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Analytical expressions for the rotational-vibrational energy levels of diatomic molecules represented by the
Tietz-Hua rotating oscillator are derived using the Hamilton-Jacoby theory and the Bohr-Sommerfeld
quantization rule. In molecules with moderate and large values of rotational and vibrational quantum numbers,
the levels are in much better agreement with the results of numerical calculations than the energies obtained
from the common model of the rotating Morse oscillator.

1. Introduction

Atom-molecule and molecule-molecule collisions with
transfer of molecular rotational and vibrational energy are
important in plasma and material processing, supersonic and
hypersonic flows, light sources, etc. Probabilities of the
transitions depend on the molecular rotational-vibrational
levels, and the transitions involving moderately and highly
excited levels are often as important in gas kinetics as those
involving weakly excited levels.1 Therefore, a general and
analytical expression for the molecular energies, accurate in a
broad range of rotational and vibrational quantum numbers, is
of a common interest in physics of high-temperature gas. Such
expression would allow a substantial simplification of deriva-
tions of the transition probabilities for large number of atom-
molecule and molecule-molecule collision systems and for
quick and “transparent” evaluation of the main features of the
collisions before they are incorporated into complex and time-
consuming collisional-radiative models of high-temperature gas.
Generality of the expression can be of great advantage in
comparative studies of the molecular transitions in gases where
many different collision systems simultaneously influence the
gas properties.
The main goal of this work is to derive analytical expressions

for molecular (diatomic) rotational-vibrational energy levels
that have accuracy acceptable in applications and better than
the accuracy of the commonly used expressions for the levels.
We pay special attention to the reliability of the obtained
expressions for moderate and high rotational-vibrational levels
because these levels often play crucial role in the gas rotational-
vibrational and dissociative kinetics.
General and analytical model potentials for diatomic mol-

ecules are available in literature (see ref 2 and references
therein), and the potential most common in applications is the
internuclear potential of the rotating Morse oscillator

whereR is the internuclear distance,Re is the molecular bond
length,â is the Morse constant,D is the potential well depth,

µ is the reduced mass of the oscillator, andL is its orbital angular
momentum. The rotational-vibrational levels resulting from
a simplified solution of the Schro¨dinger equation for the rotating
Morse oscillator can be given as

whereωe,ωexe, Be, andDe are the usual spectroscopic constants,
andJ andV are the molecular rotational and vibrational quantum
numbers, respectively. Expression 2 is a truncated series
expansion solution of the Schro¨dinger equation for the rotating
Morse oscillator.3 Even though more accurate (higher-order)
expansions of the solution have been discussed in literature, eq
2 is the most common in applications (that is why we compare
below this expression (instead of a higher-order expansion) with
the results of the present work). The popularity of eq 2 results
from the fact that the expression is simple and it predicts quite
accurate values of the weakly-excited rotational-vibrational
levels of diatomic molecules and that reliable values of the
molecular spectroscopic constantsωe andωexe are available in
literature (most of the other constants in the higher-order
expansion representing the rotational-vibrational energies of
the Morse oscillator are not available in literature, and calcula-
tion of their accurate values is not trivial).
In molecules with moderate and high values of the rotational

and vibrational quantum numbers, eq 2 is inaccurate. Therefore,
we derive below a general and analytical expression for
rotational-vibrational levels of diatomic molecules, which has
accuracy acceptable in applications and better than the accuracy
of eq 2. In order to do so, we use internuclear potential in which
the rotational energy is the centrifugal energy of the molecular
rotation (as it is done in relationship 1) and the vibrational
energy is given by the function suggested by Tietz4,5 and
discussed in great detail by Hua;6 this function (called hereafter
the Tietz-Hua potential) reduces to, respectively, the Rosen-
Morse,7 Morse,8 and Manning-Rosen9 potentials for negative,
zero, and positive values of the potential parameterch (this
parameter is denoted byc in ref 6).

2. The Tietz-Hua Potential Function

If a diatomic molecule is represented by a rotating Tietz-
Hua oscillator, then the internuclear potential of the molecule
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can be given as

where the first term on the right-hand side is the rotational
(centrifugal) energy of the oscillator, and the second term is
the vibrational energy (the Tietz-Hua potential) of the Tietz-
Hua oscillator

with

whereR is the internuclear distance,Re is the molecular bond
length,â is the Morse constant,D is the potential well depth,
andch is the potential constant discussed below.
The reason for choosing the Tietz-Hua potential in this work

is its remarkably good agreement (within a broad range of the
internuclear distance) with the RKR (Rydberg-Klein-Rees)
(ref 6 and references therein) andab initio calculations (ref 10
and references therein); see also discussions in refs 11 and 5.
According to these works, the Tietz-Hua potential is much
more realistic than the Morse potential in description of
molecular dynamics at moderate and high rotational and
vibrational quantum numbers. Also, it was shown in refs 5 and
12 that all practically significant analytical potentials allowing
solution of the one-dimensional Schro¨dinger equation in terms
of hypergeometric functions (the Tietz-Hua potential belongs
to this category) have been already reported in the literature
and that it is practically impossible to discover a new potential
of this kind. Thus, the Tietz-Hua potential seems to be one
of the very best analytical model potentials for the vibrational
energy of diatomic molecules. Therefore, we use it in the
relationship 3, which is our choice of analytical approximation
to the “exact” potentials (obtained from the RKR andab initio
calculations) in diatomic molecules. Consequently, one of the

main tasks of this work is to obtain accurate values of the
parametersch from the exact potentials.
The parameterch of the Tietz-Hua potential is obtained here,

like in ref 6, from minimalization of the average value of the
ratio∆Ui ) |Ui - U|/D, where the internuclear potentialUi is
obtained from the Tietz-Hua function, andU is the exact
potential obtained from either RKR orab initio calculations
(the average is taken over all available data points of the exact
potential). Thus, the degree of the overall agreement between
the exact potentials and the potentials 1 and 3 is measured here
by the ratios∆Ui (see Tables 1 and 2; the corresponding values
of ch are given in Table 3). The ratios are much smaller than
1 (typically, they are smaller than 0.05). However, one should
emphasize that a small value of such a ratio does not automati-
cally mean that the shapes of the compared potential curves
are equally close to one another in the entire considered range
of the internuclear distanceR. Thus, for example, potential 1
and potential 3 for some molecules may have very similar values
of ∆Ui, but the potential curves does not have to overlap in
most of the range of the distanceR. This lack of the overlapping
can produce two (one for each of the compared potentials)
substantially different sets of the rotational-vibrational levels
even though the values of∆Ui for the both curves are very
similar.
Choice of the Morse constantâ is not a simple issue. Solution

of the Schro¨dinger equation for the Morse potential gives the
following vibrational constants

and

whereωe andωexe are in cm-1, D is in ergs, and the rest of the
quantities are in units of the cgs system. Thus, the constantâ
obtained from the expression 6 will differ from that resulting
from the expression 7 if the spectroscopic constantsωe, ωexe,
andD are taken as the “best available” in literature; the latter

TABLE 1: Spectroscopic Constants and Other Parameters of the Diatomic Molecules Studied in the Present Worka

molecule HF(X1Σ+) Cl2(X
1Σg

+) I2(X (0g
+)) H2(X

1Σg
+) O2(X

3Σg
-)

Vmax 28 62 96 22 52
Jmax 66 395 840 39 220
Vmax
M 23 104 174 18 65
D 49382 20276 12547 38318 42041
µ/10-23 0.160 2.924 10.612 0.084 1.337
bh 1.94207 2.20354 2.12343 1.61890 2.59103
ye 1.78049 4.37843 5.66106 1.20032 3.12872
wexe 89.88 2.67 0.61 121.33 11.98
Be 20.956 0.244 0.037 60.853 1.438
De 0.0021 1.852× 10-7 4.537× 10-9 0.0465 4.760× 10-6

ωe 4138.3 559.7 214.5 4401.2 1580.2
Re 0.917 1.987 2.666 0.741 1.207
â 2.2266 2.0087 1.8643 1.9506 2.6636
∆UTH 0.0196 0.0189 0.0138 0.0265 0.0318
∆UM 0.0448 0.0606 0.0803 0.0576 0.0345
Emax/D 0.9928 0.9995 0.9997 0.9922 0.9999

a Vmax andJmax are the maximum vibrational quantum number and the maximum rotational quantum number, respectively, for the rotating Tietz-
Hua oscillator;Vmax

M is the maximum vibrational quantum number for the Morse oscillator;ch is the parameter in the potential 3;D is the well depth
of the intramolecular potential (in cm-1); µ is the reduced mass of the molecule (in g);bh is the constant in the Tietz-Hua function (in Å-1); ye )
bhRe, ωexe is the anharmonicity constant (in cm-1); Be andDe are the rotational constants (in cm-1); ωe is the vibrational constant (in cm-1); Re is
the molecular bond length (in Å);â is the Morse constant (in Å-1); ∆Ui ) |Ui - U|/D is the average deviation of the potentialUi from the
corresponding “exact” potentialU, where theUi is the Tietz-Hua potential (the subscript TH) or the Morse potential (the subscript M), andU is
the potential obtained either from the RKR (ref 6 and references therein) or from theab initio calculations (ref 10 and references therein);Emax is
the highest molecular energy assumed in the calculations of the parameterch.

Vef
TH ) L2

2µR2
+ UTH (3)

UTH ) D[ 1- e-bh(R-Re)

1- che
-bh(R-Re)]2 (4)

bh ) â(1- ch) (5)

ωe ) â[ D

2π2c2µ]1/2 (6)

ωexe ) hâ2

8π2cµ
(7)
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constants are not consistent with the model of the Morse
oscillator because they are usually obtained from measurements
andab initio calculations. (The expressions 6 and 7 give the
same values ofâ only when the Birge-Sponer relationship,D
) ωe

2/4ωexe, is applied. However, the Birge-Sponer ap-
proximation can lead to errors in values ofD that can be as
large as 30%).
In this work, we calculateâ from the relationship 6 (Tables

1 and 2) because the constantsωe andD available in literature
are usually more accurate than the anharmonicity constantsωexe
(also, expression 6 is identical with the corresponding expression
obtained from comparison of the vibrational force constants for
harmonic and Morse oscillators atR ) Re).
The anharmonicity constantsωexe used in the present calcula-

tions are those obtained from the “best available” data (typically,
these constants differ from those predicted by expression 7 ifâ
is obtained from expression 6). The reason for this choice of
ωexe is the fact that all the “exact” (RKR andab initio)
calculations of the internuclear potentials discussed in this work
used the “best available” values of the anharmonicity constants.

3. The Rotational-Vibrational Energy Levels
Using the Hamilton-Jacoby theory and the Bohr-Sommer-

feld quantization rule, Porteret al.13 studied, using the model
of the rotating Morse oscillator, the rotational-vibrational
dynamics of diatomic molecules. In this paper, we apply their
semiclassical approach to diatomic molecules with intramo-
lecular potential given by relationship 3. Subsequently, the
Hamiltonian of the rotating Tietz-Hua oscillator with angular
momentumL can be written as

wherepr ) µ(dR/dt) is the oscillator linear momentum.

The equilibrium internuclear distanceR* of a molecule in
the Jth rotational level can be obtained from the derivative

which, after introducing a new variable

becomes

where

WhenJ f 0, CJ f 0, eq 11 can be written

which suggests the possibility of an asymptotic solution of the
transcendental equation 11 which depends on a small parameter
(ch). Such a solution can be obtained as an asymptotic
expansion in terms of this small parameter.14 We propose the
following expansion

where the values of the coefficientsBh andDh can be obtained
by substituting eq 14 into eq 11 and using the fact thatCJ(Jf0)
f 0. (Note that expression 14 is also valid for the Morse
oscillator whench ) 0.) As a result, one has

SinceCJ(Jf0) f 0, we can use the expansion of ex = 1 +
x + x2/2 + ... and limit the expression for the cubic function

TABLE 2: Spectroscopic Constants and Other Parameters of the Diatomic Molecules Studied in the Present Worka

molecule N2(X
1Σg

+) NO(X2Πr) O2
+(X2Πg) N2

+(X2Σg
+) NO+(X1Σ+)

Vmax 66 56 56 62 72
Jmax 260 230 235 250 270
Vmax
M 82 67 58 68 73
D 79885 53341 54688 71365 88694
µ/10-23 1.171 1.249 1.337 1.171 1.239
bh 2.78585 2.71559 2.86987 2.70830 2.73349
ye 3.05797 3.12502 3.20392 3.02360 2.90630
wexe 14.32 14.07 16.25 16.10 16.26
Be 1.998 1.672 1.691 1.932 1.997
De 5.737× 10-6 5.156× 10-6 5.334× 10-6 5.920× 10-6 5.643× 10-6

ωe 2358.6 1904.2 1904.8 2207.0 2376.4
Re 1.097 1.151 1.116 1.116 1.063
â 2.6986 2.7534 2.8151 2.6717 2.6552
∆UTH 0.0349 0.0619 0.0176 0.0287 0.0169
∆UM 0.0440 0.0722 0.0204 0.0301 0.0226
Emax/D 0.9999 0.9999 0.9999 0.9999 0.9999

aMeaning of the symbols is the same as in Table 1.

TABLE 3: Coefficients ch, ω0, ω1 in Expressions 43 and 44

molecule ch ω0 ω1

HF(X1Σ+) 0.127 772 0.004 669 77 -0.000 063 53
Cl2(X

1Σg
+) -0.096 988 -0.001 468 49 0.000 013 27

I2(X (Og
+)) -0.139 013 -0.001 353 47 8.420 80× 10-6

H2(X
1Σg

+) 0.170 066 0.008 106 09 -0.000 012 75
O2(X

3Σg
-) 0.027 262 0.000 498 39 -4.307 26× 10-6

N2(X
1Σg

+) -0.032 325 -0.000 492 60 3.996 40× 10-6

NO(X2Πr) 0.013 727 0.000 241 66 -2.068 81× 10-6

O2
+(X2Πg) -0.019 445 -0.000 345 22 3.183 68× 10-6

N2
+(X2Σg

+) -0.013 716 -0.000 215 00 1.731 34× 10-6

NO+(X1Σ+) -0.029 477 -0.000 406 55 2.968 89× 10-6

H )
pr
2

2µ
+ L2

2µR2
+ D[ 1- e-bh(R-Re)

1- che
-bh(R-Re)]2 (8)

dVef(R)

dR
) 0 (9)

CJ )
bh
2L2

2µD
(10)

dVef(R)

dR
) [ 1- e-y*eye

(1- che
-y*eye)3](1- ch) - ey*e-ye

CJ

y*
3

) 0 (11)

y* ) bhR* and ye ) bhRe (12)

[ 1- e-y*eye

(1- che
-y*eye)3](1- ch) ) 0f 1) e-y*+ye and y* ) ye

(13)

y* ) ye + BhCJ + DhCJ
2 (14)

e-BhCJ-DhCJ2 - e-2BhCJ-2DhCJ2

(1- che
-BhCJ-DhCJ2)3

(1- ch) )
CJ

(ye + BhCJ + DhCJ
2)3

(15)
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(ye + BhCJ + DhCJ
2)3 to linear and quadratic terms ofCJ. After

some algebra, one obtains

where comparison of the coefficients in the terms with the same
powers ofCJ gives

The ratio y*/y*n (y*n ) bhR*n, whereR*n is the numerical
solution of eq 11) for diatomic molecules is increasing with
increase of the rotational quantum numberJ. The values of
the ratio are usually not greater than about 1.03, except for the
H2(X

1Σg
+) and HF(X1Σ+) molecules where the ratio atJ≈ Jmax

is about 1.05 (Jmax is the maximum value of the molecular
rotational quantum number).
Using the above we calculated the values of the ratios∆Ui

andEmax/D (Emax is the maximum value of the molecular energy
taken into account in theab initio and RKR calculations used
in this work) for several diatomic molecules (see Tables 1 and
2).
In order to apply the approach of ref 13, we introduce a new

variable,ê*(R) ) exp(-bh(R- R*)), and use the following series
expansion of 1/(bhR)2 aboutê* ) 1

where R*, the internuclear distance corresponding to the
minimum of the intramolecular potential of the molecule with
J > 0, is given by the relationships 12 and 14.
Substituting the expansion 18 into eq 8 and solving forpr

(the radial momentum of the vibrating molecule) at fixed value
of the rotational-vibrational energyH ) EV,J gives

where

whereΛ is the quantum number for the axial component of the
molecular electronic angular momentum, and the coefficients
A*, B*, andC* are

and

The energy of the rotating Tietz-Hua oscillator is calculated
below using the Bohr-Sommerfeld quantization rule

whereV is the vibrational quantum number. As shown in the
Appendix, the quantization rule leads to the following expression
for the rotational-vibrational levels of the diatomic molecules

whereµ is the reduced mass of the molecule,u ) chêe* and

The values of the energy levels obtained from expression 26
are in very good agreement (with accuracy better than 1%) for
all molecules considered here (except the H2(X

1Σg
+) mole-

culessee discussion below) and in the entire range of vibra-
tional, 0e V e Vmax (Vmax is the maximum vibrational quantum
number of the rotationless molecule), and rotational, 0e J e
Jmax, quantum numbers, with the corresponding energy values
obtained from numerical solution of the Schro¨dinger equation15

for the potential 3.
Numerical calculations show that the dependence of the

functionsF′2 andF′3 on V is weak for all values ofV between 0
andVmax. Therefore, assuming inF′2 andF′3 that V ) Vmax/2,
one obtains another expression for the rotational-vibrational
energies of diatomic molecules

where

[BhCJ + DhCJ
2 - (3/2)Bh

2CJ
2](ye

3 + 3ye
2BhCJ + 3yeBh

2CJ
2 +

3ye
2DhCJ

2)(1- ch) ) CJ[1 + 3ch(BhCJ + DhCJ
2 -

(1/2)Bh
2CJ

2 - 1)+ 3ch
2(2Bh

2CJ
2 - 2BhCJ - 2DhCJ

2 + 1)+

3ch
3(DhCJ

2 - (3/2)Bh
2CJ

2 + BhCJ - (1/3))] (16)

Bh )
(1- ch)

2

ye
3

and Dh ) 3
2
Bh
2 - 3

Bh
2

ye
+
3Bhch(1- ch)

ye
3

(17)

1

(bhR)
2

) 1

(bhR*)
2

+ 2

(bhR*)
3
(ê* - 1)-

1

(bhR*)
3(1- 3

bhR*)(ê* - 1)2 + ... (18)

pr ) ((2µ)1/2×

[EV,J - L2(A* + B*ê* - C*ê*
2) - D( 1- ê*êe*

1- chê*êe*)
2]1/2 (19)

êe* ) e-bh(R*-Re) (20)

L2 ) p2[J(J+ 1)- Λ2] (21)

A* ) [1+ 3
bhR*(bhR* - 3)]bhR*C* (22)

B* ) 2[1+
bhR*

(bhR* - 3)]C* (23)

C* ) 1

2µbhR*
3(1- 3

bhR*) (24)

NV ) 1
2π I pr dr ) (V + 1

2)p (25)

E′V,J ) D + L2(A* - 3u2C* - u2B* - 2uC*) -

[(V + 1/2)
pbh

(2µ)1/2
- F′1 - F′2L

2 - F′3L
4]2 (26)

F′1 )
k1 - 4êe*Dµ

-4µêe*D
1/2 + k2

(27)

F′2 ) -2µ
-4µêe*D

1/2 + k2[æ′2 + F′1
æ′1

êe*D
1/2] (28)

F′3 )
-µæ′1

êe*D
1/2(-4µêe*D

1/2 + k2)[2F′2 + F′1
æ′1

2êe*
2 D] (29)

æ′1 ) 6u2C* + 3u2B* + 6uC* + 2uB* + C* (30)

æ′2 ) -(8u2C* + 3u2B* + 6uC* + B*) (31)

k1 ) up2(V + 1/2)
2bh

2 (32)

k2 ) 2up(V + 1/2)bh(2µ)1/2 (33)

E′′V,J ) D + L2BJB′′J - (F0x1 - F′′1 - F′′′2 L2 - F′′′3 L4)2 (34)

BJ )
ω2

(bhR*)
4

(35)

B′′J ) (bhR*)
2 - bhR*(7u

2 + 2u+ 3)+ 15u2 + 6u+ 3 (36)
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and

and the maximum value of the vibrational quantum number in
the Tietz-Hua oscillator is (see Appendix)

One should mention that the maximum vibrational quantum
numberVmax

M of the Morse oscillator, obtained from the func-
tion 2, can be taken as the integer closest to, and smaller than

In order to evaluate the accuracy of the expression 34, we
calculated the energiesE′′V,J of 10 diatomic molecules and
molecular ions representing a broad range of spectroscopic
constants (Tables 1 and 2). The results for two of the molecules
(N2(X

1Σg
+) and H2(X

1Σg
+)) are shown in Figures 1 and 2,

together with the rotational-vibrational eigenvalues obtained
from numerical solution of the Schro¨dinger equation for the
potential 3 and with the energies predicted by eq 2. (The
accuracy of the expression 34 for the N2(X

1Σg
+) molecule is

very close to the accuracies of the expression for all, except
H2(X

1Σg
+) and HF(X1Σ+), molecules listed in Tables 1 and 2).

As can be seen in Figures 1 and 2, expression 34 is always
more accurate in describing the rotational-vibrational levels
of diatomic molecules than relationship 2. (The accuracy of
the Morse model increases with decrease of the degree of the
rotational-vibrational excitation of the molecules, while the
agreement of the relationship 34 with the numerical solution of
the Schro¨dinger equation for the potential 3 is quite good in
the entire range of the vibrational and rotational quantum
numbers.) Expression 34 is less accurate for lowV in the case
of the H2(X

1Σg
+) and HF(X1Σ+) molecules (the accuracies of

the expression for these two molecules are similar). Therefore,
it is more accurate to use in such cases the expression 26 with
the sumF′1 - F′2L

2 - F′3L
4 being replaced by the exact

expression 65 (see Appendix and Figure 3).
One should notice the significant differences between the

values ofVmax obtained in the present work and those resulting
from the model of the Morse oscillator (Tables 1 and 2). The
difference can be as big as the one in the I2(X(0g

+)) molecule
whereVmax) 96 (the present model) and 174 (the Morse model).
This is a clear failure of the Morse model because the realistic
value ofVmax in the I2(X(0g

+)) molecule is about 107 (see ref
16).

F0 )
pbh

x2µ
(37)

F′′1 ) xD(1+ ω0x1 + ω1x1
2) (38)

F′′′2 )

AJ(1+ ω0x2 + ω0
2x2
2)(-η1J +

η2J

êe*xD
xD(1+ ω0x2 + ω1x2

2))
(39)

F′′′3 )
AJη2J

êe*xD
(1+ ω0x2 + ω0

2x2
2) ×

(F′′′2 +
AJη2J

2êe*xD
xD(1+ ω0x2 + ω1x2

2)) (40)

x1 ) V + 1/2 (41)

x2 ) (Vmax
TH + 1)/2 (42)

ω0 )
pbhch

x2µD
(43)

ω1 ) ω0
2(1- 1

2ch) (44)

AJ )
ω2

2xDêe*(bhR*)
4

(45)

ω2 )
bh
2

2µ
(46)

η1J ) bhR*(20u
2 + 6u+ 4)- (42u2 + 18u+ 6) (47)

η2J ) bhR*(18u
2 + 14u+ 1)- (36u2 + 30u+ 3) (48)

Vmax
TH )

1- ch - (1- 3ch
2)1/2

ω0(2ch - 1)
- 1
2

(49)

Vmax
M )

ωe

2ωexe
- 1
2

(50)

Figure 1. Rotational-vibrational energiesE′′V,J (dashed line, eq 34)
andEV,J

M (dotted line, eq 2) and the energy obtained from numerical
solution of the Schro¨dinger equation for the potential 3 (solid line) for
the N2(X

1Σg
+) molecule. The zero rotational-vibrational energy

corresponds to the dissociation continuum of the rotationless molecule.
V andJ are vibrational and rotational quantum numbers, respectively.

Figure 2. Rotational-vibrational energiesE′′V,J (dashed line) and
EV,J
M (dotted line) and the energy obtained from numerical solution of

the Schro¨dinger equation for the potential 3 (solid line) for the H2

(X1Σg
+) molecule. Meaning of the symbols is the same as in Figure 1.
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4. Summary

Summarizing the above, one can say that relationship 34 is
a good analytical approximation to the rotational-vibrational
levels of diatomic molecules (including molecular ions) in the
ground electronic states. The relationship should also be able
to predict reasonable values of the rotational-vibrational levels
of the electronically excited diatomic molecules that can be
treated as the rotating Tietz-Hua oscillators.
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Appendix

In this Appendix we summarize the mathematical transforma-
tions leading to the expressions 26 and 34 for the rotational-
vibrational energies of diatomic molecules, according to the
model of the rotating Tietz-Hua oscillator.
Changing the variabler in eq 19 toê* one has

whereê*< andê*> are roots of equationpr ) 0. To obtain the
roots, we first rearrange the terms in eq 19 so that the equation
can be written as the following fourth-order polynomial

with

and

where the simplification of the coefficientscf anddf resulted
from the fact thatch is a small parameter.
Let us now expandf1(ê*) in power series aboutê* ) 1

retaining only terms which are linear or quadratic inê*

where

This allows one to evaluate the integral 51 as follows

(u) chêe*, andê*< andê*> are now the roots of equationf2(ê*)
) 0), which leads to

where the limits of integration are

The relationship 51 can now be written as

and, after some algebra

Figure 3. Rotational-vibrational energiesE′V,J (dashed line, eq 26
with the sum F′1 - F′2L

2 - F′3L
4 being replaced by the exact

expression 65), andEV,J
M (dotted line) and the energy obtained from

numerical solution of the Schro¨dinger equation for the potential 3 (solid
line) for the H2(X

1Σg
+) molecule. Meaning of the symbols is the same

as in Figure 1.

NV ) -
(2µ)1/2

πbh
∫ê*<

ê*> {[EV,J - L2(A* + B*ê* - C*ê*
2)] ×

(1- chê*êe*)
2 - D(1- ê*êe*)

2}1/2/[ê*(1- chê*êe*)] dê*
(51)

f1(ê*) ) afê*
4 + bfê*

3 + cfê*
2 + dfê* + ef ) 0 (52)

af ) ch
2êe*

2 C*L
2 (53)

bf ) B*L
2ch
2êe*

2 + 2chêe*C*L
2 (54)

cf ) ch
2êe*

2 (EV,J - A*L
2) + 2B*L

2chêe* + C*L
2 - êe*

2 D =

2B*L
2chêe* + C*L

2 - êe*
2 D (55)

df ) 2êe*D - B*L
2 - 2chêe*(EV,J - A*L

2) =

2êe*D - B*L
2 (56)

ef ) EV,J - A*L
2 - D (57)

f1(ê*) = f2(ê*) ) æ1ê*
2 + æ2ê* + æ3 (58)

æ1 ) 6af + 3bf + cf, æ2 ) -8af - 3bf + df, æ3 )
3af + bf + ef (59)

-
(2µ)1/2

πbh
∫ê*<

ê*> xf1
ê*(1- uê*)

dê* =

-
(2µ)1/2

πbh
∫ê*<

ê*> xf2
ê*(1- uê*)

dê* (60)

-
(2µ)1/2

πbh
∫ê*<

ê*> xf2
ê*(1- uê*)

dê* )

-
(2µ)1/2

πbh
[(- x-æ1 + x-æ3u

2) + x- æ1 - æ2u- æ3u
2]

(61)

ê*> )
-æ2 - xæ2

2 - 4æ1æ3

2æ1
and

ê*< )
-æ2 + xæ2

2 - 4æ1æ3

2æ1
(62)

NV ) -(- x-æ1 + x-æ3u
2) -

x-æ1 - æ2u- æ3u
2 )

p(V + 1/2)ubh

(2µ)1/2
(63)

- x-æ3 )
p(V + 1/2)bh

(2µ)1/2
-

up2(V + 1/2)
2bh

2 - 2µæ2

-4µx-æ1 + 2up(V + 1/2)bh(2µ)1/2
(64)
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Let us denote the last term in eq 64 byFV,J

(k1 ) up2(V + 1/2)2bh
2 and k2 ) 2up(V + 1/2)bh(2µ)1/2) and

expand it with respect toL2. The resulting expression is

where

and

with

and

Solving eq 64 foræ3 and taking into account eqs 65-71,
one obtains the expression 26 for the rotational-vibrational
levels of the diatomic molecules

Since in diatomic molecules

the eqs 67-69 can be approximated, respectively, by

and

where

and

Numerical calculations show that the dependence of the
functionsF′2 andF′3 on V is weak for all values ofV between 0
andVmax (Vmax is the maximum vibrational quantum number of
the rotationless molecule). Therefore, one can assume in
relationships 75 and 76 thatV ) Vmax

TH /2. In the case of the
Tietz-Hua oscillator, the maximum vibrational quantum number
Vmax
TH can be obtained from the function 72 by replacingF′1 by
F′′1 (because of relationship 73),

with

and

Numerical solution of eq 84 gives the maximum vibrational
quantum numberVmax

TH which is very close to the corresponding
value obtained from analytical solution of the following equation

This analytical solution, the smallest positive root of eq 87, is

Taking the above into account, the relationship 72 leads to
the main expression 34 of this work for the rotational-
vibrational energies of diatomic molecules

where

FV,J )
k1 - 2µæ2

-4µx-æ1 + k2
(65)

FV,J = F′1 + F′2L
2 + F′3L

4 + ... (66)

F′1 )
k1 - 4êe*Dµ

-4µêe*D
1/2 + k2

(67)

F′2 ) -2µ
-4µêe*D

1/2 + k2[æ′2 + F′1
æ′1

êe*D
1/2] (68)

F′3 )
-µæ′1

êe*D
1/2(-4µêe*D

1/2 + k2)[2F′2 + F′1
æ′1

2êe*
2 D] (69)

æ′1 ) ∂æ1/∂L
2 ) 6u2C* + 3u2B* + 6uC* + 2uB* + C* (70)

æ′2 ) ∂æ2/∂L
2 ) -(8u2C* + 3u2B* + 6uC* + B*) (71)

E′V,J ) D + L2(A* - 3u2C* - u2B* - 2uC*) -

[(V + 1/2)
pbh

(2µ)1/2
- F′1 - F′2L

2 - F′3L
4]2 (72)

|chx 1
2µD

pbh(V + 1/2)|, 1 (73)

F′′1 ) xD(1+ ω0x1 + ω1x1
2) (74)

F′′2 ) AJ(1+ ω0x1 + ω0
2x1
2)(-η1J +

η2J

êe*xD
F′′1) (75)

F′′3 )
AJη2J

êe*xD
(1+ ω0x1 + ω0

2x1
2)(F′′2 +

AJη2J

2êe*xD
F′′1) (76)

x1 ) (V + 1/2) (77)

ω0 )
pbhch

x2µD
(78)

ω1 ) ω0
2(1- 1

2ch) (79)

AJ )
ω2

2xDêe*(bhR*)
4

(80)

ω2 )
bh
2

2µ
(81)

η1J ) bhR*(20u
2 + 6u+ 4)- (42u2 + 18u+ 6) (82)

η2J ) bhR*(18u
2 + 14u+ 1)- (36u2 + 30u+ 3) (83)

dE′V,J)0
dx1

) 0f -2(F0x1 - F′′1)(F0 -
dF′′1
dx1) ) 0 (84)

F0 )
pbh

x2µ
(85)

dF′′1
dx1

) ω0xD + 2ω1x1xD (86)

E′V,J)0 - D ) 0 (87)

Vmax
TH )

1- ch - (1- 3ch
2)1/2

ω0(2ch - 1)
- 1
2

(88)

E′′V,J ) D + L2BJB′′J - (F0x1 - F′′1 - F′′′2 L2 - F′′′3 L4)2 (89)

BJ )
ω2

(bhR*)
4

(90)

B′′J ) (bhR*)
2 - bhR*(7u

2 + 2u+ 3)+ 15u2 + 6u+ 3 (91)

x2 ) (Vmax
TH + 1)/2 (92)
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