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Branching between reaction channels in activated systems is often observed to vary with changes in the
potential energy surface as∆ln(k1/k2) ∝ ∆(∆E1

‡ - ∆E2
‡). RRKM calculations demonstrate that in many, but

not all, cases the log-linear relationship accurately describes branching in nonthermal distributions of reactants
with energies well above the threshold for reaction. The origin of this relationship and conditions necessary
for its validity can be understood in terms of quantum RRK theory.

I. Introduction

We recently investigated the competition between carbon and
oxygen attack of chemically activated enolate ions at carbonyl
groups and observed that branching between the two channels
varies exponentially with the difference in the activation energies
of the two pathways:1

Other investigators have reported similar findings for a series
of activated reactions. Relationship 1 describes the dissociation
of collisionally activated proton-bound dimer ions, and this
forms the basis of Cooks’ kinetic method2-6 for determining
the relative proton affinities of anions and neutral molecules.
The kinetic method has subsequently been extended to a wide
variety of other competitions.6 Branching between channels in
chemically activated systems has been studied previously by
DePuy et al.,7 who observed that the relative abundance of
anionic alkyl leaving groups from nucleophilic attack at silane
centers varies exponentially with the exothermicity of the
reaction.
The observation of the log-linear relationship 1 for a series

of related reactions is not altogether surprising. In their
investigation of competing dissociations of activated alkyl
radicals, Rabinovitch and co-workers8,9noted that in the classical
limit the logarithm of the ratio of volumes in phase space
depends directly on the energy difference between channels.
Several authors have derived theoretical justifications for the
validity of (1) in the kinetic method. Cooks and co-workers,
working on the assumption of a thermal equilibrium between
reactant ions, have used transition state theory to derive forms
of (1) in terms of the relative enthalpies2,3 and free energies5 of
the competing pathways. As pointed out by Cooks, however,
the assumption of thermal equilibrium does not apply to isolated,
chemically activated species. Recently, other workers10,11have
assumed classical behavior in the form of quasi-equilibrium
theory (QET) to justify (1) in microscopic systems without
invoking thermal equilibrium.
While it is clear that relationship 1 may be generally

descriptive, it is equally clear that it is not exact. The classical
form, while qualitatively applicable in limiting cases, is still an
approximation of the quantum mechanical form of the rate
equation, and it does not accurately reflect the influence of
quantized oscillators with specific frequencies. The branching
ratio depends not only on energy difference but also on the total
energy and angular momentum of the system.12 Furthermore,

reactants generally comprise a distribution of energies, and the
effect of that distribution must be considered. Recently,
Bojesen10 has suggested that the size of the reacting species
contributes to the observed branching ratio between available
channels. A detailed analysis using a statistical theory such as
phase space theory13-15 or RRKM15-17 theory is often used to
infer the reaction potential energy surface from the observed
kinetics.8,9,18,19 Such an analysis can be cumbersome, and the
use of the empirical relationship 1 to describe a series of related
reactions is an attractive option. While its empirical success
in such situations is promising, relationship 1 is often applied
to a series of reactions in which few of the aforementioned
factors are likely to remain completely constant. A more
rigorous quantitative examination of its validity therefore seems
appropriate.
In this paper, we use RRKM calculations to examine

quantitatively how the branching ratio depends on various
aspects of the potential energy surface for reactions of activated
systems. We assume no form for the rate equation other than
that dictated by statistical theory (see below); the reaction rate
constants are calculated by direct count with only minor
mathematical approximations whose quantitative effect on the
results is negligible. As the goal of this work is to understand
what appears to be a general phenomenon, we could, in
principle, examine any arbitrary potential energy surface,
whether real or artificially constructed. While we have per-
formed calculations on several systems, we report results from
a potential energy surface that is based on the reaction of enolate
anions with trifluoroacetyl chloride in order to provide a
physically meaningful context for the calculations. This ap-
proach also should facilitate comparison with other experimental
systems. We use the RRKM results to assess the validity of
relationship 1 for specific systems, and the relationship appears
to hold for all of the systems that we have examined. Because
specific calculations cannot prove a general relationship, we
use quantum RRK theory to demonstrate the basis and limits
of the validity of (1) without invoking either thermal equilibrium
or classical behavior. We also quantitatively examine the
relative influences of the many factors known to affect the
branching ratio (entropy and enthalpy of activation, total energy
of the system, and size of the system) and establish computa-
tionally that variations in these factors should be considered
when using (1) to describe a series of results.

II. RRKM Calculations: Method

We use RRKM theory15-17 to calculate the branching between
two competing channels in an activated system. We consider
kinetic reactions, in which the branching ratio (BR) betweenX Abstract published inAdVance ACS Abstracts,December 15, 1996.
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the channels is determined by the relative rates for crossing their
respective barriers and is independent of the relative exother-
micity of the channels. For a system with total energyE,20 the
RRKM unimolecular reaction rate constant is given by

whereG(E) is the sum of states above the transition state and
below total energyE, h is Planck’s constant, andN(E) is the
density of states of the reactant at energyE. BecauseN(E) is
identical for reactions proceeding from the same ion-molecule
complex,21 the microcanonical fraction of reactants proceeding
through one of two available channels is

The observed fraction of total products produced by channel
1 is then given by summing over the appropriate normalized
energy distributionP(E) of reactants that go to products:

and the observed branching ratio between the two channels is

For convenience, we will subsequently refer to the observed
BR of eq 4 as theensembleBR for the energy distributionP(E).
The RRKM calculations22 model the reaction of enolate

anions with trifluoroacetyl chloride, whose behavior inspired
this study. Details of the calculations are given elsewhere.12,23

The potential energy surface for the calculations is described
in Figure 1. In our model, the activated complex has a
normalized energy distributionP(E) that is zero below an energy
∆Ewell above the minimum in the reactant potential energy
surface and Boltzmann above it. The two channels have an
average activation energy of∆Eavg

‡ ) 1/2(∆E1
‡ + ∆E2

‡) relative

to the bottom of the well, and the difference in their activation
energies is defined as∆∆E‡ ) ∆E1

‡ - ∆E2
‡. The frequencies

used in the RRKM calculations are listed in Table 1; we
arbitrarily assign the more “loose”, or entropically favorable,
transition state to channel 2.24,25 The frequencies are chosen
to be loosely representative of the transacylation reactions
studied previously in our lab, and they are taken from AM1
calculations26 of acetone enolate and trifluoroacetyl chloride.
Qualitatively similar behavior, however, is seen with other sets
of frequencies, and we show below that the results are
independent of the set of frequencies. The relative values of
∆Ewell and∆Eavg

‡ determine the net activation of the reactant
complex. For this work, we arbitrarily fix∆Ewell at 19 kcal
mol-1 and vary∆Eavg

‡ . Effects due to conservation of angular
momentum are considered in the calculations, but these serve
only to increase the apparent barriers to reaction and do not
influence the conclusions of this study.

III. RRKM Calculations: Results

We test relationship 1 by holding the mean activation energy
∆Eavg

‡ for the two channels fixed at 13 kcal mol-1 above the
bottom of the well (6 kcal mol-1 below the activated complex).
The choice of∆Eavg

‡ is unconventional; it is more usual to fix
the activation energy of one channel (∆E1, for example) and
vary the other relative to it. When we used the latter convention,
however, we observed that the logarithmic plot exhibits
curvature across the range of∆∆E‡ examined here. The
analysis in section IV demonstrates why the breakdown occurs
and why the use of∆Eavg

‡ is more appropriate for this study.
∆∆E‡ is varied from-4 to 6 kcal mol-1, and the branching
ratio (BR) is calculated using RRKM theory. Results are plotted
in Figure 2.
As seen in the characteristic graphs of Figure 2, the resulting

data are exponential, and a logarithmic plot is linear. The
generality of the linear behavior was tested by performing
numerous other calculations in which the following character-
istics of the sample system were changed: the magnitude and
number of vibrational frequencies, the mean activation energy,
and the distribution functionP(E). For each set of conditions,
the plot of BR vs∆∆E‡ maintained an apparently exponential
relationship across a range of several kcal mol-1 in ∆∆E‡. The
shape of the plot, however, does depend on the choice of initial

Figure 1. Potential energy surface employed to model the reaction of
an activated complex with two channels.∆Eavg

‡ is the average
activation energy of the two channels relative to the bottom of the ion-
molecule complex,∆∆E‡ is the difference in activation energies
between the two channels, and∆Ewell is the activation of the complex
relative to the bottom of the well. In practice, the reactants comprise a
distribution of energiesP(E), and∆Ewell defines the minimum energy
for which P(E) is nonzero. In such cases, the branching ratio reflects
a weighted average over that distribution.
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TABLE 1: Frequencies Used in RRKM Calculations

transition state 1 transition state 2

frequency (cm-1) degeneracy frequency (cm-1) degeneracy

28, 37, 48, 82 1 13, 39, 59, 64 1
116, 190, 247 1 129, 194, 233 1
303, 314, 338 1 265, 317, 326 1
347, 414, 441 1 345, 385, 442 1
484, 495, 518 1 490, 503, 556 1
559, 624, 699 1 564, 651, 805 1
752, 985, 1011 1 880, 953, 1001 1
1027, 1044 1 1075, 1094 1
1064, 1100 1 1100, 1168 1
1108, 1309 1 1229, 1296 1
1337, 1371 1 1340, 1364 1
1378, 1409 1 1368, 1380 1
1434, 1444 1 1412, 1428 1
1513, 1522 1 1504, 1513 1
1886, 3053 1 2972, 3007 1
3066, 3151 1 3060, 3064 1
3185, 3222 1 3077, 3154 1
201, 260, 728 deg 201, 260, 728 deg
997, 1422 deg 997, 1422 deg
2884, 2941 deg 2884, 2941 deg
1263 2× deg 1263 2× deg
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conditions; the magnitude of the dependence of the BR on∆∆E‡
varies from system to system. The dependence may be
quantified conveniently by considering the slope of the lines
from plots of ln(BR) vs∆∆E‡, which are quite linear.27 Table
2 reports the slope of such plots as a function of∆Eavg

‡ and
input frequencies from Table 1.
Average Activation Energy. The columns in Table 2 show

the variation in the slope of logarithmic plots of BR as a function
of ∆∆E‡ for values of∆Eavg

‡ from 6 to 14 kcal mol-1. The
original plots of BR vs∆∆E‡ are omitted in the interest of space.
Each of the plots is linear, however, showing that the exponential
character remains across this range of∆Eavg

‡ and input fre-
quencies. The results, listed in Table 2, reflect several properties
of the relationship between the BR and the reaction potential
energy surface. First, the absolute value of the slope of the
logarithmic plot increases monotonically with increasing activa-
tion energy; changes in∆∆E‡ have less influence in systems
whose total energy is further above threshold. Second, changes
in slope with∆Eavg

‡ are less pronounced in larger systems. For
the smallest system (one added methylene, 51 vibrational
modes), the change in slope is 39% across the range of
∆Eavg

‡ examined, while in the largest system (seven added
methylenes, 105 vibrational modes) the slope changes by only

18% across the same range of∆Eavg
‡ . Finally, the intercept of

the plots is a constant for all plots (not shown); the BR for
∆∆E‡ ) 0 has an approximately constant value of 3.0 for all
values of∆Eavg

‡ . As expected, only differences due to the
enthalpic component of the potential energy surface vary with
the system energy. For systems that have identical enthalpic
barriers, the BR depends only on the relative entropy and is
independent of total energy.
Number and Magnitude of Vibrational Frequencies. The

sum of statesG(E) and density of statesN(E) are inherently
dependent on the number and frequencies of the active degrees
of freedom in a system. While such effects have been
considered implicitly in many calculations and the qualitative
effects are well understood (e.g., increasing the size of a system
increases its lifetime at a given total energy), it is interesting to
examine the influence of the set of vibrational frequencies on
the BR in the context of the problem under investigation.
Bojesen10 has recently published results of quasi-equilibrium
theory (QET) calculations28,29 in which he examines the BR
between dissociating pathways of metastable proton-bound
dimer ions. He finds that the BR is dependent on the size of
the system (i.e., the number of “active modes”), but the QET
calculations do not rigorously evaluate the relationship because
they contain no specific information about the vibrational
characteristics of the system. Furthermore, Bojesen’s calcula-
tions are specific to the dissociation of metastable ions of a
particular range of lifetimes, and those lifetimes are themselves
dependent on the size of the system. Our treatment is quite
different, as we consider the total BR for all complexes
regardless of their individual lifetimes.
Here, the effect of increased system size is tested with a series

of RRKM calculations in which the original input data are
modified to include additional frequencies of variable degen-
eracy (see Table 1). In order to give the modifications some
physical relevance, we have chosen a set of additional frequen-
cies that roughly correspond to those of additional methylene
units in enolate anions, although the results are general even
for frequencies that are not physically meaningful. Results are
reported in the horizontal rows of Table 2. The slope change
with added methylenes indicates that the additional size has a
measurable influence on the observed BR and shows that
applying relationship 1 to a series of reactions in which there
is significant change in the structure of the reactants can be
quantitatively misleading.
As the size (i.e., number of frequencies) increases, the BR

becomes more sensitive to changes in∆∆E‡ (the logarithmic
plot becomes more steep). It is interesting that the diagonals
of Table 2 contain roughly constant values; simultaneously
increasing∆Eavg

‡ by 1 kcal mol-1 and adding an additional
methylene unit causes very little change in the BR. The reason
for this is discussed in section IV.
The BR is also sensitive to the magnitude of the frequencies

in the calculations. If the frequency of a given oscillator is
reduced, the BR becomes more sensitive to changes in∆∆E‡
(the logarithmic plot becomes more steep). The BR is especially
sensitive to changes in the lower frequency modes (vide infra).
In all of the cases examined, however, the dependence of the
BR on∆∆E‡ remains exponential.
Reactant Energy Distribution Function. All of the results

presented above were calculated for an ensemble of reactants
whose initial energy distribution is given by the Boltzmann
distribution,P(E) ∝ F(E)e-E/RT, whereF(E) is the density of
states andT is the ambient temperature, shifted∆Ewell above
the bottom of the reactant well. The Boltzmann distribution is
largely responsible for exponential energy dependences in

Figure 2. Plot of the branching ratio (top) and logarithm of the
branching ratio (bottom) of two channels vs difference in energy of
the transition states for the two competing reactions as calculated by
RRKM theory. The input frequencies for the RRKM calculation are
given in Table 1 (deg) 1 ), and∆Eavg

‡ ) 13 kcal mol-1.

TABLE 2: Slope of the Line Obtained by Plotting ln(BR) vs
∆∆E‡ as a Function of∆Eavg

‡ and deg, the Degeneracy of the
Frequencies Representing a Methylene Group in Table 1

methylene degeneracy

∆Eavg
‡ 1 3 5 7

6 -1.10 -1.22 -1.32 -1.41
8 -1.18 -1.31 -1.41 -1.49
10 -1.29 -1.41 -1.50 -1.56
12 -1.41 -1.51 -1.58 -1.62
14 -1.53 -1.61 -1.64 -1.66
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thermal systems, and so its effect on the energy dependence of
chemically activated systems warrants investigation. Further-
more, many chemically activated systems (for example, species
that are activated by either collisions or photochemical methods)
do not comprise a shifted Boltzmann distribution as modeled
in the calculations. The presence of a third channel, such as
dissociation of the reactant complex formed in a bimolecular
collision, will also have the effect of perturbing the initial energy
distributionP(E) for those reactants that proceed to reactants.
The relationship between the ensemble BR and its microscopic
components is therefore a central issue in interpreting the results
presented above.
We therefore consider the branching ratio of a microcanonical

system of specific energy as given in eq 2 or, alternatively, in
eq 4 withP(E) ) δ(E0). A representative plot of the BR vs
∆∆E‡ for two specific values ofE is given in Figure 3. As is
seen in Figure 3, the microcanonical ensemble yields an energy
dependence that is fit extremely well by an exponential across
the same range of energies studied previously; the behavior of
the microcanonical BR is qualitatively and quantitatively very
similar to that of the BR of the shifted Boltzmann ensemble.
The slope of the ensemble BR plot is a weighted average of
many microscopic BR’s that possess unique exponential de-
pendences on∆∆E‡. As seen in Figure 3, however, the BR
for the distribution functionP(E) does not vary significantly
from the microcanonical BR at the average energy ofP(E).
Relationship 1, therefore, accurately describes the ensemble BR
in spite of, rather than because of, the shifted Boltzmann
distributionP(E).

IV. Quantum RRK Theory

While the RRKM calculations cited above strongly support
the theoretical validity of (1), they are not general, nor do they
describe why such a relationship should be valid. As pointed
out by Rabinovitch and in subsequent QET calculations by
Bojesen and Gru¨tzmacher, such an energy dependence is clearly
expected in the classical limit. While the general form of the
energy dependence should not change upon going from quantum
to classical behavior, the relevance of the classical approxima-
tion the exact RRKM form of the rate constant is not obvious.
An alternate approach is to consider a simplified system in which
all of the active oscillators in each transition state have identical
frequencies of 1000 cm-1. The results of an RRKM calculation
for such a system with 20 vibrational degrees of freedom are
presented in Figure 4, and the data are again described quite
well by an exponential.

This simplified RRKM calculation is essentially quantum
RRK theory,16,30 and a more descriptive analytical analysis is
now possible. Consider a molecule consisting ofs identical
oscillators all having frequencyν. If E1 is the critical energy
for reaction, definem1) E1/hν to be the number of quanta in
the reaction coordinate necessary to cross the reaction barrier.
For a molecule with total energyE, n ) E/hν is then the total
number of quanta in all oscillators.
It follows16,30 that the rate constantk1 is given by

and the ratio ofk1/k2 is then

Consider the case wherem1< m2, and let∆m) m1 - m2. The
term (n - m2 + s- 1)! in the denominator cancels all but the
∆m leading terms of the factorial (n - m1 + s - 1)! in the
numerator, and the factorial (n- m2)! cancels all but∆m terms
of (n - m1)!. DefiningA′ ) A1/A2, eq 5 can be rewritten with
∆m terms in both the numerator and denominator.

Now, if ∆m) m1 - m2 is small relative ton, i.e., the critical
energies are close to each other relative to the degree of
activation of the system, then the individual terms in the
numerator are all approximately equal to (n - mj + s), where

Figure 3. Plot of the branching ratio of two channels vs difference in
energy of the transition states for two competing reactions as calculated
by RRKM theory. The points represent calculations for microcanonical
states which are either near the average energy (4) or greater than the
average energy (b) of the entire ensemble. The line connects points
calculated for the ensemble.

Figure 4. RRKM Calculations of the BR (top) and ln(BR) (bottom)
vs ∆∆E‡ for a system where both transition states have one 20-fold
degenerate frequency of 1000 cm-1. The slight curvature in plot b in
the center of the plot is believed to be a computational artifact resulting
from the high degeneracy of the system.∆Eavg

‡ ) 10 kcal mol-1.

k1 ) A1
n! (n- m1 + s- 1)!

(n- m1)! (n+ s- 1)

k1
k2

)
A1 (n- m1 + s- 1)!/(n- m1)!

A2 (n- m2 + s- 1)!/(n- m2)!
(5)

k1
k2

) A′
(n- m1 + s- 1)(n- m1 + s- 2)...(n- m2 + s)

(n- m1)(n- m1 - 1)...(n- m2 + 1)
(6)
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mj ) 1/2(m1 + m2). Likewise, each term in the denominator is
very close to (n - mj ). That (n - mj + s) and (n - mj ) are
better approximations for the average value of the terms in the
numerator and denominator than, for example, (n- m1 + s) or
(n - m1) is the reason that∆Eavg

‡ is a more appropriate choice
thanE1 as the basis of the RRKM calculations presented in
section III. Multiplying the∆m nearly identical terms in each
of the numerator and denominator of eq 6, the expression may
be rewritten as

or

and therefore

If (n - mj ), A′, ands do not vary for a series of reactions, and
realizing that∆m is proportional to∆∆E‡, it follows that

Thus, we conclude that, for a series of similar reactions which
are activated well above the critical energy and have similar
activation energies, relationship 1 is valid.

V. Discussion

The derivation of eq 7 speaks directly to the validity of
relationship 1 for a series of chemically activated reaction
systems. In particular, it shows that (1) is not generally a valid
means of comparing a series of reactions. In certain cases,
however, the ratio of the combinatorial sum of states for two
competing channels varies with the difference in activation
energies of the respective channels in a manner that is nearly
exponential. The statistical variation in the sum of states, and
therefore the relative reaction rate constants, will be closest to
an exponential when the following conditions are met: (a) The
difference in the barrier heights,∆∆E‡, is small relative to the
total energy above threshold in the activated system. (b) The
relative activation entropies,A′, for the two channels remains
constant. (c) The difference∆Ewell - ∆Eavg

‡ remains constant.
(d) The size of the system remains constant.
While the above conditions will rarely, if ever, be satisfied

exactly, eq 7 demonstrates that the dependence of the branching
ratio on variations in any of these parameters is smaller than
the dependence on the difference in the activation energies.
Furthermore, eq 7 may be rewritten as follows:

Equation 8 shows that conditions c and d, above, need not
be satisfied independently if their ratio,s/(n - mj ), is constant.
It may be helpful to think of this ratio in terms of its inverse,
(n - mj )/s, which is the average number of quanta in each
oscillator.31 When the ratio varies, as in the columns or rows
of Table 2, relationship 1 is not a valid description of the energy
dependence of the BR. When this ratio is constant, the BR
will vary logarithmically with∆∆E‡. This effect is manifested

in the diagonal entries of Table 2, which are approximately
constant when the system energy is increased 1 kcal mol-1 per
added methylene group. Another consequence is seen by
comparing the columns of Table 2, which show that the slope
change as a function of∆Eavg

‡ is greater for smaller systems.
Addition of a given increment of energy will have more effect
in a smaller system because the change in average quanta per
oscillator will be be greater than in a larger system. When
changes in∆∆E‡ are proportionally greater than changes in
∆Eavg

‡ , total energy, and the relative activation entropies, the
quasi-exponential dependence on∆∆E‡ will dominate the
change in branching ratio. The RRKM calculations presented
above are consistent with this picture of the relative influence
of these parameters.
While this analysis is general, it is helpful to consider a

specific case for illustrative purposes. For the series of
transacylation reactions whose behavior inspired this study,
∆Eavg

‡ varies only slightly, as evidenced by the small change in
reaction efficiencies (approximately 0.5< Φobs < 0.7 ).
Furthermore, the high efficiencies for reaction are indicative of
low barriers or large energies above threshold for the activated
complexes (∆Ewell . ∆Eavg

‡ ). Finally, the relative activation
entropies for carbon and oxygen nucleophilic addition should
be relatively independent of the enolate substituent. It is therfore
valid to describe the observed reactivity in this system by
relationship 1.

VI. Conclusions

Many series of activated reactions have an observed branching
ratio that appears to vary exponentially with the energy
difference∆∆E‡ of the competing channels. RRKM calcula-
tions reproduce this observed relationship for certain systems
but confirm that several other factors, including changes in the
relative entropies of activation, size of the system, and degree
of activation, influence the branching ratio. The log-linear
relationship 1 should be used only with full consideration of
these limits. Quantum RRK theory shows how the quasi-
exponential dependence of the branching ratio on∆∆E‡ arises
from the combinatorial form of the sum of states for an activated
system and provides a semiquantitative means of assessing the
relative importance of the many factors which influence
branching in activated systems.
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