclave was fluxed with propylene. The catalytic system was separately prepared in 5 ml of toluene by mixing the desired amounts of metallocene and cocatalyst. After about 30 s of stirring at r.t., the solution was introduced into the autoclave under monomer flow. The reactor was closed and pressurized; the pressure was kept constant by feeding propylene. The polymerization was stopped by degasing the reactor and by adding 2 ml of methanol. The polymer was precipitated with 200 ml of acidified methanol, filtered, washed with methanol and dried overnight at 60 $^{\circ}$ C under reduced pressure.

3.8. Synthesis of $[Me_2Si(Me_4C_5)(t-BuN)]TiMe_2$ (1-TiMe₂)

About 21.5 ml of a 1.6 M solution of MeLi in Et₂O (34.4 mmol) were slowly added at 0 $^{\circ}$ C to a solution of 2.12 g of $(Me_4Cp)Me_2Si(t-BuNH)$ in 45 ml of diethyl ether. During the addition an increasing turbidity develops with final formation of a white suspension. The mixture was allowed to warm up to r.t. and stirred for 1 h. TiCl₄ (0.93 ml, 8.45 mmol) were diluted with 10 ml of pentane. This solution was added to the Li salt suspension in diethyl ether at r.t. (slightly exothermic reaction with gas evolution). The resulting black suspension was stirred at r.t. for 1 h, then brought to dryness under reduced pressure. The black solid obtained (4.26 g) was extracted with 90 ml of toluene and the filtrate evaporated to dryness under reduced pressure to give 1.95 g of a dark brown sticky solid (70% yield). ¹H-NMR shows the presence of chemically pure [Me₂- $Si(Me_4Cp)(t-BuN)]TiMe_2$.

¹H-NMR (C_6D_6 , δ , ppm): 0.43 (s, 6H, Si-CH₃); 0.50 (s, 6H, Ti-CH₃); 1.56 (s, 9H, <u>*t*-Bu</u>); 1.85 (s, 6H, Cp-CH₃); 1.96 (s, 6H, Cp-CH₃).

3.9. Synthesis of $[Me_2Si(Me_4Cp)(t-BuN)]ZrMe_2$ (1- $ZrMe_2$)

About 12.16 ml of a 1.6 M solution of MeLi in Et₂O (19.46 mmol) were added at r.t. to 1.16 g (4.63 mmol) of (Me₄Cp)Me₂Si(*t*-BuNH) in 25 ml of Et₂O over about 5 min. The mixture was stirred for 2 h. An increasing turbidity develops with final formation of a white suspension, and then a mixture of 1.08 g of ZrCl₄ (4.63 mmol) in 25 ml pentane was quickly added. The mixture was stirred overnight and a brown solution is finally obtained. The reaction mixture is brought to dryness under reduced pressure, and the brown solid was extracted with 60 ml of toluene and then the filtrate was evaporated to dryness under reduced pressure to give 1.52 g of a light brown solid (89% yield). ¹H-NMR shows the presence of spectroscopically pure [Me₂- $Si(Me_4Cp)(t-BuN)]ZrMe_2$. The same experiment was repeated at -78 °C, giving a yield of 86%.

¹H-NMR (C₆D₆, δ , ppm): -0.01 (s, 6H, Zr-CH₃); 0.46 (s, 6H, Si-CH₃); 1.40 (s, 9H, <u>*t*-Bu</u>); 1.92 (s, 6H, Cp-CH₃); 1.97 (s, 6H, Cp-CH₃). 3.10. Synthesis of [Me₂Si(Ind)(t-BuN)]TiMe₂ (2-TiMe₂)

*3.10.1. IndSiMe*₂*Cl*

About 37.5 ml of a 2.5 M solution of n-BuLi in hexane (93.7 mmol, n-BuLi:indene = 1.1) were added dropwise to a solution of indene (11 ml, 84.9 mmol) in 60 ml of Et₂O, previously cooled to -78 °C. At the end of the addition, the yellow slurry was allowed to reach r.t. and stirred for 4 h to give an orange solution. The solvents were evaporated under reduced pressure to give a yellow solid, which was taken up in 75 ml of hexane. The milky suspension was stirred for a few minutes, and the lithium salt of indene (white precipitate) was filtered and washed with hexane $(3 \times 20 \text{ ml})$. The solid was again slurried in hexane (40 ml) and added to a stirred solution of Me₂SiCl₂ (15.6 ml, 136.8 mmol, Me₂SiCl₂/ IndLi = 1.5) in 50 ml of hexane, previously cooled to -78 °C. At the end of the addition, the mixture was allowed to reach r.t. and stirred overnight. The suspension was then filtered, and the filtrate brought to dryness in vacuo to yield a light yellow oil of (1-Ind)SiMe₂Cl free from its vinylic isomer (16.5 g, 89% yield). About 5% of bis(1-indenyl)dimethylsilane (rac/meso = 1:1.2) is also present.

¹H-NMR (CDCl₃, δ , ppm): 0.21 (s, 3H, Si–CH₃), 0.26 (s, 3H, Si–CH₃), 3.77 (bt, J = 1.87 Hz, 1H, Cp–H), 6.68 (dd, J = 5.39, 1.87 Hz, 1H, Cp–H), 7.03 (ddd, J =5.39, 1.87, 0.62 Hz, 1H, Cp–H), 7.19–7.36 (m, 2H, Ar– H), 7.48–7.52 (m, 1H, Ar–H), 7.57–7.61 (m, 1H, Ar– H).

3.10.2. (Ind) SiMe₂(t-BuNH)

About 5.6 g of (Ind)SiMe₂Cl (26.8 mmol) in 10 ml Et₂O were slowly added with stirring to a solution of 6.6 ml of *t*-BuNH₂ (62.9 mmol, *t*-BuNH₂:(Ind)SiMe₂Cl = 2.3) in 50 ml Et₂O and cooled to -78 °C. At the end of the addition, the mixture was allowed to reach r.t. and was stirred 24 h to give a white milky suspension. The solvents were evaporated under reduced pressure, and the residue was extracted with 40 ml of pentane and filtered to remove the white ammonium salt from the soluble product. The filtrate was concentrated in vacuo to give a light lemon yellow oil (5.46 g, 83% yield). ¹H-NMR analysis shows the formation of (Ind)SiMe₂(*t*-BuNH) as a mixture of two isomers (allilic, 75%; vinilic, 25%).

¹H-NMR (CDCl₃, δ , ppm, for the indenyl fragment assignment see Chart 2), allylic isomer: -0.01 (s, 3H, Si-CH₃), 0.03 (s, 3H, Si-CH₃), 0.72 (bs, 1H, N-H), 1.28 (s, 9H, <u>t-Bu</u>), 3.68 (bt, J = 1.87 Hz, 1H, Cp-H1), 6.76 (dd, J = 5.39, 1.87 Hz, 1H, Cp-H), 6.98 (ddd, J =5.39, 1.87, 0.62 Hz, 1H, Cp-H), 7.15-7.40 (m, 2H, Ar-H), 7.5-7.61 (m, 2H, Ar-H); vinylic isomer: 0.44 (s, 6H, Si(CH₃)₂), 0.9 (bs, 1H, N-H), 1.22 (s, 9H, <u>t-Bu</u>), 3.47 (bm, 2H, Cp-H1), 6.87 (t, J = 1.87 Hz, 1H, Cp-H2), 3 aromatic protons overlapped with those of the allylic isomer, 7.77 (d, 1H, Ar-H).

3.10.3. $[Me_2Si(Ind)(t-BuN)]TiMe_2$

About 11.3 ml of a 1.6 M solution of methyllitium in diethyl ether (18.04 mmol) were slowly added at -78 °C to a solution of 1.08 g (4.40 mmol) of (Ind)SiMe₂(t-BuNH) in 23 ml of diethyl ether. During the addition an increasing turbidity develops with final formation of a yellow suspension. This mixture was allowed to warm to r.t. and stirred for 2 h. TiCl₄ (0.5 ml, 4.40 mmol) were diluted in 23 ml of pentane. This solution was added very slowly and cautiously to the Li salt suspension in diethyl ether at r.t. The resulting dark suspension was stirred at r.t. overnight. The reaction mixture was then brought to dryness under reduced pressure. The dark solid was extracted with 60 ml of toluene and then the filtrate was evaporated to dryness under reduced pressure to give 0.99 g of a gray-black solid (70% yield). ¹H-NMR confirms formation of [Me₂Si(Ind)(t-BuN)]TiMe₂.

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 2): -0.15 (q, J = 0.48 Hz, 3H, Ti-CH₃, H10), 0.36 (s, 3H, Si-CH₃, H9), 0.53 (s, 3H, Si-CH₃, H8), 0.82 (q, J = 0.48 Hz, 3H, Ti-CH₃, H11), 1.44 (s, 9H, <u>t-Bu</u>); 6.05 (d, J = 3.21 Hz, 1H, Cp-H2); 6.88 (ddd, J = 3.50, 6.64, 1.04 Hz, 1H, Ar-H6); 7.01 (dd, J = 3.21, 0.83 Hz, 1H, Cp-H3); 7.07 (ddd, J = 8.50, 6.64, 1.04 Hz, 1H, Ar-H5); 7.46 (dq, J = 8.50, 1.04 Hz, 1H, Ar-H7); 7.48 (dt, J = 8.50, 1.04 Hz, 1H, Ar-H4).

¹³C-NMR (C₆D₆, δ, ppm, assignments following Chart 2): 1.84 (**<u>C</u>9**–Si); 3.96 (**<u>C</u>8–Si**); 34.31 (**<u>C</u>H₃–***t***-</u>Bu); 53.85 (<u>C</u>11–Ti**); 57.18 (**<u>C</u>10–Ti**); 58.52 (**<u>C</u>–***t***-Bu**); 91.86 (**<u>C</u>1**), 114.12 (**<u>C</u>3**); 125.48 (**<u>C</u>6**); 125.94 (**<u>C</u>4**); 126.07 (**<u>C</u>5**); 126.84 (**<u>C</u>2**); 127.63 (**<u>C</u>7**); 133.22 (**<u>C</u>3a** or **<u>C</u>7a**); 133.44 (**<u>C</u>7a or <u>C</u>3a**).

For additional NMR data see Section 5.

3.11. Synthesis of [Me₂Si(Ind)(t-BuN)]ZrMe₂ (2-ZrMe₂)

About 12.8 ml of a 1.6 M solution of methyllitium in diethyl ether (20.54 mmol) were added slowly at -78 °C to a solution of 1.2 g (4.89 mmol) of (Ind)SiMe₂(*t*-BuNH) in 25 ml of diethyl ether. During the addition an increasing turbidity develops with final formation of a yellow suspension. This mixture was allowed to warm to r.t. and stirred for 2 h. ZrCl₄ (1.14 g, 4.89 mmol) were slurried in 25 ml of pentane. This suspension was added to the Li salt suspension in diethyl ether at r.t. The resulting brown suspension was stirred at r.t. overnight. The reaction mixture was then brought to dryness under reduced pressure. The brown solid was extracted with 60 ml of toluene and then the filtrate was evaporated to dryness under reduced pressure to give 1.62 g of a beige solid (90% yield). ¹H-NMR shows the

presence of spectroscopically pure [Me₂Si(Ind)(t-BuN)]ZrMe₂.

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 2): -0.74 (s, 3H, Zr-CH₃, H10), 0.24 (s, 3H, Zr-CH₃, H11), 0.40 (s, 3H, Si-CH₃), 0.60 (s, 3H, Si-CH₃), 1.31 (s, 9H, <u>t-Bu</u>); 6.31 (d, J = 3.21 Hz, 1H, Cp-H2); 6.68 (dd, J = 3.21, 0.83 Hz, 1H, Cp-H3), 6.92 (ddd, J = 8.29, 6.74, 1.14 Hz, 1H, Ar-H6), 7.03 (ddd, J = 8.29, 6.74, 1.14 Hz, 1H, Ar-H5), 7.39 (dt J = 8.29, 1.14 Hz, 1H, Ar-H4); 7.58 (dq, J = 8.29, 1.14 Hz, 1H, Ar-H7).

For additional NMR data see Section 5.

3.12. Synthesis of [Me₂Si(2-MeInd)(t-BuN)]TiMe₂ (3-TiMe₂)

3.12.1. $(2-MeInd)SiMe_2Cl$

About 22.1 ml of n-BuLi 2.5 M in hexane (55.25 mmol) were added at -20 °C to a solution of 6.54 g of 2-MeInd (50.23 mmol) in 70 ml of Et₂O. The resulting orange solution was stirred at -20 °C for 15 min, then allowed to warm up to r.t., and stirred overnight. The solvents were removed giving a light orange lithium salt, which was suspended in hexane and filtered; the insoluble in hexane was washed twice with hexane and dried. The lithium salt was suspended in 70 ml of hexane, cooled at -20 °C and added at this temperature to a solution of 9.1 ml of Me₂SiCl₂ (75.02 mmol) in 60 ml of hexane. The resulting light orange mixture was stirred at -20 °C for 15 min, allowed to warm up to r.t., and stirred overnight. The color of the final reaction mixture was white-light yellow. After filtration on G4 filter, the soluble in hexane was concentrated at 40 °C under vacuum giving 8.40 g of a yellow-orange oil as product (75% yield). Purity by GC: 89.1% of target product and about 6.4% of bis(2-Me-1-indenvl)dimethylsilane.

¹H-NMR (CDCl₃, δ , ppm, for the indenyl fragment assignments see Chart 3): 0.22 (s, 3H, Si–CH₃); 0.47 (s, 3H, Si–CH₃); 2.36 (bs, 3H, CH₃); 3.64 (bs, 1H, H1); 6.70 (bs, 1H, H3); 7.18–7.56 (m, 4H, Ar–H).

3.12.2. (2-MeInd)SiMe₂(t-BuNH)

About 5.02 g of (2-MeInd)SiMe₂Cl (25.53 mmol) in Et₂O were added at 0 °C to a solution of 4.18 g of *t*-BuNH₂ (56.16 mmol) to give a yellow slurry. The mixture was stirred at r.t. for 16 h. The solvents were evaporated under reduced pressure, and the residue extracted with 50 ml of toluene to give, after filtration and evaporation of the solvent, 5.52 g of an orange oil (83% yield). ¹H-NMR analysis shows the presence of (2-MeInd)SiMe₂(*t*-BuNH) as a mixture of two isomers (allylic, 60.2%, vinylic, 39.8%).

¹H-NMR (C_6D_6 , δ , ppm), allylic isomer: -0.09 (s, 3H, Si-CH₃); 0.11 (s, 3H, Si-CH₃); 1.02 (s, 9H, <u>*t*</u>-Bu); 2.14 (s, 3H, CH₃); 3.21 (s, 1H, C-H); 6.52 (s, 1H,

C- \underline{H}); vinylic isomer: 0.46 (s, 6H, Si- $C\underline{H}_3$); 1.1 (s, 9H, <u>t-Bu</u>); 2.06 (s, 3H, $C\underline{H}_3$); 3.05 (s, 2H, $C\underline{H}_2$); both isomers: 0.37 and 0.65 (bs, 1H, N- \underline{H}); 6.98–7.82 (m, 8H, Ar- \underline{H}).

3.12.3. $[Me_2Si(2-MeInd)(t-BuN)]TiMe_2$

About 25 ml of MeLi 1.6 M in Et₂O (40 mmol) were added at 0 °C to a solution of 2.53 g of (2-Me-Ind)SiMe₂(t-BuNH) (9.75 mmol), the reaction mixture was allowed to warm up to r.t. and stirred 1.5 h. TiCl₄ (1.07 ml) in pentane (9.75 mmol) were added very slowly to the dilithium salt (exothermic reaction with gas evolution). After stirring for 2 h, the solvents were removed under reduced pressure, and the crude residue was taken up in 50 ml of toluene, stirred 30 min, and filtered to give, after evaporation of the solvent, 2.68 g of dark brown powder. The powder was slurried in pentane, filtered, and the extract brought to dryness under reduced pressure to give 2.31 g of ochra powder (71% yield). Heat stability tests, in the solid state and in solution of C_6D_6 , respectively, for 1 and 2 h at 50 °C, indicate that the complex is more stable in the solid state.

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 3): -0.11 (q, J = 0.48 Hz, 3H,Ti-CH₃, H10); 0.46 (bs, 3H, Si-CH₃, H9); 0.56 (bs, 3H, Si-CH₃, H8); 0.85 (q, J = 0.48 Hz, 3H, Ti-CH₃, H11); 1.47 (s, 9H, <u>t-</u>Bu); 1.99 (s, 3H, C2-CH₃); 6.76 (bs, 1H, H3); 6.89 (ddd, J = 8.41, 6.77, 1.08 Hz, 1H, H6); 7.07 (ddd, J = 8.41, 6.77, 1.08 Hz,1H, H5); 7.44 (dt, J = 8.41, 1.08 Hz, 1H, H4); 7.51 (dq, J = 8.41, 1.08 Hz, 1H, H7).

¹³C-NMR (C_6D_6 , δ , ppm, assignments following Chart 3): 5.30 (C_9 -Si); 5.55 (C_8 -Si); 17.98 (C_2 - C_{H_3}); 33.85 (C_{H_3} -*t*-Bu); 50.82 (C_11 -Ti); 56.57 (C_10 -Ti); 57.55 (C-*t*-Bu); 89.61 (C_1), 115.64 (C_3); 124.72 (C_6); 124.90 (C_4); 125.17 (C_5); 127.81 (C_7); 131.57 (C_3a); 133.82 (C_7a); 140.97 (C_2).

For further NMR data see Section 5.

3.13. Synthesis of $[Me_2Si(3-t-BuInd)(t-BuN)]TiMe_2$ (4-TiMe₂)

3.13.1. (3-t-BuInd)SiMe₂Cl

About 24 ml di *n*-BuLi 2.5 M in hexane (60 mmol) were added at 0 °C to a solution of 9.3 g (10 ml) of *t*-Bu indene (54 mmol) in Et₂O, obtaining a light yellow suspension, and the mixture of reaction was stirred for 2 h at r.t. A 7.16 ml (7.66 g, 59.4 mmol) of Me₂SiCl₂ were dropwise at 0 °C to lithium salt and the suspension was stirred for 2 h at r.t. The solvent was dried in vacuo and the residue was extracted with 50 ml of toluene, obtaining 13.85 g of an orange oil (81% yield). ¹H-NMR spectrum confirms formation of (*t*-BuInd)Si-Me₂Cl, purity 83.8% wt and about 4.0% wt of bis(1-indenyl)dimethylsilane was also present.

¹H-NMR (C₆D₆, δ , ppm): -0.05 (s, 3H, Si-CH₃); 0.02 (s, 3H, Si-CH₃); 1.34 (s, 9H, <u>t-Bu</u>); 3.43 (d, J =2.07 Hz, 1H, C-H); 6.24 (d, J = 2.07, 1H, C-H); 7.07– 7.63 (m, 4H, Ar-H). m/z (%): 264 (35) [M⁺]; 208 (30); 93 (91); 57 (100).

3.13.2. (*3-t-BuInd*)*SiMe*₂(*t-BuNH*)

About 13.85 g of (*t*-BuInd)SiMe₂Cl (52.3 mmol) were added at 0 °C to a solution of 8.98 g (12.9 ml) of *t*-BuNH₂ in Et₂O, obtaining a yellow suspension. At the end of addition the mixture of reaction was warm up to r.t. and stirred overnight. The solvent was dried in vacuo and the residue was extracted with 40 ml of toluene and the filtrate was concentrated in vacuo to give an orange oil (14.39 g, 91% yield). ¹H-NMR spectrum shows the presence only of allilic isomer.

¹H-NMR (C₆D₆, δ , ppm, for the indenyl fragment assignment see Chart 2): -0.13 (s, 3H, Si-CH₃); -0.08 (s, 3H, Si-CH₃); 0.38 (bs, 1H, N-H); 0.39 (bs, 1H, N-H); 1.00 (s, 9H, C**3**-<u>*t*-Bu</u>); 1.38 (s, 9H, N-<u>*t*-Bu</u>); 3.33 (d, J = 2.07, 1H, C-H); 6.31 (d, J = 2.07, 1H, C-H); 7.07-7.68 (m, 4H, Ar-H).

3.13.3. $[Me_2Si(3-t-BuInd)(t-BuN)]TiMe_2$

About 34.91 ml of MeLi (48.88 mmol) were dropwise at 0 °C to a solution of 3.64 g (4 ml) of (*t*-BuInd)Si-Me₂(*t*-BuNH) (12.07mmol) in 25 ml of Et₂O, obtaining an orange solution, and the reaction mixture was stirred at r.t. for 2 h. TiCl₄ (1.33 ml, 12.07 mmol) were added at r.t. to lithium salt, obtaining a dark suspension (exothermic reaction with gas evolution). After 2 h the solvent was dried in vacuo and the crude residue was extracted with 50 ml of toluene, obtaining 4.4 g of a black sticky solid which was extracted with 40 ml of pentane, the solvent was removed under reduced pressure obtaining 3.02 g of dark brown oil (66% yield).

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 2): -0.12 (q, J = 0.34 Hz, 3H, Ti-CH₃, H10); 0.38 (s, 3H, Si-CH₃, H9); 0.63 (s, 3H, Si-CH₃, H8); 0.99 (q, J = 0.34 Hz, 3H, Ti-CH₃, H11); 1.45 (s, 9H,N-<u>t-Bu</u>); 1.49 (s, 9H, C3-<u>t-Bu</u>); 6.15 (s, 1H, H2); 6.84 (ddd, J = 7.70, 6.67, 0.97 Hz, 1H, H6); 7.11 (ddd, J =7.76, 6.67, 1.07 Hz, 1H, H5); 7.53 (dt, J = 8.61, 1.05 Hz, 1H, H7); 7.81 (dt, J = 7.70, 1.05 Hz, 1H, H4).

¹³C-NMR (C₆D₆, δ , ppm, assignments following Chart 2): 1.81 (CH₃-Si, C9); 4.60 (CH₃-Si, C8), 30.54 (C3-CH₃-t-Bu); 34.19 (C3-C-t-Bu); 34.29 (N-CH₃t-Bu); 54.46 (C11 C-Ti); 57.89 (C10-C Ti); 58.77 (N-C-t-Bu); 90.05 (C1); 120.98 (C2); 124.54 (C6); 125.25 (C5); 126.08 (C4); 127.80 (C7); 132.38 (C3a); 135.96 (C7a); 141.03 (C3).

For additional NMR data see Section 5.

3.14. Synthesis of $[Me_2Si(4,7-Me_2Ind)(t-BuN)]TiMe_2(5-TiMe_2)$

3.14.1. (4,7-*Me*₂*Ind*)*SiMe*₂*Cl*

About 29.26 ml of *n*-BuLi (73.15 mmol) were dropwise at 0 °C to a solution of 9.59 g (10 ml) di 4,7dimethyl indene (66.5 mmol) in 25 ml di Et₂O, obtaining a light yellow suspension. The reaction mixture was stirred at r.t. for 2 h, then the lithium salt was slowly added at 0 °C to a solution of 9.54 g of Me₂SiCl₂ (8.97 ml, 73.15 mmol) in 20 ml of Et₂O, obtaining a white– light yellow suspension. After a night at r.t., the solvent was dried in vacuo, then the residue was exracted with 60 ml di toluene, the filtrate was brought to dryness under reduced pressure, obtaining 15.25 g of an orange oil.

¹H-NMR (CDCl₃, δ , ppm): 0.32 (s, 3H, Si–CH₃); 0.43 (s, 3H, Si–CH₃); 2.61 (s, 3H, CH₃–Ar); 2.62 (s, 3H, CH₃–Ar); 4.05 (m, 1H, C–H); 6.82–6.92 (m, 1H, C–H); 7.05–7.29 (m, 3H, CP–H+Ar–H).

3.14.2. $(4, 7-Me_2Ind)SiMe_2(t-BuNH)$

About 15.25 g of $(4,7-Me_2Ind)SiMe_2Cl (64.39 mmol)$ in 40 ml of Et₂O, were added at 0 °C to a solution of 15.22 ml (10.59 g, 141.66 mmol) of *t*-BuNH₂ in 30 ml of Et₂O, obtaining a yellow suspension. After a night at r.t., the suspension was brought to dryness under reduced pressure and the residue was extracted with 50 ml of toluene. The extract was dried in vacuo obtaining 16.01 g of an orange oil. ¹H-NMR confirms formation of (4,7-Me₂Ind)SiMe₂(*t*-BuNH).

¹H-NMR (CDCl₃, δ , ppm): -0.043 (bs, 3H, Si-CH₃); 0.05 (bs, 3H, Si-CH₃); 0.64 (bs, 1H, N-H); 1.22 (s, 9H, <u>*t*-Bu</u>); 2.48 (s, 3H, CH₃); 2.51 (s, 3H, CH₃); 3.74 (t, J = 1.87, 1H, C-H); 6.74 (dd, J = 5.45, 1.87 Hz, 1H, C-H); 6.91-7.03 (m, 3H, Ar-H+C-H).

3.14.3. $[Me_2Si(4,7-Me_2Ind)(t-BuN)]TiMe_2$

About 44.41 ml of MeLi (62.17 mmol) were dropwise at 0 °C to a solution of 4.2 g of (4,7-Me₂Ind)SiMe₂(*t*-BuNH) (5 ml, 15.35 mmol) in 40 ml of Et₂O, obtaining a yellow–orange solution, the reaction mixture was stirred at r.t. for 1 h. TiCl₄ (1.69 ml, 2.91 g, 15.35 mmol) were added at r.t. to lithium salt, obtaining a brown suspension (light exothermic reaction with gas evolution). After 1 h the solvent was dried in vacuo and the residue was extracted with 50 ml of toluene, obtaining 3.43 g of a dark brown oil, which resulted to be the desired product (61% yield). Purity by ¹H-NMR: 95.71% wt. Traces of starting ligand (2.75% wt) were also present.

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 2): -0.19 (q, J = 0.54 Hz, 3H, Ti-CH₃, H10); 0.39 (q, J = 0.34 Hz, 3H, Si-CH₃, H9); 0.57 (q, J = 0.34Hz, 3H, Si-CH₃, H8); 0.78 (q, J = 0.54 Hz, 3H, Ti-CH₃, H11); 1.47 (s, 9H, <u>t-Bu</u>); 2.25 (s, 3H, CH₃-C7); 2.31 (s, 3H, CH₃-C4); 6.19 (d, J = 3.40 Hz, 1H, H2); 6.71 (dq, *J* = 6.89, 0.93 Hz, 1H, **H6**); 6.83 (dq, *J* = 6.89, 0.93 Hz, 1H, **H5**); 7.09 (d, *J* = 3.40 Hz, 1H, **H3**).

¹³C-NMR (C₆D₆, δ , ppm, assignments following Chart 2): 3.48 (CH₃–Si, C9); 5.71 (CH₃–Si, C8);19.1 (CH₃–C4); 22.8 (CH₃–C7); 34.36 (CH₃–*t*-Bu); 52.03 (CH₃–Ti, C11); 56.52 (CH₃–Ti, C10); 58.59 (C–*t*-Bu); 92.58 (C1); 112.32 (C3); 125.71 (C5); 126.71 (C6), 128.35 (C2); 132.49 (C4); 132.55 (C7a); 134.73 (C3a); 135.51 (C7).

For further NMR data see Section 5.

3.15. Synthesis of [Me₂Si(3-PhInd)(t-BuN)]TiMe₂ (6-TiMe₂)

3.15.1. 1-Phenylindene

About 24.13 ml (72.40 mmol) of PhMgBr were added dropwise to a solution of 6.45 g (48.27 mmol) of 1indanone in 35 ml of Et₂O, previously cooled at -78 °C, obtaining a grey suspension. The mixture of reaction was allowed to warm up to r.t. in about 4 h and subsequently stirred overnight. The ¹H-NMR spectrum showed the formation of the 1-Ph-indanol. Then the solvent was evaporated under reduced pressure, the residue was dissolved in 40 ml of toluene and were added some crystals of p-toluenesolfonic acid. After 1.5 h the mixture of reaction was extracted with a solution aqueous of NaHCO₃ (2 \times 50 ml), then with water (2 \times 50 ml). The organic layer was dried over Na₂SO₄. Filtration followed by removal of the solvent, resulted in the isolation of 7.79 g of a yellow-orange oil and the ¹H-NMR spectrum confirm the formation of product target (71% yield).

¹H-NMR (CDCl₃, δ , ppm): 3.56 (d, J = 2.15 Hz, 2H, CH₂); 6.64 (t, J = 2.15 Hz, 1H, C-H); 7.28–7.60 (m, 9H, Ar-H).

3.15.2. (3-PhInd)SiMe₂Cl

About 13.8 ml (34.49 mmol) of *n*-BuLi were added dropwise at 0 °C to a solution of 7.79 g (34.08 mmol) of 1-PhInd in 35 ml of Et₂O, obtaining a red brown solution, which was stirred 4 h at r.t. Then the litium salt was siphoned at 0 °C in a solution of 4.22 ml (4.5 g, 34.49 mmol) of Me₂SiCl₂ in 20 ml of Et₂O. The dark yellow suspension obtained was stirred overnight at r.t., then the solvents were dried in vacuo and the crude (12.27 g) was extracted with 50 ml of toluene, obtaining 9.71 g of an orange oil (82% yield). ¹H-NMR analysis confirm the formation of (3-PhInd)SiMe₂Cl. Purity by ¹H-NMR: 81.89% wt.

¹H-NMR (CDCl₃, δ , ppm): 0.29 (s, 3H, Si–CH₃); 0.34 (s, 3H, Si–CH₃); 3.90 (d, J = 2.15 Hz, 1H, C–H); 6.75 (d, J = 2.15 Hz, 1H, C–H); 7.26–7.78 (m, 9H, Ar– H).

3.15.3. (3-PhInd)SiMe₂(t-BuNH)

About 9.71 g (34.09 mmol) of (3-PhInd)SiMe₂Cl in 35 ml of Et₂O, obtained as reported above, were added at 0 °C to a solution of 7.68 ml of *t*-BuNH₂ in 25 ml of Et₂O and the orange suspension obtained was stirred overnight at r.t. The solvent was evaporated under reduced pressure and the crude (14.18 g) was extracted with 50 ml of toluene, the filtrate was dried in vacuo obtaining 10.41 g of a dark orange oil (67% yield). Purity by ¹H-NMR: 70.32% wt.

¹H-NMR (CDCl₃, δ , ppm): 0.07 (s, 3H, Si–CH₃); 0.11 (s, 3H, Si–CH₃); 0.81 (bs, 1H, N–H); 1.32 (s, 9H, <u>*t*–</u> <u>Bu</u>); 3.82 (d, J = 2.15 Hz, 1H, C–H); 6.84 (d, J = 2.15 Hz, 1H, C–H); 7.25–7.83 (m, 9H, Ar–H).

3.15.4. $[Me_2Si(3-PhInd)(t-BuN)]TiMe_2$

About 35.25 ml (56.40 mmol) of MeLi 1.6 M in Et₂O, were added at 0 °C to a solution of 4.51 g (14.03 mmol) of (3-Ph Ind)SiMe₂(*t*-BuNH), obtained as reported above, in 25 ml of Et₂O, the solution red-orange obtained was stirred 1h at r.t. To the lithium salt were added 1.54 ml (14.03 mmol) of TiCl₄ in 5ml of pentane (exothermic reaction with gas evolution). The dark brown suspension obtained was stirred 1 h at r.t. The solvents were evaporated under reduced pressure, the crude (9.45 g) was extracted with 50 ml of toluene, the dark brown suspension obtained was filtrated and the filtrate dried in vacuo obtaining 4.91 g of product target as a dark brown sticky solid (79% yield). Purity by ¹H-NMR: 89.65% wt.

¹H-NMR (C_6D_6 , δ , ppm, assignments following Chart 2): 0.0065 (bs, 3H, Ti-CH₃, H10); 0.42 (s, 3H, Si-CH₃, H9); 0.61 (s, 3H, Si-CH₃, H8); 0.68 (bs, 3H, Ti-CH₃, H11); 1.45 (s, 9H, <u>t-Bu</u>); 6.39 (s, 1H, H2); 6.92 (ddd, J = 8.61, 6.65, 0.98 Hz, 1H, H6); 7.08–7.18 (m, 2H, H5+Hpara); 7.21–7.31 (m, 1H, Hmeta); 7.53 (dt, J = 8.61, 0.98 Hz, 1H, H7); 7.63–7.68 (m, 1H, Hortho); 7.96 (dt, J = 8.61, 0.98 Hz, 1H, H4).

¹³C-NMR (C₆D₆, δ, ppm, assignments following Chart 2): 1.82 (**C**9–Si); 4.09 (**C**8–Si); 34.42 (**C**H₃–*t*-Bu); 56.33 (**C**10–Ti); 58.97 (**C**–*t*-Bu); 59.10 (**C**11–Ti); 92.95 (**C**1); 124.54 (**C**2); 124.62 (**C**4); 125.44 (**C**6); 126.65 (**C**5); 128.00 (**C**7); 128.60 (**C**para); 128.64 (**C**ortho); 129.03 (**C**meta); 129.62 (**C**3); 131.46 (**C**3a); 134.56 (**C**7a); 136.37 (**C**–C3).

For additional NMR data see Section 5.

3.16. Synthesis of [Me₂Si(2-Me-4-PhInd)(t-BuN)]TiMe₂ (7-TiMe₂)

3.16.1. $(2-Me-4-PhInd)SiMe_2Cl$

About 6.54 ml (16.34 mmol) of *n*BuLi were added dropwise at 0 °C to a yellow solution of 3.21 g (15.56 mmol) of 2-Me-4-PhIndene in 25 ml of Et₂O, obtaining immediately the formation of a yellow ochre suspension. After 30 min of stirring at r.t., 1.96 ml (16.03 mmol) of Me₂SiCl₂ dissolved in 6 ml of Et₂O were added at 0 °C to the lithium salt. The resulting light yellow suspension was stirred 1 h at r.t. Then the solvents were dried in vacuo and the crude, 5.21 g, was extracted with 40 ml of toluene and the filtrate evaporated to dryness under reduced pressure to give 4.15 g of an orange oil (77% yield). Purity by ¹H-NMR: 86.15% wt, 13.85% wt of (2-Me-4-PhInd)2Me2Si.

¹H-NMR (CDCl₃, δ , ppm): 0.21 (s, 3H, Si–CH₃); 0.44 (s, 3H, Si-CH₃); 2.28 (bs, 3H, CH₃); 3.67 (s, 1H, C-H); 6.82 (s, 1H, C-H); 7.16-7.59 (m, 8H, Ar-H).

3.16.2. $(2-Me-4-PhInd)SiMe_2(t-BuNH)$

About 3.27 ml (30.34 mmol) of t-BuNH₂ dissolved in 10 ml of Et₂O were added at -5 °C to a yellow solution of 4.15 g (13.88 mmol) of (2-Me-4-PhInd)SiMe₂Cl, obtained as described above, in 25 ml of Et₂O. The resulting yellow suspension was allowed to reach r.t. and stirred overnight. Then the solvents were evaporated under reduced pressure and the crude, 6 g, was extracted with 50 ml of toluene. The filtrate was concentrated in vacuo to give 4.41 g of an orange oil. The ¹H-NMR analysis shows the formation of (2-Me-4-PhInd)Si- $Me_2(t-BuNH)$ (97% yield) as a mixture of two isomers (allylic, 90.29%; vinilic, 9.71%).

¹H-NMR (CDCl₃, δ , ppm): 0.00 (s, 3H, Si–CH₃); 0.18 (s, 3H, Si-CH₃); 0.64 (bs, 1H, N-H); 1.22 (s, 9H, t-Bu); 2.29 (d, J = 1.37 Hz, 3H, CH₃); 3.50 (s, 1H, C-H); 6.75 (m, 1H, C-H) 7.12-7.62 (m, 8H, Ar-H).

3.16.3. $[Me_2Si(2-Me-4-PhInd)(t-BuN)]TiMe_2$

About 34.02 ml (54.43 mmol) of MeLi 1.6 M in Et₂O were added at 0 $^{\circ}$ C to a yellow solution of 4.51 g (13.44 mmol) of (2-Me-4-PhInd)SiMe₂(t-BuNH) in 15 ml of Et₂O, obtaining an orange suspension which was stirred subsequently 30 min at r.t. Then to a lithium salt were added at r.t. TiCl₄ (1.49 ml, 2.58 g, 13.44 mmol) dissolved in 10 ml of pentane (exothermic reaction with gas evolution). This black suspension obtained was stirred 1 h. The solvents were dried in vacuo and the crude, 8.44 g, was extracted with 50 ml of toluene. The filtrate was concentrated in vacuo to give 5.58 g of product target as a black sticky solid (86% yield).

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 2): 0.005 (bs, 3H, Ti-CH₃, H10); 0.47 (s, 3H, Si-CH₃, H9); 0.60 (s, 3H, Si-CH₃, H8); 0.85 (bs, 3H, Ti-CH₃, H11);1.48 (s, 9H, t-Bu); 1.95 (s, 3H, C2-CH₃); 6.97 (ddd, J = 8.61, 6.85 Hz, 1H, H6); 7.20 (s, 1H, H3), 7.11–7.32 (m, 4H, H5, Hpara, Hmeta); 7.52 (dt, J =8.61, 0.98 Hz, 1H, H7); 7.62-7.69 (m, 1H, Hortho).

¹³C-NMR (C₆D₆, δ , ppm, assignments following Chart 2): 5.58 (Si-C9); 6.00 (Si-C8); 18.51 (C2-CH₃); 34.38 (CH₃-t-Bu); 51.88 (Ti-C11); 57.62 (Ti-C10); 58.08 (C-t-Bu); 89.99 (C1); 115.73 (C3); 125.35 (C5); 125.75 (C6); 126.26 (C7); 127.82 (Cpara); 128.62 (Cortho); 128.98 (Cmeta); 130.69 (C3a); 135.14 (C7a); 139.17 (C4); 141.08 (C-C4); 141.90 (C2). For additional NMR data see Section 5.

3.17. Synthesis of [Me₂Si(2-Me-Benz[e]Ind)(t-BuN | $TiMe_2$ (8- $TiMe_2$)

3.17.1. (2-Me-Benz[e]Ind)SiMe₂Cl

About 8.62 ml (21.56 mmol) of HexylLi were added dropwise at 0 °C to a yellow solution of 3.7 g of 2-Mebenz[e]indene (20.53 mmol) in 12 ml of Et₂O and the resulting light yellow suspension was stirred 30 min at r.t. Then to the lithium salt cooled to 0 $^{\circ}$ C, were added 2.59 ml (2.76 g, 21.15 mmol) of Me₂SiCl₂ dissolved in 7 ml of Et₂O. The mixture of reaction, a yellow suspension, was stirred 1h at r.t. The solvents were evaporated under reduced pressure, and the crude 6.12 g, was extracted with 50 ml of toluene. The filtrate was evaporated to dryness under reduced pressure to give 4.26 g of (2-Me-3-H-cyclopenta[a]naphthalene)SiMe₂Cl as an orange oil (69% yield). Purity by ¹H-NMR: 91.21% wt of target product and 8.79% wt of bis(2-Me-3-H-ciclopenta[a]naphthalen)SiMe₂.

¹H-NMR (CDCl₃, δ , ppm): 0.16 (s, 3H, Si-CH₃); 0.40 (s, 3H, Si-CH₃); 2.42 (d, J = 1.37 Hz, 3H, CH₃); 3.82 (s, 1H, C-H); 7.25-8.17 (m, 7H, Ar-H+Cp-H).

3.17.2. $(2-Me-Benz[e]Ind)SiMe_2(t-BuNH)$

About 3.68 ml (34.34 mmol) of t-BuNH₂ in 10 ml of Et₂O were added dropwise at 0 $^{\circ}$ C to a yellow solution of 4.26 g (15.61 mmol) of (2-Me-3-H-cyclopenta[a]naphthalene)SiMe₂Cl, as obtained above, in 25 ml of Et₂O, obtaining a light yellow suspension which was stirred overnight at r.t. The solvents were evaporated under reduced pressure, and the crude 6.46 g, was extracted with 40 ml of toluene. The filtrate was evaporated to dryness under reduced pressure to give 4.57 g of an orange oil (95 5 yield). The ¹H-NMR spectrum shows the formation of (2-Me-Benz[e]Ind)Si-Me₂(t-BuNH) as a mixture of two isomers (allylic, 95.16%; vinilic, 4.84%).

¹H-NMR (CDCl₃, δ , ppm): -0.08 (s, 3H, Si-CH₃); 0.14 (s, 3H, Si-CH₃); 0.66 (bs, 1H, N-H); 1.23 (s, 9H, t-Bu); 2.41 (d, J = 1.37 Hz, 3H, CH₃); 3.66 (s, 1H, C-H); 7.17-8.17 (m, 7H, Ar-H+Cp-H).

3.17.3. $[Me_2Si(2-Me-Benz[e]Ind)(t-BuN)]TiMe_2$

About 37.36 ml of MeLi (59.78 mmol) were added at 0 °C to a yellow suspension of 4.57 g (14.76 mmol) of (2-Me-Benz[e]Ind)SiMe₂(t-BuNH) in 15 ml of Et₂O, obtaining a red-orange solution which was stirred 1 h at r.t. Then to the lithium salt was added a solution of 1.63 ml (14.76 mmol) of TiCl₄ in 8 ml of pentane, (exhotermic reaction with gas evolution). After 1h the black suspension was dried in vacuo and the crude, 9.22 g was extracted with 40 ml of toluene. The filtrate was evaporated to dryness under reduced pressure to give 5.14 g of target product as a green powder (87% yield). Purity evaluated by ¹H-NMR: \geq 96% wt.

¹H-NMR (C₆D₆, δ , ppm, assignments following Chart 3): -0.33 (bs, 3H, Ti-CH₃, H10); 0.49 (s, 3H, Si-CH₃, H9); 0.60 (s, 3H, Si-CH₃, H8); 0.83 (bs, 3H, Ti-CH₃, H11); 1.46 (s, 9H, <u>t-Bu</u>); 2.06 (s, 3H, C2-CH₃); 7.21 (d, J = 8.19 Hz, 1H, H6); 7.30 (s, 1H, H3); 7.44 (d, J = 8.19 Hz, 1H, H7); 7.19-7.46 (m, 2H, Hc, Hb); 7.57 (dm, J = 7.83 Hz, 1H, Hd); 8.02 (dm, J = 8.02Hz, 1H, Ha).

¹³C-NMR (C₆D₆, δ, ppm, assignments following Chart 3): 5.71 (Si– \subseteq 9); 6.01 (Si– \subseteq 8); 18.42 (C2– \subseteq H₃); 34.37 (\subseteq H₃–*t*-Bu); 50.80 (Ti– \subseteq 11); 56.71 (Ti– \subseteq 10); 57.41 (\subseteq –*t*-Bu); 92.62 (\subseteq 1); 114.86 (\subseteq 3); 123.62 (\subseteq a); 124.83 (\subseteq 7); 126.42 (\subseteq c); 126.84 (\subseteq 6); 127.25 (\subseteq b); 129.05 (\subseteq d); 129.22 (\subseteq 3a or \subseteq 5); 131.21 (\subseteq 4); 132.35 (\subseteq 5 or \subseteq 3a); 132.55 (\subseteq 7a); 139.85 (\subseteq 2).

For further NMR data see Section 5.

4. Conclusions

We have described here a facile, highly efficient, onepot synthesis of 'constrained geometry' Group 4 metal dimethyl complexes, by the reaction of the ligand with a 2-fold excess of MeLi, and MtCl₄ (Mt = Ti, Zr). The ¹H-NMR and COSY 2D-NMR spectra of the complexes confirm the presence of through-metal proton–proton coupling for the metal-bound methyl groups, and coupling of Ti-methyl protons with protons on the Cp ring.

The dimethyl titanium indenyl amido complexes bearing different substituents on the indenyl ring were tested in propylene polymerization in combination with different cocatalysts. The aim of the work was to compare catalytic activity and polymers properties, and to verify whether indenyl ring substituents, cocatalysts, monomer concentration and polymerization temperature affect catalyst performance.

Some general conclusions can be drawn. The substituents on the indenyl ring, and in particular their position, affect catalytic activity and molecular weight. The stereoselectivity of the catalyst (the tacticity of the polymer) varies only slightly, while the regioselectivity is modified to a substantial extent by indenyl substitution. Catalytic activity is strongly dependent on the type of cocatalyst, with borates being much more effective as activators compared with MAO. In addition, higher molecular weights are produced by the borates. While the tacticity of *am*-PP does not seem to be affected by the type of cocatalyst, the borates produce a higher content of regioirregularities compared with MAO. The polymer molecular weight is independent from the monomer concentration, but, as usual with homogeneous transition metal catalysts, decreases as the polymerization temperature increases. The rate of chain release is first order in monomer. No influence of monomer concentration or polymerization temperature on microstructure could be found, with the exception of $2-Me_2-MAO$. Chiral induction comes mainly from a weak enantiomorphic site control. The influence of ligand structure on regioselectivity and copolymerization performance deserves a deeper investigation. We have pursued other ligand variations on this type of complexes, and will report the results in a following study.

5. Supporting information

Detailed NMR analysis and 2D-NMR spectra of the complexes 2-ZrMe₂ and 2-TiMe₂-8-TiMe₂.

Acknowledgements

We thank Anna Droghetti for the synthesis of IndSiMe₂NH*t*-Bu, Marcello Colonnesi for the ¹H-NMR spectra and Fabrizio Piemontesi for helpful discussions on-NMR assignments.

References

- L. Resconi, in: W. Kaminsky, J. Scheirs (Eds.), Metallocene Catalysts, vol. 1, Wiley, 1999, p. 467.
- [2] L. Resconi, G. Moscardi, R. Silvestri, D. Balboni, PCT International Application WO 00/01738, Montell, Italy 2000.
- [3] R. Silvestri, L. Resconi, A. Pelliconi, European Patent Application 697 436 B1, Montell, Italy 1995.
- [4] R. Silvestri, P. Sgarzi, Polymer 39 (1998) 5871.
- [5] Z.-G. Wang, R.A. Phillips, B.S. Hisiao, J. Polym. Sci. Polym. Phys. 38 (2000) 2580.
- [6] R.A. Phillips, R.L. Jones, Macromol. Chem. Phys. 200 (1999) 1912.
- [7] J.C. Stevens, F.J. Timmers, D.R. Wilson, G.F. Schmidt, P.N. Nickias, R.K. Rosen, G.W. Knight, S.Y. Lai, European Patent Application 0 416 815 A2, Dow Chemical Company 1990.
- [8] R.K. Rosen, B.W. Kolthammer, International Patent Application WO 95/19984, Dow Chemical Company, 1995.
- [9] W.A. Herrmann, M.J.A. Morawietz, J. Organomet. Chem. 482 (1994) 169.
- [10] D.W. Carpenetti, L. Kloppenburg, J.T. Kupec, J.L. Petersen, Organometallics 15 (1996) 1572.
- [11] F. Amor, J. Okuda, J. Organomet. Chem. 520 (1996) 245.
- [12] J. Okuda, T. Eberle, in: A. Togni, R.L. Halterman (Eds.), Half-Sandwich Complexes as Metallocene Analogs, vol. 1, Wiley-WCH, Weinheim, 1998, p. 415.
- [13] A.L. McKnight, R.M. Waymouth, Chem. Rev. 98 (1998) 2587.
- [14] J.A.M. Canich, US Patent 5 504 169, Exxon 1996.
- [15] A.L. McKnight, M.A. Masood, R.M. Waymouth, D.A. Straus, Organometallics 16 (1997) 2879.
- [16] D.v. Leusen, D.J. Beetstra, B. Hessen, J.H. Teuben, Organometallics 19 (2000) 4084.
- [17] P.-J. Sinnema, B. Hessen, J.H. Teuben, Macromol. Rapid Commun. 21 (2000) 565.

- [18] Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391.
- [19] T. Shiomura, T. Asanuma, N. Inoue, Macromol. Rapid Commun. 17 (1996) 9.
- [20] D. Balboni, I. Camurati, G. Prini, L. Resconi, S. Galli, P. Mercandelli, A. Sironi, Inorg. Chem. 40 (2001) 6588.
- [21] D. Balboni, G. Prini, M. Rinaldi, L. Resconi, Am. Chem. Soc. Polym. Prep. 41 (2000) 456.
- [22] L. Resconi, D. Balboni, G. Prini, WO 99/36427, Montell, Italy 1999.
- [23] L. Resconi, PCT International Application WO 00/75151, Montell, Italy 2000.
- [24] Y.-X. Chen, T.J. Marks, Organometallics 16 (1997) 3649.
- [25] H. Gunther, NMR Spectroscopy, Wiley, Chichester, New York, 1980, p. 189.
- [26] A.G. Palmer, J. Cavanagh, P.E. Wright, M. Rance, J. Magn. Reson. 93 (1991) 151.
- [27] L.E. Kay, P. Keifer, T. Saarinen, J. Magn. Reson. 114 (1992) 10663.
- [28] W. Wilker, D. Leibfritz, R. Kerssebaum, W. Bermel, J. Magn. Reson. 33 (1993) 1835.
- [29] R.E. Hurd, Magn. Reson. 87 (1990) 422.
- [30] J. Jeener, B.H. Meier, P. Bachmann, R.R. Ernst, J. Chem. Phys. 71 (1979) 4546.
- [31] W. Spaleck, M. Antberg, J. Rohrmann, A. Winter, B. Bachmann, P. Kiprof, J. Behm, A. Hermann, Angew. Chem. Int. Ed. Engl. 31 (1992) 1347.

- [32] L. Resconi, L. Abis, G. Franciscono, Macromolecules 25 (1992) 6814.
- [33] L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 100 (2000) 1253.
- [34] Y.-X. Chen, M.V. Metz, L. Li, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 120 (1998) 6287.
- [35] L. Jia, X. Yang, C.L. Stern, T.J. Marks, Organometallics 16 (1997) 842.
- [36] Y.-X. Chen, C.L. Stern, S. Yang, T.J. Marks, J. Am. Chem. Soc. 118 (1996) 12451.
- [37] J.C.W. Chien, W. Song, M.D. Rausch, J. Polym. Sci. Part A: Polym. Chem. 32 (1994) 2387.
- [38] Z. Liu, E. Somsook, C.B. White, K.A. Rosaaen, C.R. Landis, J. Am. Chem. Soc. 123 (2001) 11193.
- [39] L. Resconi, F. Piemontesi, I. Camurati, O. Sudmeijer, I.E. Nifantev, P.V. Ivchenko, L.G. Kuzmina, J. Am. Chem. Soc. 120 (1998) 2308.
- [40] V. Busico, R. Cipullo, Prog. Polym. Sci. 26 (2001) 443.
- [41] D. Pearson, L. Fetters, L. Younghouse, J. Mays, Macromolecules 21 (1988) 478.
- [42] G. Soave, Chem. Eng. Sci. 27 (1972) 1196.
- [43] A. Peneloux, E. Rauzy, R. Freze, Fluid Phase Equilib. 8 (1982) 7.
- [44] J. Schwartzentruber, H. Renon, Ind. Eng. Chem. Res. 28 (1989) 1049.