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Analytical expressions for the rotatioralibrational energy levels of diatomic molecules represented by the
Tietz—Hua rotating oscillator are derived using the Hamiltdacoby theory and the BohBommerfeld
guantization rule. In molecules with moderate and large values of rotational and vibrational quantum numbers,
the levels are in much better agreement with the results of numerical calculations than the energies obtained
from the common model of the rotating Morse oscillator.

1. Introduction u is the reduced mass of the oscillator, anid its orbital angular
momentum. The rotationalibrational levels resulting from
a simplified solution of the Schdinger equation for the rotating
Morse oscillator can be given as

Atom—molecule and molecutemolecule collisions with
transfer of molecular rotational and vibrational energy are
important in plasma and material processing, supersonic and
hypersonic flows, light sources, etc. Probabilities of the _y 1 1\2
transitions depend on the molecular rotatienagbrational Eo= we(u + E) B wexe(v + E) +BJAHI) -
levels, and the transitions involving moderately and highly D J2(1+J)2 @)
excited levels are often as important in gas kinetics as those N
involving weakly excited levels. Therefore, a general and  wherewe, weXe, Be, andDe are the usual spectroscopic constants,
analytical expression for the molecular energies, accurate in aandJ andv are the molecular rotational and vibrational quantum
broad range of rotational and vibrational quantum numbers, is numbers, respectively. Expression 2 is a truncated series
of a common interest in physics of high-temperature gas. Suchexpansion solution of the Schitimger equation for the rotating
expression would allow a substantial simplification of deriva- Morse oscillato® Even though more accurate (higher-order)
tions of the transition probabilities for large number of atem  expansions of the solution have been discussed in literature, eq
molecule and molecutemolecule collision systems and for 2 is the most common in applications (that is why we compare
quick and “transparent” evaluation of the main features of the below this expression (instead of a higher-order expansion) with
collisions before they are incorporated into complex and time- the results of the present work). The popularity of eq 2 results
consuming collisional-radiative models of high-temperature gas. from the fact that the expression is simple and it predicts quite
Generality of the expression can be of great advantage inaccurate values of the weakly-excited rotatienabrational
comparative studies of the molecular transitions in gases wherelevels of diatomic molecules and that reliable values of the
many different collision systems simultaneously influence the molecular spectroscopic constantsandwexe are available in
gas properties. literature (most of the other constants in the higher-order

The main goal of this work is to derive analytical expressions expansion representing the rotatiopaibrational energies of
for molecular (diatomic) rotationalvibrational energy levels  the Morse oscillator are not available in literature, and calcula-
that have accuracy acceptable in applications and better thantion of their accurate values is not trivial).
the accuracy of the commonly used expressions for the levels. In molecules with moderate and high values of the rotational
We pay special attention to the reliability of the obtained and vibrational quantum numbers, eq 2 is inaccurate. Therefore,
expressions for moderate and high rotatienabrational levels we derive below a general and analytical expression for
because these levels often play crucial role in the gas rotational rotationat-vibrational levels of diatomic molecules, which has
vibrational and dissociative kinetics. accuracy acceptable in applications and better than the accuracy

General and analytical model potentials for diatomic mol- of eq 2. In order to do so, we use internuclear potential in which
ecules are available in literature (see ref 2 and referencesthe rotational energy is the centrifugal energy of the molecular
therein), and the potential most common in applications is the rotation (as it is done in relationship 1) and the vibrational

internuclear potential of the rotating Morse oscillator energy is given by the function suggested by Tiétand
5 discussed in great detail by HAhis function (called hereafter
W= L +D[L- e—ﬁ(R—Re)]Z 1) the Tietz-Hua potential) reduces to, respectively, the Resen
e 2,uR2 Morse? Morse? and Manning-Rosef potentials for negative,

zero, and positive values of the potential parametefthis
whereR is the internuclear distancB is the molecular bond  parameter is denoted lyin ref 6).
length, 8 is the Morse constanD is the potential well depth,
2. The Tietz—Hua Potential Function
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TABLE 1: Spectroscopic Constants and Other Parameters of the Diatomic Molecules Studied in the Present Wark

molecule HF (&) Cl,(X'Z;) 12(X (0g)) Hy(X'Z;) 0,(X°%y)
Umax 28 62 96 22 52

Jmax 66 395 840 39 220

M 23 104 174 18 65

D 49382 20276 12547 38318 42041
w1073 0.160 2.924 10.612 0.084 1.337

[ 1.94207 2.20354 2.12343 1.61890 2.59103
Ve 1.78049 4.37843 5.66106 1.20032 3.12872
WeXe 89.88 2.67 0.61 121.33 11.98

Be 20.956 0.244 0.037 60.853 1.438

De 0.0021 1.85% 1077 4.537x 10°° 0.0465 4,760« 107
we 4138.3 559.7 214.5 4401.2 1580.2
Re 0.917 1.987 2.666 0.741 1.207

B 2.2266 2.0087 1.8643 1.9506 2.6636
AUy 0.0196 0.0189 0.0138 0.0265 0.0318
AUy 0.0448 0.0606 0.0803 0.0576 0.0345
Ema/D 0.9928 0.9995 0.9997 0.9922 0.9999

2 Umax @ndJmax are the maximum vibrational quantum number and the maximum rotational quantum number, respectively, for the rotating Tietz

Hua oscillator;ymax is the maximum vibrational quantum number for the Morse oscillags the parameter in the potential B;is the well depth

of the intramolecular potential (in ct®); u is the reduced mass of the molecule (inlgy)js the constant in the TietzHua function (in A2); y. =

bhRe, weXe is the anharmonicity constant (in cA); B. andDe are the rotational constants (in cHt we is the vibrational constant (in cr¥); Re is

the molecular bond length (in A)3 is the Morse constant (in &); AU; = |U; — U|/D is the average deviation of the potential from the
corresponding “exact” potenti&l, where thel; is the Tietz-Hua potential (the subscript TH) or the Morse potential (the subscript M) Uaisd

the potential obtained either from the RKR (ref 6 and references therein) or froabtimitio calculations (ref 10 and references therely;x is

the highest molecular energy assumed in the calculations of the parameter

can be given as main tasks of this work is to obtain accurate values of the
parametersy, from the exact potentials.
L2 The parametet;, of the Tietz-Hua potential is obtained here,
Ver' = Z,u_RZ T Um ®) like in ref 6, from minimalization of the average value of the

ratio AU; = |U; — UJ|/D, where the internuclear potentid] is
where the first term on the right-hand side is the rotational OPtained from the TietzHua function, andU is the exact
(centrifugal) energy of the oscillator, and the second term is potential obtained from either RKR @b initio calculations

the vibrational energy (the TietHua potential) of the Tietz (the average is taken over all available data points of the exact
Hua oscillator potential). Thus, the degree of the overall agreement between
the exact potentials and the potentials 1 and 3 is measured here
1 — @ R-R) ]2 by the ratiosAU; (see Tables 1 and 2; the corresponding values
Uy=D PRy (4) of cy are given in Table 3). The ratios are much smaller than
1-ce™ 1 (typically, they are smaller than 0.05). However, one should

emphasize that a small value of such a ratio does not automati-
with cally mean that the shapes of the compared potential curves
are equally close to one another in the entire considered range
b, = (1 - c) (5) of the internuclear distand® Thus, for example, potential 1
and potential 3 for some molecules may have very similar values
whereR is the internuclear distancB is the molecular bond  of AU;, but the potential curves does not have to overlap in
length, S is the Morse constanD is the potential well depth,  most of the range of the distanBe This lack of the overlapping
andcy, is the potential constant discussed below. can produce two (one for each of the compared potentials)
The reason for choosing the Tietklua potential in this work substantially different sets of the rotationafbrational levels
is its remarkably good agreement (within a broad range of the even though the values &fU; for the both curves are very
internuclear distance) with the RKR (Rydberiglein—Rees) similar.
(ref 6 and references therein) aal initio calculations (ref 10 Choice of the Morse constafitis not a simple issue. Solution
and references therein); see also discussions in refs 11 and 5of the Schirdinger equation for the Morse potential gives the
According to these works, the TietHua potential is much  following vibrational constants
more realistic than the Morse potential in description of

molecular dynamics at moderate and high rotational and w,= B D ]”2 ©6)
vibrational quantum numbers. Also, it was shown in refs 5 and € 231202#

12 that all practically significant analytical potentials allowing

solution of the one-dimensional S¢kiinger equation in terms  and

of hypergeometric functions (the TietHua potential belongs

to this category) have been already reported in the literature X, = hﬁz @)
and that it is practically impossible to discover a new potential 8n2qu

of this kind. Thus, the TietzHua potential seems to be one

of the very best analytical model potentials for the vibrational wherew. andwexe are in cnt?, D is in ergs, and the rest of the
energy of diatomic molecules. Therefore, we use it in the quantities are in units of the cgs system. Thus, the congtant
relationship 3, which is our choice of analytical approximation obtained from the expression 6 will differ from that resulting
to the “exact” potentials (obtained from the RKR aatal initio from the expression 7 if the spectroscopic constarRisweXe,
calculations) in diatomic molecules. Consequently, one of the andD are taken as the “best available” in literature; the latter
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TABLE 2: Spectroscopic Constants and Other Parameters of the Diatomic Molecules Studied in the Present Wark

molecule N(X'=]) NO(XIL,) 05 (XIT,) Ny (X?Z;) NOH(X1=T)
Vmax 66 56 56 62 72
Jmax 260 230 235 250 270
M 82 67 58 68 73

79885 53341 54688 71365 88694
wl1072 1.171 1.249 1.337 1.171 1.239
bn 2.78585 2.71559 2.86987 2.70830 2.73349
Ve 3.05797 3.12502 3.20392 3.02360 2.90630
WeXe 14.32 14.07 16.25 16.10 16.26
Be 1.998 1.672 1.691 1.932 1.997
De 5.737x 1076 5.156x 1076 5.334x 1076 5.920x 1076 5.643x 10°°
we 2358.6 1904.2 1904.8 2207.0 2376.4
Re 1.097 1.151 1.116 1.116 1.063
B 2.6986 2.7534 2.8151 2.6717 2.6552
AUrh 0.0349 0.0619 0.0176 0.0287 0.0169
AUy 0.0440 0.0722 0.0204 0.0301 0.0226
Ema/D 0.9999 0.9999 0.9999 0.9999 0.9999

aMeaning of the symbols is the same as in Table 1.

TABLE 3: Coefficients ¢y, mo, @y in Expressions 43 and 44

The equilibrium internuclear distand® of a molecule in
the Jth rotational level can be obtained from the derivative

molecule Ch o w1
HFE(X1ZH) 0.127 772 0.004 669 77 —0.000 063 53 V_(R)
Clz(xlz ) —0.096 988 —0.001 468 49 0.000 013 27 ef — (9)
12X (OF )) —-0.139013 —0.00135347  8.4208Q 10°° dR

2(xlz ) 0.170 066 0.008 106 09 —0.000 012 75

2(x3z ) 0.027 262 0.000 498 39 —4.307 26x 106 which, after introducing a new variable

2(x g* —0.032 325 —0.000 492 60 3.996 4R 107
NO(XZIQI,) 0.013727  0.000 241 66 —2.068 81x 10° b2L?
o+( ) —0.019445 —0.00034522  3.18368 10°° S=%0 (10)
N2 “9 —0.013716 —0.000 21500 1.73134 10°® 2u

o+(x&+) —0.029 477 —0.000 406 55 2.968 89 1076

becomes
constants are not consistent with the model of the Morse
oscillator because they are usually obtained from measurements dV(R) 1—eYver e
. . . = (1-c)—€e*—==0 (11)
andab initio calculations. (The expressions 6 and 7 give the dr 1- efy*eye)3 h y3
same values gf only when the Birge Sponer relationshid) Ch *
= w§/4wexe, is applied. However, the BirgeSponer ap-
& . where

proximation can lead to errors in values Bfthat can be as
large as 30%). - y. =bR. and y,= bR, (12)

In this work, we calculatg@ from the relationship 6 (Tables
1 and 2) because the constamtsandD ava|lab_le_ in literature WhenJ — 0, C; — 0, eq 11 can be written
are usually more accurate than the anharmonicity consiar{s
(also, expression 6 is identical with the corresponding expression L YeYe

R . . K 1 e ey _ Yy _

obtained from comparison of the vibrational force constants for PE—— (1-c¢)=0—1=e”""* and y. =y,
harmonic and Morse oscillators BRt= Ry). —ce e

The anharmonicity constantsx. used in the present calcula- (13)

tions are those obtained from the “best available” data (typically,

these constants differ from those predicted by expressiof3 7 if which suggests the possibility of an asymptotic solution of the
is obtained from expression 6). The reason for this choice of transcendental equation 11 which depends on a small parameter
weXe is the fact that all the “exact” (RKR andb initio) (cn). Such a solution can be obtained as an asymptotic
calculations of the internuclear potentials discussed in this work expansion in terms of this small paraméterwe propose the
used the “best available” values of the anharmonicity constants. following expansion

3. The Rotational-Vibrational Energy Levels

Using the Hamiltor-Jacoby theory and the BohBommer-
feld quantization rule, Porteet al.l® studied, using the model
of the rotating Morse oscillator, the rotationalibrational
dynamics of diatomic molecules. In this paper, we apply their
semiclassical approach to diatomic molecules with intramo-
lecular potential given by relationship 3. Subsequently, the
Hamiltonian of the rotating TietzHua oscillator with angular

Y- =Y.t BCyt+ Dhci (14)
where the values of the coefficierBg andDy, can be obtained
by substituting eq 14 into eq 11 and using the fact €@l—0)

— 0. (Note that expression 14 is also valid for the Morse
oscillator whenc, = 0.) As a result, one has

. e—thJ—Dth2 . e—zshcj—zohcj2 C,
momentumL can be written as (1-c)= o~
, R 12 (1 — c,e G D)3 (Yo + B.C, + D,;C?)
H_Pr+ L +D 1—e™ ®) (15)
2u - ur? —ge MR

SinceCy(J—0) — 0, we can use the expansion df-e 1 +

wherep, = u(dR/dt) is the oscillator linear momentum. X 4+ x4/2 + ... and limit the expression for the cubic function
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(Ye + BnCy + D,C5)3 to linear and quadratic terms 6§. After and
some algebra, one obtains

1 __3
[B,.C,+ D,C3 — (3/2)B2C3|(y: + 3y?B,C, + 3y BC> + C.= 1"br (24)
h~J 3 h-alYe eBn-g ePh'-g 2uby, h
D,C3(1 —¢,) = Cj1 + 3¢(B,C,+ D,C3 —
3y§ e v il (BrCy = The energy of the rotating Tiet2Hua oscillator is calculated
(1/2)BACS — 1) + 3¢f(2BACS — 2B,C, — 2D,C5 + 1) + below using the BohrSommerfeld quantization rule

3c3(D.C? — (3/2)B%C? + B.C, — (1/3))] (16)
nEng R Ny=2—1ﬂfprdr=(u+%)h (25)
where comparison of the coefficients in the terms with the same

powers ofC, gives wherev is the vibrational quantum number. As shown in the

1—c)? B2 3Bc(l— Appendix, the quantization rule leads to the following expression
— ( Ch) _ 32 ,th rCi Ch) for the rotationat-vibrational levels of the diatomic molecules
B, ¥ and D, th 37—1— %

e e e

E, =D+ L*A. — 3u°C. — u’B. — 2uC)) —

(17)
. . . fAby, 2
The ratio y«/y«, (Y«n = bnR, where Ry, is the numerical v+ 1/2) -F - F'2|_2 — F'3L4 (26)
solution of eq 11) for diatomic molecules is increasing with (2u)"?

increase of the rotational quantum numier The values of _
the ratio are usually not greater than about 1.03, except for thewhereu is the reduced mass of the molecules= ci&e- and

H,(X'Z4) and HF(XZ*) molecules where the ratio at Jnax

is about 1.05 Jmax i the maximum value of the molecular o ky — 45..Du 27)
rotational quantum number). 1 —4uE DY2 4 k,

Using the above we calculated the values of the ratibls ¢
andEma/D (Emaxis the maximum value of the molecular energy —2u @
taken into account in thab initio and RKR calculations used F,= 7 >t Fi——% (28)
in this work) for several diatomic molecules (see Tables 1 and —4uED™ + ks D
2). I I

In order to apply the approach of ref 13, we introduce a new Fr= “HYy [ , , P (29)
variable,&(R) = exp(—bn(R — R)), and use the following series g £ *D”Z(—4/,¢ £.DY + k2)|. 2 1252*D
expansion of 1k§;,R)? abouté: = 1 € € €

1L _ 1 2 o @, =6UC. +3u’B. + 6uC. + 2uB. + C.  (30)

2 2 a\er T
0" (nR) (th*)l 3 @4 = —(8U°C. + 3u’B. + 6uC. + B.) (31)
1- —)(5* —1¥+ .. (18)
(th*)s( R k= W + )% (32)

where R-, the internuclear distance corresponding to the k, = 2ufi(v + llz)bh(Z,u)l/z (33)

minimum of the intramolecular potential of the molecule with
J > 0, is given by the relationships 12 and 14.

Substituting the expansion 18 into eq 8 and solvingdor
(the radial momentum of the vibrating molecule) at fixed value
of the rotationat-vibrational energyH = E, ; gives

The values of the energy levels obtained from expression 26
are in very good agreement (with accuracy better than 1%) for
all molecules considered here (except thgXi=;) mole-
cule—see discussion below) and in the entire range of vibra-
p = :t(zu)lIZ % tional, 0= v < vmax (UmaxiS the maximum vibrational quantum

r 1 A2 number of the rotationless_ molecule), and ro_tationat 0=
E — LZ(A +B.E —C é.z) _ D( . ) ] (19) Jmax quantum numbers, with the corresponding energy values
v T 1-c&é. obtained from numerical solution of the Sttiinger equatiot?
for the potential 3.

where Numerical calculations show that the dependence of the
functionsF, andF; on v is weak for all values of between 0
E.=e PRR (20) and vmax.  Therefore, assuming iR, and F that v = vmay/2,
one obtains another expression for the rotational-vibrational
L2=h7 I+ 1) — A7 (21) energies of diatomic molecules

whereA is the quantum number for the axial component of the "o 20 pr 2 _ i A2
molecular electronic angular momentum, and the coefficients Ea=DH+ BB, =~ (Foq — Fy = F'L = F'L)" (34)
A, B+, andC- are

where
_ 3
A = [1 + bROR =3 3)] b,R.C. (22) _ o )
7 R
B.=2[1+ bR C. 23 h
B (bR — 3) (23) B = (b,R)? — bR.(7U* + 2u+ 3) + 150° + 6u + 3 (36)
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Fy=oh (37)
0 @
Fi'=vD(1 + o, + 03 (38)
Fy =
AL+ o, + 0Po)| =1y, + ﬁ\/a(l T o+ wlxg))
e*@
(39)
Fy' = Az ———(1+ wX, + ) x
3 Ee*«/ﬁ 2
F' + At VD(L+ w6 + 0G| (40)
2£,7/D
X =v+12 (41)
= (g + 1)/2 (42)
hb.c
wy= ¢% (43)
o= wg(l - %h) (44)
= (45)
> 2VDE.(BR)
by
02 =5, (46)
1= b R(20U% + 6u + 4) — (420° + 18u+ 6) (47)
and

57 = bR.(18U° + 14u + 1) — (36U + 30u + 3) (48)

and the maximum value of the vibrational quantum number in
the Tietz-Hua oscillator is (see Appendix)

o = e 3Cﬁ)1/2
e wo(2¢, — 1)

1
~5 (49)

One should mention that the maximum vibrational quantum
number2_ of the Morse oscillator, obtained from the func-
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Figure 1. Rotationat-vibrational energie€, ; (dashed line, eq 34)
and E'VI (dotted line, eq 2) and the energy obtained from numerical
solutlon of the Schiinger equation for the potential 3 (solid line) for
the NZ(X12+) molecule. The zero rotationalibrational energy
corresponds to the dissociation continuum of the rotationless molecule.
v andJ are vibrational and rotational quantum numbers, respectively.

0 50 300

0.5

Energy/D
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Rotational quantum number
Flgure 2. Rotationat-vibrational energiesE;; (dashed line) and

(dotted line) and the energy obtained from numerical solution of
the Schidinger equation for the potential 3 (solid line) for thg H

(xlz;) molecule. Meaning of the symbols is the same as in Figure 1.

10 40

very close to the accuracies of the expression for all, except
H,(X'S;) and HF(X=*), molecules listed in Tables 1 and 2).
As can be seen in Figures 1 and 2, expression 34 is always
more accurate in describing the rotationaibrational levels
of diatomic molecules than relationship 2. (The accuracy of
the Morse model increases with decrease of the degree of the
rotationat-vibrational excitation of the molecules, while the
agreement of the relationship 34 with the numerical solution of
the Schrdinger equation for the potential 3 is quite good in
the entire range of the vibrational and rotational quantum

tion 2, can be taken as the integer closest to, and smaller thamumbpers.) Expression 34 is less accurate for aw the case

M We 1

Umax zwexe 2

(50)

the sumF, —

of the H,(X'S;) and HF(X=*) molecules (the accuracies of
the expression for these two molecules are similar). Therefore,
it is more accurate to use in such cases the expression 26 with
FoL? — FyL* being replaced by the exact

In order to evaluate the accuracy of the expression 34, we €xpression 65 (see Appendix and Figure 3).

calculated the energieR]; of 10 diatomic molecules and

One should notice the significant differences between the

molecular ions representing a broad range of spectroscopicvalues ofvmax Obtained in the present work and those resulting
constants (Tables 1 and 2). The results for two of the moleculesfrom the model of the Morse oscillator (Tables 1 and 2). The
(N2(X'=]) and H(X'Z))) are shown in Figures 1 and 2, difference can be as big as the one in th&(0;)) molecule
together with the rotatlonal vibrational eigenvalues obtalned wherevmax= 96 (the present model) and 174 (the Morse model).
from numerical solution of the Schdinger equation for the  This is a clear failure of the Morse model because the realistic
potential 3 and with the energies predicted by eq 2. (The value of ymax in the |2(X(0+)) molecule is about 107 (see ref
accuracy of the expression 34 for th%(xllz ) molecule is 16).
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oS ¢ = CREA(E,; — ALY + 2B.L%G . + C.LP — E2D =
\ 2B.L°G £, + C.L? — E2D (55)

=26,.D — B.L> — 2G£.(E,, — ALY =
2&..D — B.L? (56)

Energy/D

and
&=E, ;—AL°-D (57)

where the simplification of the coefficients and d; resulted
. . . . . . ‘ from the fact that, is a small parameter.

° 1OFlotat1i§nal quzaontum r?t?mberso % 0 Let_US now expandl.(g*) in p.ower series abpu_f* =1
retaining only terms which are linear or quadraticin

Figure 3. Rotationat-vibrational energiest, ; (dashed line, eq 26
with the sumF; — FjL?2 — F4L* being replaced by the exact - _ 2
expression 65), ané); (dotted line) and the energy obtained from f1(S) = 1o(8) = @188 + a5 + 5 (58)
numerical solution of the Schdanger equation for the potential 3 (solid

line) for the I—E(Xlﬁg) molecule. Meaning of the symbols is the same Where

as in Figure 1.
=6+ 30+, @,=—-8a—3b+d, ;=
4. Summary 3a; + by + & (59)
Summarizing the above, one can say that relationship 34 is
a good analytical approximation to the rotationaibrational

levels of diatomic molecules (including molecular ions) in the
ground electronic states. The relationship should also be able__ (2“)

This allows one to evaluate the integral 51 as follows

to predict reasonable values of the rotatiengbrational levels aby, f <& (1 - u& ) ds. =~

of the electronically excited diatomic molecules that can be 2

treated as the rotating TietHua oscillators. _ D) f d& (60)
by, &< & (1
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Appendix 61)
In this Appendix we summarize the mathematical transforma-
tions leading to the expressions 26 and 34 for the rotational where the limits of integration are
vibrational energies of diatomic molecules, according to the
model of the rotating TietzHua oscillator. -, — /(pz — 4.
Changing the variable in eq 19 to&- one has .= 2 2; 2% and
1
1/2 2
- — @+ NP5 —
N, =— B0 e LA+ BE - C.E)] x g = TNBTANs o
ﬂbh &< : < 2(p1
2 2012
(1 - 6&&e)® = D(L — &£ E(L — 6&.Ee)] dE The relationship 51 can now be written as
(51)
N, = —(— /=@, + v/ —@qu®) —
whereé«< andé&-~ are roots of equatiop, = 0. To obtain the v ( 1 ¢a) 1
roots, we first rearrange the terms in eq 19 so that the equation \/_ _ _ _ A(v + Tpub, 63
can be written as the following fourth-order polynomial P17 P~ U = 20" (63)
fE)=a& +bE+ct+dé& +¢=0 (52)  and, after some algebra
with et )by,
=t —
_ 2o 53 (20"
%= G 3) A CRD ik PR

by = B.L*GE + 26,E,.C.L? (54) —4u\/= @, + 2uR(v + 1), (2u) "



The Tietz-Hua Rotating Oscillator
Let us denote the last term in eq 64 bBy;

K —
F,= 1~ 2ug,

= (65)
—Auy =@, T K

(ki = UR2(v + Y)%?% and k, = 2uh(v + Yo)br(2u)¥?) and
expand it with respect th?. The resulting expression is

Fo=Fi+FL+ Rl + ... (66)
where
k, — 4&..Du
1 = 1/2 (67)
—4u& DY + k,
— @i
o T b+ F— (68)
2 g DYtk C e.DY?
and
, —HPy 2
F3= 172 12 |.2':2 +F 2 (69)
EaDY(—4uE, DY + k)| 2E2.D
with

@), = 8¢ /0L* = BU°C. + 3u’B. + 6UC, + 2uB, + C. (70)
and
@ = 0,l3L> = —(8U°C. + 3u’B. + 6uC. + B.) (71)

Solving eq 64 forgps and taking into account eqgs 691,
one obtains the expression 26 for the rotatienalbrational
levels of the diatomic molecules

E, ,=D+L*A — 3u°C. — uB. — 2uC) —

(v+ 1/2)(211)1,2 —F,—FLP—FLY (72)

Since in diatomic molecules

I /ﬁhbh(u +) <1 (73)

the eqs 6769 can be approximated, respectively, by

Fy= VDA + 0 + ) (74)
"__ 772J "
Fy= A1+ o, + a)(z)xi) —nyt Ee*«/EFl) (75)
and
Aoy Aoy
Fi=——=1+owX t o F+ F!l (76)
Tedp il 26 b
where
X, = v+ (77)

kb,

78
V2uD 79

)
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W, = wg(l _ zich) (79)
A=t (80)
2vDE..(b,R)*
2
w,= & (81)
2u

7y, = bR(20U% + 6u + 4) — (420° + 18u+ 6) (82)
and
15y = b R.(180% + 14u + 1) — (36U° + 30u + 3) (83)

Numerical calculations show that the dependence of the
functionsF, andF; on v is weak for all values of between 0
and vmax (vmax is the maximum vibrational quantum number of
the rotationless molecule). Therefore, one can assume in
relationships 75 and 76 that= »]"1/2. In the case of the
Tietz—Hua oscillator, the maximum vibrational quantum number
v can be obtained from the function 72 by replacigby
F? (because of relationship 73),

dE'”'J:O—o 2(F F)|F dFs =0 (84
d—Xl_ (Foxy |Fo d_Xl = (84)
with
F,= b, (85)
0 @
and
dF'l'
o wo«/ﬁ + Za)le«/B (86)
q

Numerical solution of eq 84 gives the maximum vibrational

guantum numbevrTnt_'lxwhich is very close to the corresponding

value obtained from analytical solution of the following equation
B0~ D=0 (87)
This analytical solution, the smallest positive root of eq 87, is

UTH — 1- Ch - (1 - Scﬁ)llz
max a)o(ZCh - 1)

1
~5 (88)

Taking the above into account, the relationship 72 leads to
the main expression 34 of this work for the rotational
vibrational energies of diatomic molecules

E!;=D+L*B,B") — (Fox, — Fy — Fy'L> — F3'L%? (89)
where

2

T bR

B, (90)

B = (b,R)* — bR.(7u* + 2u+ 3) + 150° + 6u + 3 (91)

X, = (vpt + 1)/2 (92)



1602 J. Phys. Chem. A, Vol. 101, No. 8, 1997
hb
Fp=—0t
vau
Fy' = A1+ ogk + 056) x

123
EqV/D

(93)

VDL + wg, + 03)| (94)

—nyt

and

Ay
Fo' =221 + o, + 02d) x

EqV/D
Al

2¢,./D
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