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An implementation of theg-tensor of electron paramagnetic resonance (EPR) spectroscopy is presented. This
implementation is based on density functional theory (DFT) and the use of gauge-including atomic orbitals
(GIAO). Contributions from the spin-other-orbit operators are neglected, while all the other relevant
perturbation operators are included. The new method is an extension of an existing DFT-GIAO program
package for the calculation of the chemical shift of nuclear magnetic resonance spectroscopy; full use is
made of the conceptual analogy between theg-tensor and the chemical shift. The new program is applied to
various small radicals. The agreement of calculated and experimentalg-tensors is good for radicals of first-
row elements; experimental trends are generally well reproduced. The quality of calculated results is worse
if the scheme is applied to compounds of heavier elements. Possible reasons for these apparent shortcomings
of the method are discussed.

1. Introduction

Magnetic resonance spectroscopy comprises some of the most
powerful and versatile analytic tools available to date. Nuclear
magnetic resonance (NMR) spectroscopy1,2 is mostly useful for
closed shell systems with vanishing electron spin magnetic
moment, while electron paramagnetic resonance (EPR)
spectroscopy3-6 is generally being applied to radicals and
transition metal complexes.
The g-tensor is an important part of any EPR spectrum. It

can provide information about the radical species present.
Further, conclusions regarding conformation, electronic struc-
ture, and other properties are often sought.3-10 It would thus
be desirable to determine theg-tensor of a given molecule from
electronic structure calculations. This would allow us to
enhance our understanding of electronic factors governing the
observed spectra. Further, such calculations could be used to
identify unstable radicals from their spectra and accompanying
calculations of possible candidates.11 Various other applications
are easily conceivable.
Semiempirical calculations of theg-tensor have been around

for a long time (they are summarized in textbooks like,e.g.,
chapter 15 in the book by A. Abragam and B. Bleaney9). G.
Lushington has reviewed them in chapter 1 of his Ph.D. thesis.12

Articles onab initio calculations exist in the literature as well.
However, these Hartree-Fock-based calculations are compara-
tively rare and most of them are at least 15 years old.
Consequently, they are restricted by very small basis sets. None
of them accounts for all of the relevant perturbation operators.
These calculations13-18 have been reviewed by Lushington as
well.12

The mentioned Ph.D. thesis by Lushington,12 along with
related papers,19-22 affords the first modernab initio imple-
mentation of theg-tensor. Lushington’s work comprises the
complete treatment of all relevant terms at the Hartree-Fock
level of theory12,19-22 and a correlated multireference config-
uration interaction (MRCI) extension.12,22 We will compare our
results to this pioneering and promising work later.
To the best of our knowledge, there is no first principle

method available for the calculation of theg-tensor that employs

density functional theory (DFT). Neither is there any formula-
tion available that is based on the use of “gauge-including atomic
orbitals” (GIAO)23,24or other distributed-origin schemes. Given
the importance of this spectroscopic property and the success
of DFT for other magnetic properties,25-34 it seems timely to
fill the gap. The calculation of theg-tensor based on density
functional theory (DFT) is the subject of the present paper.31

Recently, there has been a strong interest in the calculation of
the NMR shielding tensor based on DFT.25-34 Given the close
theoretical connection between the EPRg-tensor and the NMR
shielding tensor, see below, it is possible to extend our existing
DFT-NMR program28-32 to the EPR case.
Our DFT-NMR program28 is based on the use of GIAOs.

Other calculations of theg-tensor are based on the use of a
common gauge origin for the whole system.12 They may thus
be prone to the so-called gauge problem,i.e., the dependence
of the results on the arbitrary coordinate origin. The gauge
problem is well-known for the NMR shielding.2,35-37 Lush-
ington discussed the gauge dependence of his results in detail.12

Earlier, we have extended the DFT-GIAO-NMR scheme
to include the frozen core approximation,29 as well as scalar
relativity.30 Further, a detailed analysis in terms of the molecular
orbitals is available.38,39 All of these features are readily
transferable to the EPRg-tensor as well. This constitutes a
major advantage of the formulation that we are presenting here.

2. Theory

2.1. Perturbation Operators. Theg-tensor of EPR spec-
troscopy can be considered as a second-order property.40,41The
perturbation parameters are in this case one Cartesian component
of the constant external magnetic field,Bsand the net electronic
spin component along a given coordinate axis,St. Thest tensor
component ofgbb is then given by4

Here,E is the total energy of the many-electron system. Further,
µB is the Bohr magneton andµB equalsR/2 in atomic units,
whereR is the dimensionless fine structure constant, given asX Abstract published inAdVance ACS Abstracts,February 15, 1997.
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1/137.03599.42 All the derivations in this paper will be based
on atomic units.4

It follows from eq 1 and from the interchange theorem of
double-perturbation theory40,41,43-45 that we have to calculate
the electronic wave function up to first order in in one of the
perturbations alone. If we chose the external magnetic field,
then this task is the same as that for the NMR shielding.28-31

Alternatively, it would be possible to calculate the electronic
wave function up to first order in the electronic spins but in
this case, the analogy with the formulation of the NMR shielding
would be lost. It is further clear from eq 1 that only such
perturbation operators are needed that are either linear in the
electronic spin operator, yielding paramagnetic contributions,
or bilinear in both, the external magnetic field and the spin
operator. The latter operators are responsible for diamagnetic
contributions. All of these perturbation operators will be given
next.
The relevant perturbation Hamiltonian can be obtained from

relativistic many-body quantum mechanics. Usually, the non-
relativistic limit is taken, resulting in various perturbation
operators. These operators are listed in textbooks4,41,46and in
review articles (e.g., ref 47). Possibly the best, most compre-
hensive, and most accurate account is given in Harriman’s
book.4

The operators that are relevant for the EPRg-tensor include:
4,41,46 the electron spin Zeeman operator

the kinetic energy correction to the electron spin Zeeman
operator

the (electron-nuclear) spin-orbit operator

the electron-electron spin-orbit operator

the spin-other-orbit operator

and finally the diamagnetic correction terms tohSO-N, hSO-e,
andhSOO, respectively,

and

The last three terms are titled “gauge correction terms” in
Harriman’s book4 and other sources;12 we chose the name
“diamagnetic terms” because of their analogy with the operators
of the diamagnetic NMR shielding.28 In eqs 2-9, we use the
following notation: pbj, SBj, andrbj are the momentum, spin, and
position operators for electronj,

Further,ZA is the charge of nucleus A. The total number of
nuclei isNNUC while the total number of electrons isn. The
double summations overj andk in eqs 5, 6, 8, and 9 exclude
the case wherej ) k. Finally, ge is the electronic Zeeman
g-factor, andg′ is the electronic spin-orbit g-factor.4 They are
given by3,4

and

or4

where

Harriman points out that, althoughge and g′ are certainly
appropriate inhZ and hSO-e, respectively, “the treatment of
radiatiVe corrections[in the derivation of these terms]has been
incomplete so great significance should not be attached to the
distinction between ge, g′, and 2 in higher orders” (cited from
ref 4, p. 378). Note that the spin-other-orbit operators, eqs 6
and 9, contain neitherge norg′. In the literature, there are also
other values forge that differ from the one cited in eq
11a.3,4,12,46,48 The differences show up only in the last few digits
and have no influence on the numbers that will be cited in this
paper.
The diamagnetic operators in eqs 7-9 contain both the

electronic spin operator and the magnetic field. According to
eq 1, they have to be used with the zero-order, unperturbed
wave function. Note that the diamagnetic operators follow from
their field free counterpartshSO-N, hSO-e, andhSOO, respectively,
by means of the so-called minimal coupling.41,46,49 Minimal
coupling is a general procedure to introduce the magnetic field
into field free expressions. In this scheme, we substitute the
electronic momentum operatorpb according to

whereAB represents the vector potential of the constant external
magnetic field.50

The nuclear spin-orbit operator,hSO-N of eq 4, and its
diamagnetic counterpart,hSO-N

dia of eq 7, can be reformulated in

hZ ) R
2
geSB‚BB (2)

hZ-KE ) -
R3ge
4
p2SB‚BB (3)

hSO-N )
R2g′

4
∑
A

NNUC

∑
j

n

SBj‚[ ZA

rj - RA|3
( rbj - RBA) × pbj] (4)

hSO-e ) -
R2g′
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n ZA
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∑
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n

′
1
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{[( rbk - rbj)‚ rbj](SBj‚BB) -

(SBj‚ rbj)[( rbk - rbj)‚BB]} (8)
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R3
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∑
j,k

n

′
1

| rbj - rbk|3
{[( rbj - rbk)‚ rbk](SBj‚BB) -

(SBj‚ rbk)[( rbj - rbk)‚BB]} (9)

SB ) ∑
j

n

SBj (10)

ge ) 2.002 319 277 8 (11a)

g′ ) 2.004 638 555 6 (11b)

g′ ) 2(1+ 2g1) (11c)

g1 ) 1
2
(ge - 2) (11d)

pb98
substitute

pb + RAB (12)
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terms of the nuclear potentialVN of the NNUC nuclei in the
system

We obtain forhSO-N andhSO-N
dia

and

The electronic spin-orbit operator,hSO-e of eq 5, and its
diamagnetic counterpart,hSO-e

dia of eq 8, can be reformulated in
a similar way, using the electrostatic potential of the other
electrons in the system instead of the nuclear potential,VN of
eq 13.
2.2. G-Shifts. We define theg-shift ∆g as the deviation of

the molecularg-value from the free electron valuege12

Here, 1BB is the unit tensor. Note that bothgbb and ∆gbb are
second-rank tensors. The isotropicg-shift ∆g is the trace of
∆gbb. There is also an alternative definition used in the
literature,e.g., in Atkins’ textbook:48

This latter definition has the advantage that∆̃gbb has the same
sign convention as the NMR shieldingσbb.36,37 However, the
former definition seems to be more common, and we employ
exclusively∆g (or ∆gbb) throughout the present paper.
The Zeeman operator, eq 2, results in the isotropic free

electrong-valuege. Thus, it doesn’t contribute to theg-shift
∆g, according to eq 16. The remaining perturbations (eqs 3-9)
contribute, however, to∆g. We shall discuss these contributions
in more detail now.
2.3. G-Tensor within Density Functional Theory. We will

evaluate the∆g-tensor, eqs 1 and 16, within the framework of
density functional theory (DFT).51-56

We have seen in eqs 14 and 15 that the spin-orbit terms
hSO-N andhSO-N

dia , respectively, can be written as the interac-
tion of the electronic spin with the potential in which the
electrons are moving, the movement being represented by the
momentum operatorpb. Further, in DFT, the electrons are
thought to move in an effective potential that is due to the other
electrons and the nuclei.51 It is thus justified to replace the
nuclear potentialVN of eq 13 by an effective potential. The
form of this effective potential will be specified shortly. It
would be the effective potential that is experienced by the
electrons; we would substituteVN in the spin-orbit operators
hSO-N andhSO-N

dia :

and

In this way, we incorporate the interaction of the electronic spin
with both, the external, nuclear potentialand the potential due
to the other electrons. Thus, we have accounted for both the
nuclear and electronic spin-orbit terms by including an effective
potentialVeff into eqs 18 and 19. As pointed out above,Veff
should contain the nuclear potential,VN of eq 13, and the
potential due to the other electrons in the system. We can use
the Coulomb potentialVC for the electronic part. This potential
is the electrostatic potential of the total electronic densityF of
the system and is given by

However, the use ofVC introduces an error, sinceVC is the
average potential due to the total electronic density,i.e., due to
all electrons in the system. We will remove this error by
including an approximate exchange potential into the effective
potential. This is possible since exchange potentials correct for
the mentioned error.51 The effective potentialVeff is thus given
by57-60

Here, we have used the simplest possible functional form of an
exchange potential, the XR potential.51,61

In summary, we have accurately accounted for the operators
hSO-N andhSO-N

dia , eqs 14 and 15, with the formulation that is
expressed in eqs 19-21. We have further included the
electronic spin-orbit contributions of eqs 5 and 8 in an
approximate way. However, the spin-other-orbit contributions,
eqs 6 and 9, respectively, have been neglected. This deserves
some further discussion. We assume it to be a good approxima-
tion because contributions from the spin-other-orbit terms are
probably small. It can be shown that these contributions vanish
exactly for a model system containing one unpaired electron
together with a closed shell system of other electrons. In real
systems with one unpaired electron, there will be some spin
polarization of the lower shells. This results in (presumably
small) contributions to theg-tensor from the spin-other-orbit
operators. The neglect of these contributions seems to be
justified. The only case where the spin-other-orbit operators
mightbe significant is in systems with more than one unpaired
electron. In physical terms, we consider the reference electron
as moving in astatic electron cloud that is due to the other
electrons in the molecule. We will briefly come back to the
discussion of the spin-other-orbit terms later in the conclusions.
2.4. Evaluation of the∆g-Tensor. In the previous section,

we have derived a form of the spin-orbit operators that can be
evaluated based on double-perturbation theory40 and DFT. This
requires to treat the expression in eq 1 further. This task is,
however, not entirely trivial since both the magnetic fieldBB
and the electronic spinSB of eq 10 are quantum-mechanical
operators. The necessary procedure is called “spin-field reduc-
tion”.12,41 Thus, the direction of the magnetic field determines
the axis of spin quantization.41 An expectation value of some
one-electron operator Oˆ ‚Sz that is proportional to the z-

hSO
dia )

R3g′

8
∑
j

n {[∂Veff
∂ rb

‚ rbj](SBj‚BB) - (SBj‚ rbj)[∂Veff
∂ rb

‚BB]} (19)

VC(F,rb1) )∫drb2

F( rb2)

| rb1 - rb2|
(20)

Veff ) VN + VC + VXR (21)

VN( rb) ) - ∑
NNUC

A ZA

|r - RA|
(13)

hSO-N )
R2g′

4
∑
j

n

SBj‚[∂VN
∂ rb
× pbj] (14)

hSO-N
dia )

R3g′

8
∑
j

n {[∂VN
∂ rb

‚ rbj](SBj‚BB) - (SBj‚ rbj)[∂VN
∂ rb

‚BB]} (15)

gbb ) ge1BB + ∆gbb (16)

gbb ) ge(1BB - ∆̃gbb) (17)

hSO) R2g′
4

SB‚(∂Veff∂ rb
× pb) (18)
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componentSz of the spin operator can be written as

In eq 22, we have introduced the density matrices of theR and
â electrons,

wherenR and nâ are the numbers of electrons withR and â
spins, respectively

The total number of electrons isn. The total electronic density
F(rb) follows from the density matrices (eq 23) by

or

The {Ψi} (eq 26) form a set ofn one-electron functions; in
DFT, they are usually called the Kohn-Sham orbitals.51,62,63

With this formalism, we get from eq 1 for thest component
of theg-shift ∆gbb:

This expression was based on the aforementioned interchange
theorem of double-perturbation theory.40,41,43-45 HereFR(BB|rb,rb′)
andFâ(BB|rb,rb′) are the ground state electronic density matrices
of eq 23 under the influence of the external magnetic field.28-31

The factor 1/µB of eq 1 is absorbed by the operators in eq 27.
These operators areht

01,EPR and hst
11,EPR; they follow from the

previous section. We find forht
01,EPR(cf eq 18)

Similarly, we have for the diamagnetic operatorhst
11,EPR:

whereH is the Kohn-Sham one-electron operator of the system
including the magnetic field and the electronic spin. The factor
1/µB has been absorbed again by the operator as mentioned
above. The operatorhst

11,EPRcontains terms that are bilinear in
the magnetic field and the spin magnetic moment. Such
operators include the Zeeman operator proper, eq 2, the kinetic
energy correction to the Zeeman operator, eq 3, and the
diamagnetic spin-orbit operators. We will use the latter in the

form that has been derived in eq 19. The diamagnetic spin-
other-orbit operator, eq 9, is also of this form. We will neglect
it, however, according to the discussion above. The Zeeman
operator of eq 2 will not contribute tohst

11,EPR, based on the
definition of ∆gbb in eq 16. We are therefore left with the
following expression forhst

11,EPR:

where

and

The expressions in eqs 27 to 29 can be evaluated with the
apparatus that had been developed for the NMR shielding
tensor.28-31 This is, in some more detail, the subject of the
next section.

3. Implementation of the EPR∆g-Tensor into the
DFT-GIAO Program; Working Equations

The expressions in eqs 27 to 29 will be evaluated on the basis
of our NMR-DFT-GIAO program.28-31 We are able to do
that since∆gbb relies on the first-order magnetic density matrix,
eq 27, as does the NMR shielding tensor.28-32 The analogy
between the two properties is, however, not exhausted with the
first order magnetic density matrix. This becomes apparent by
noting the similarity between the para- and diamagnetic opera-
tors of the NMR case28 and the respective EPR operators,
ht
01,EPR and hst

11,SO of eqs 28b and 29d. We had in the NMR
case28

and

Thus, we obtain the EPR operators fromht
01,NMR andhst

11,NMR

by the simple substitution

Using this analogy, we find the following working equations
for theg-shift ∆gbb (st tensor component):

The different contributions in eq 33 are due, in this order, to
the Zeeman kinetic energy correction, eq 29c, the diamagnetic
spin-orbit operator,hst

11,SO of eq 29d, and the paramagnetic

〈Ψ|Ô‚Sz|Ψ〉 )∫rbf rb
dτ ÔFR( rb,rb′)

-∫rbf rb′
dτ ÔFâ( rb,rb′) (22)

Fτ( rb,rb′) ) ∑
i

nτ

Ψi
τ( rb)Ψi

τ( rb′), τ ) R,â (23)

nR + nâ ) n (24)

F( rb) ) F( rb,rb) (25a)

F( rb,rb′) ) FR( rb,rb′) + Fâ( rb,rb′) (25b)

F( rb,rb′) ) ∑
i

n

Ψi( rb)Ψi( rb′) (26)

∆gst )
∂

∂Bs
{∫rbf rb′

dτ(ht
01,EPR+ ∑

r)1

3

Brhrt
11,EPR) ×

[FR(BB| rb,rb′) - Fâ(BB| rb,rb′)]}BB)0 (27)

ht
01,EPR) 1

µB

∂hSO
∂St
|
SB)0

(28a)

) Rig′
2 (∂Veff∂ rb

× pb)
t

(28b)

hst
11,EPR) 1

µB

∂
2H

∂Bs∂St|BB)0 SB)0
(29a)

hst
11,EPR) hst

11,KE+ hst
11,SO (29b)

hst
11,KE) -

R2ge
2
p2δst (29c)

hst
11,SO) R2g′

4 {∂Veff∂ rb
‚ rbδst - (∂Veff∂ rb )

s
rt} (29d)

ht
01,NMR) Ri[ rbN

rN
3
× pb]

t

(30)

hst
11,NMR) R2

2rN
3
[ rbN‚ rbδst - rNsrt] (31)

rbN

rN
3

(NMR case)

98
substitute g′

2

∂Veff
∂ rb

(EPR case)

(32)

∆gst ) ∆gst
KE + ∆gst

d + ∆gst
p (33)
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operatorht
01,EPRof eq 28. The dia- and paramagnetic contri-

butions to theg-shift are now

and

where

and

In eqs 34 and 35, we used the following notation:Ψi andΨa

are an occupied and virtual Kohn-Sham orbital,51 respectively.
The orbitals are expanded into the set of2M basis functions
{øλ}; the expansion coefficients are thedλi. The orbitalΨi has
the occupation numberni

γ; equal occupation numbers for allnγ
occupied orbitals of spinγ are assumed in the derivation of eq
35b.64 Note that we used in eqs 34 and 35a the inverse of the
speed of lightc instead of the fine structure constant to avoid
confusion with theR spin component (cf. ref 50). The
definitions of the first-order occupied-occupied and occupied-
virtual coefficientsSij

1,s anduai
1,s, respectively, are the same as

those in the case of the NMR shielding, cf. our earlier work.28-31

Finally, the coefficients2mγ in eqs 34 and 35 afford the correct
signs for theR andâ spins, in accordance with the spin-field
reduction procedure of eq 22. Thus

The only contribution to∆gst that does not follow from the
EPR-NMR analogy (eq 32) is∆gst

KE. As has been pointed out
before, it is due to the Zeeman kinetic energy correction, eq
29c. The operator in eq 29c is isotropic. Its contribution to
∆gbb is readily calculated from the ground state, zero-order
density matrices (eqs 23 and 26, respectively) as

Details of the NMR-GIAO implementation into the Am-
sterdam Density Functional program package ADF65-76 have
been given elsewhere.28-31 We employ the nonlocal exchange-
correlation energy functionals that were developed by Becke

and Perdew77-80 for the self-consistent determination of the
unperturbed electronic density.
We use Slater type orbitals (STO) as basis functions.75,76 The

STO basis sets are of triple-ú quality in the valence region,
unless otherwise stated. These triple-ú basis sets are augmented
by two sets of d-type polarization functions per atomic center
(p polarization functions on hydrogen). The working equations
for theg-shift, eqs 34, 35, and 37, are readily extended to include
the frozen core approximation,65,67again in analogy to the NMR
shielding tensor.29,31 The frozen core approximation is a scheme
in which only valence electrons are treated by the variational
procedure. Molecular orbitals describing inner shells are
precalculated; they are obtained from atomic calculations. These
orbitals are kept “frozen” in subsequent molecular calculations.
Hence, the frozen core approximation amounts to the neglect
of core polarization. The valence molecular orbitals are
explicitely orthogonalized aginst the (frozen) core orbitals. The
frozen core approximation is employed throughout,29,31 unless
otherwise stated.

4. Results and Discussion

In this section, we will apply the formalism that has been
developed thus far to actualg-tensor calculations. We will
express the calculated and experimental numbers using the
g-shift ∆g of eq 16. Our results will be compared to
experiment3,6,8,12,81-84 and to other, ab initio based
calculations.12-22 We have transferred all experimental numbers
to g-shifts according to eq 16. They have been rounded to the
nearest decimal according to the number of digits in the
experimentalg-tensor.
4.1. Geometries.EPR is concerned with systems containing

unpaired electrons. Most of these systems are radicals that are
usually not stable. Experimental geometries are therefore
rare.12,85,86 For this reason, we have based all of the calculations
on optimized geometries. We used the ADF program for the
optimization,69,87-89 in part with its relativistic extension.90 The
results of these optimizations are summarized in the Supporting
Information.
The EPR calculations were generally based on the relativistic

geometry for such molecules where both nonrelativistic and
relativistic results are given in the supplementary material. We
note in passing the relativistic bond contraction.42,90-94 For
instance, the relativistic contraction of the lC-X bond length in
CF3X-, X ) Cl, Br, or I, grows from an almost negligible 0.003
Å for X)Cl to 0.049 Å (about 2% of the bond length) for the
iodine compound.
The following axis system was used: Thezaxis was always

chosen to coincide with the axis of highest symmetry. Planar
molecules are placed in theyzplane.
4.2. Comparison to Other Calculations. We shall next

consider someg-shifts that were calculated with the previously
developed formalism. We have pointed out in the introduction
that ab initio calculations are surprisingly scarce. These
calculations have been reviewed by Lushington,12 and Lush-
ington et al.12,19-22 added their own significant contribution.
We compare in Table 1 our DFT-GIAO results to the results
of Lushington et al.12,19-22 as well as to otherab initio
calculations13-18 and to experiment.3,6,12,81-84 Lushingtonet
al.12,19-22 present results at various levels of sophistication. We
included in Table 1 their “complete-to-second-order” HF results
and the correlated MRCI calculations. We did not include the
simpler calculations where only one-electron terms,i.e., the
operatorshSO-N andhSO-N

dia of eqs 4 and 7, respectively, have
been accounted for.

∆gdst ) ∑
γ)R,â

2mγ ∑
i)1

nγ

ni
γ ×

{ g′

4c2
〈Ψi|∑

ν

2M

dνi[∂Veff∂r
‚ rbνδst - (∂Veff∂r )

s

rνt]øν〉 +

1

2c
∑
λ,ν

2M

dλidνi〈øλ|[ rbν × (RBν - RBλ)]sht
01,EPR|øν〉} (34)

∆gst
p )

1

2c
∑

γ)R,â
2mγ ∑

i)1

nγ

ni
γ ∑

λ,ν

2M

dλidνi ×

〈øλ|(RBλ × RBν)sht
01,EPR|øν〉 + ∆gst

p,oc-oc + ∆gst
p,oc-vir (35a)

∆gst
p,oc-oc ) ∑

γ)R,â
2mγ ∑

i,j)1

nγ

ni
γSij

1,s〈Ψi|ht01,EPR|Ψj〉 (35b)

∆gst
p,oc-Vir ) 2 ∑

γ)R,â
2mγ ∑

i)1

nγ

ni
γ ∑

a

Vir

uai
1,s〈Ψi|ht01,EPR|Ψa〉 (35c)

mR ) 1
2

mâ ) - 1
2

(36)

∆gst
KE ) δst∫rbf rb′

dτ hst
11,KE( rb′)[FR( rb,rb′) - Fâ( rb,rb′)] (37)
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It follows from Table 1 that our DFT-GIAO results are of
better quality than any of the older HF calculations.13-18

Lushington12 has discussed these calculations. He points out
that none of them include all the relevant operators. Further,
most of these calculations are hampered by the use of very small
basis sets. It is well-known that other magnetic properties

require extended basis sets, even more so when no gauge-
invariant scheme like GIAO or IGLO95-98 is used.35-37,99 We
will come back to the basis set requirements later. The only
cases where other calculations achieve better agreement with
experiment then the DFT-GIAOmethod are NO217and possibly
C3H5,15 Table 1. However, Lushington12 points out that the

TABLE 1: Calculated DFT-GIAO g-Shifts in comparison toab initio and Experimental Results

g-shifts∆g(ppm)

calcd exptlc

molecule component DFT-GIAOa HF HFb MRCIb gas phase other

H2
+ ∆g⊥ -41.7 -2.25d

-43.4e
∆g|| -39.3 -39.6e

H2O+ ∆gxx 103 -324 -292 200
∆gyy 13 824 16 361 16 019 18 800
∆gzz 5126 4402 4217 4800

CO+ ∆g⊥ -3129 -1175 -2674 -2400 -2800f
-2600f
-3200g

∆g|| -138 -176 -178 -1200f
-1800f
-1400g

CO2
- ∆gxx 1522 1800h 880i

600
∆gyy -7210 -3900 -5070i

-4900
∆gzz -803 100 -710i

-1100

O3
- ∆gxx -554 0k 1300

∆gyy 19 380 28 940 16 400
∆gzz 10 542 11540 10 000

HCO ∆gxx 2749 1800h 1500
∆gyy -270 100 0
∆gzz -9468 -5500 -7500

H2CO+ ∆gxx 6231 6500h 4600
∆gyy -1220 400 -800
∆gzz 76 5600 200

C3H5 ∆gxx -115 0h 0l

∆gyy 769 1000 400
∆gzz 660 800 800

NO2
2- ∆gxx -472 0k 600c

1500i

∆gyy 9082 10010 5500c

7600i

∆gzz 4319 6970 4800c

4700i

NO2 ∆gxx 4158 3460m 2257 3806 3900 3800c

4700h 3200i

3300g

∆gyy -13 717 -10 274m -6597 -10322 -11300 -11700c
-11 900h -9100i

-10 300g
∆gzz -760 -218m -474 -235 -300 500c

400h -2700i
700g

NF2 ∆gxx -738 0k -100
∆gyy 7619 10180 6200
∆gzz 4678 4000 2800

NF3+ ∆g⊥ 8046 4000h 7000
∆g|| -511 400 1000

CN ∆g⊥ -2514 -789m -2000
∆g|| -137

MgF ∆g⊥ -2178 -658 -1092 -1300
∆g|| -60 -54 -59 -300

a This work. bG. Lushingtonet al.12,19,20,22 cCited from G. Lushington,12 unless otherwise stated. All experimental values have been rounded
to the nearest decimal.dReference 13.eReference 14.f Experimental cited from ref 82, solid neon matrix.gNeon matrix isolation experiment,
cited from G. Lushington.12 hReference 15.i Experimental cited from ref 16. The solid matrices are CaCO3 (CO2

-), NaNO3 (NO2), and KCl
(NO2

2-). kReference 16.l Argon matrix. The experimental principal axis orientation is not entirely clear from ref 84.mReference 17.
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excellent agreement between the calculations of Moores and
McWeeny (for NO2) and experiment is due to a cancellation of
errors.
The H2+ radical is an interesting case. This is an one-electron

system, and HF should be exact. The older one of the cited
HF calculations13 includes only the electron-nuclear spin-orbit
operators, cf. eqs 4 and 7. The authors of the other article14

included all the relevant operators, Table 1. It should be pointed
out that the remaining differences between the HF results on
the one hand and the DFT results on the other hand are minor
as compared to the experimental accuracy. We cite all numbers
in ppm. However, less significant digits are availabable from
experiment, usually two or three digits less, and a change of
(50-100 ppm can be considered as small.
Let us now discuss our results in comparison to the complete-

to-second-order HF and MRCI calculations of Lushingtonet
al.12,19-22 We can make this comparison for H2O+, CO+, NO2,
and MgF, Table 1. A larger range of molecules would be
desirable for a more comprehensive discussion. Gas phase data
are available for the first three molecules. The DFT-GIAO
calculations are in better agreement with experiment than the
HF calculations for these molecules; the best results are obtained
by the expensive MRCI calculations, Table 1. Similar trends
have been observed in NMR shielding calculations.100 All
theoretical methods seem to have problems predicting the sign
of very small contributions. Thus, we calculate the correct sign
for the small xx principal component∆gxx of H2O+ while the
MRCI calculations have the wrong sign. Other cases are the
parallel g-shift components∆g|| of CO+ and MgF. No gas
phase data exist for these parallel components, and none of the
theoretical methods reproduces the experimental order of
magnitude for∆g|| of CO+. The parallel component of a
diatomic molecule like CO+ and MgF will have no contributions
from the paramagnetic operators in our formulation, due to
symmetry. This component is entirely determined by the
diamagnetic contributions. The kinetic energy correction (eq
37) yields negativeg-shifts. The other contributions should be
positive since they contain essentially only an integral over the
density of the singly occupied molecular orbital (SOMO)
multiplied with a positive function (eqs 19 and 34). We
speculate that large negative experimental values for the parallel
component of linear molecules might be due to matrix effects.
Correlation effects, as evident from the difference between

HF and MRCI calculations, can be considerable forg-shifts and
their tensor components, Table 1. They are comparatively small
in saturated systems with single bonds (like H2O+) that usually
have large HOMO-LUMO gaps. This agrees with the situation
for the NMR shielding, again demonstrating the close connection
between the two properties.28,31 In other molecules like CO+,
NO2, or MgF, there is a considerable difference between the
results that were calculated at the HF level and at the MRCI
level, respectively. Correlation is necessary for a proper
description of these molecules. The influence of electron
correlation is expected to be most prominent in the paramagnetic
contributions that contain the first-order magnetic wave function,
section 2. This is indeed the case, as is evident from the parallel
component of theg-shift in the linear molecules CO+ and MgF,
Table 1. As has been pointed out before, the parallel component
in linear molecules does not contain the first-order magnetic
orbitals. It is exclusively diamagnetic, containing the unper-
turbed, zero-order density matrix. The remaining changes in
these molecules, 2 ppm for CO+, and-5 ppm for MgF, Table
1, can be attributed to slight changes in the electron density of
the SOMO that are due to the introduction of correlation.

4.3. Diatomic Radicals. In Table 2, we have collected
results for some diatomic radicals. Two of them, CO+ and MgF,
have been discussed in the previous section.
We see from Table 2 that the DFT-GIAO method is unable

to reproduce the parallel component of theg-shift ∆g|| in cases
where this component has a large negative value. We have
discussed the point above, speculating that these negative values
might be due to matrix effects.
The range of experimental numbers can be considerable, cf.,

e.g., the data for CO+ or AlO, Table 2. Nevertheless, almost
all experimental trends are reproduced by the DFT-GIAO
method. Gas phase experiments are available for the orthogonal
components of CO+, CN, and MgF. We obtain good agreement
for CO+ and CN, and reasonable agreement for MgF.
All three sets of solid state data for CO+ (Tables 1 and 2)

refer to neon matrices. This should be a very inert solvent
system. Nevertheless, the three sets of data do not agree with
each other, nor do they match the available gas phase value for
the orthogonal principalg-shift component of this compound,
Tables 1 and 2. The example illustrates the importance and
magnitude of matrix effects.
The worst case of the diatomic molecules in Table 2 is the

AlO radical. We miss in this case the experimental trend
completely, even though the experimental numbers differ
considerably, depending on the matrix. The reason for this
apparent failure of the current theoretical method is not entirely
clear at the moment; we will come back to this point later on.
The two noble gas fluorides KrF and XeF have been treated

with the scalar relativistic procedure that had been developed
for shielding calculations.30,31 We see from Table 2 that
relativistic effects are unimportant for the diamagnetic parallel
component of theg-shift. The change in this component would
mostly reflect changes in the electronic density of the SOMO;
these effects are expected to be not very big.42,91 Larger scalar
relativistic effects are observed in the paramagnetic orthogonal
component, in particular for XeF.
4.4. G-Shifts of AB3, AB2, and Other Radicals. Calculated

and experimentalg-shifts for several AB3 radicals have been
collected in Table 3. These molecules possess a 3-fold

TABLE 2: Calculated and Experimental g-Shifts of
Diatomic Molecules (Values in ppm)

∆g|| ∆g⊥

molecule calcd exptl calcd exptl

CO+ -138 -1200a -3129 -2800a
-1800a -2600a
-1400b,c -3200b,c

-2400c,d
CN -137 -800e -2514 -2000e
AlO -142 -800e -222 -1900e

-900e -2600e
-3000e -8600e

BO -72 -1100e -2298 -800e
BS -83 -700e -9974 -8100e

-800e -7900e
MgF -60 -300b,c -2178 -1300b,c
KrFf -335 (-345) -2000g 60 578 66 000g

(61 851)
XeFf -340 (-346) -28 000g 15 1518 12 4000g

(158 083)

a Experimental cited from ref 82, solid neon matrix.bNeon matrix
isolation experiment.cCited from ref 12.dGas phase experiment.
eCited from ref 6. The different values correspond to different matrices
(in this order: CN, argon matrix; AlO, neon, argon, and krypton matrix;
BO, neon matrix; BS, neon and argon matrix).f Calculation based on
nonrelativistic and (in brackets) scalar relativistic wave function.
gRadicals embedded in KrF4 and XeF4 crystals, respectively (cited from
ref 81).
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symmetry axis. The principal tensor components of theg-shift
correspond to coordinate axes that are parallel (∆g||) and
orthogonal (∆g⊥) to this symmetry axis. One of these mol-
ecules, NF3+, has already been discussed above, Table 1.
The experimental numbers were generally obtained with the

radical embedded in some host crystal. This makes the
comparison of calculated and experimental numbers difficult
since the calculations refer to the zero-pressure and zero-
temperature limit of a gas phase experiment. Experimental
values can, on the other hand, vary considerably with the host
crystal. An example6 of this has been given in Table 3 for the
isotropicg-shift of CH3; another example83 is given in Table 4
for NO3

2-. We see from Table 4 and Figure 1 that the
experimental range is enormous, making the comparison with
the calculated results very difficult if not impossible. The
calculated numbers exhibit at least the right trend with the
orthogonalg-shift being much larger then the parallel compo-
nent. The calculated anisotropy,i.e., the difference between

parallel and orthogonal principal components, has the correct
sign and the right order of magnitude.
Given this uncertainty in the comparison of theory and

experiment, we note from Table 3 that the agreement between
theory and experiment is reasonable to good in most cases.
Experimental trends within related compounds are mostly
reproduced (e.g., in the series PO32-, SO3-, and ClO3). One
of these trends is the increase in the isotropicg-shift and its
tensor components when going down within a column of the
periodic table of elements; the example here is the series of
compounds EH3, E) C, Si, Ge, or Sn. The trend is reproduced
by the calculations. The calculatedg-shifts of GeH3 and in
particular SnH3 are, however, too big. The same is the case
for other heavy element compounds: the calculatedg-shift of
AsO3

2- does not match the experimental results. We will come
back to this point shortly.
It is also interesting to look at theg-shifts of symmetric AB2

radicals. Several of them, namely H2O+, CO2-, O3
-, NO2,

NO2
2-, and NF2 have been included already into Table 1. The

data for most of these radicals is also contained in Figure 2.
We note again the considerable range of experimental single-
crystal results as exemplified for these compounds by NO2,
Table 1. The results are essentially similar to the AB3 case.
Thus, experimental trends, both regarding the principal tensor
components and trends between related molecules, are repro-
duced for these first-row compounds, Figure 2. Two more AB2

radicals, ClO2 and SO2- are contained in Table 5. We have
included the latter two to get a more comprehensive picture.
The agreement between theory and experiment is reasonable
but not perfect for these two molecules. Part of this are probably
again matrix effects.
A few other compounds have been included into Table 5.

This was done to cover some other classes of compounds as

TABLE 3: Calculated and Experimental g-Shifts of AB3
Molecules (Values in ppm)

isotropic∆g ∆g|| ∆g⊥

molecule calcd exptl calcd exptl calcd exptl

CO3
- 8934 8900a 3361 4300a 11 810 11 200a,b

NO3 8009 10500a 47 4300a 11 969 13 550a,b

NO3
2- 3208 2000a,c -563 -800a,c 5094 3400a,c

NH3
+ 1319 1200d -146 2051

900e

NF3+ 5193 5000f -511 1000f 8046 7000f

PO32- -767 -2000g -415 -3000g -944 -1000g
-2000a -2900a -1550a,b

SO3- 1641 1300g 301 2311
ClO3 4644 6000a 1575 5000a 6179 6000a

8700g 4300g 10 900g

AsO3
2- -4757 3000a -569 2000a -6951 3000a

CH3 470 -300 to 340h -91 750
SiH3 1566 4000i -105 1000i 2402 5000i

GeH3 12 756 10 000i 30 1000i 19 119 15 000i

SnH3 28 562k 15 000i 312k 1000i 42 688k 23 000i

aCited from ref 81. Solid matrices: KHCO3 for CO3
-, urea nitrate

for NO3, Na2HPO3‚5H2O for PO32-, NH4Cl4 for ClO3, Na2HAsO4‚7H2O
for AsO3

2-. b Average of the two orthogonal principal components
(measured as 16 100 and 6300 for CO3

-, 18 000 and 9100 for NO3;
-1200 and-1900 ppm for PO32-). cSee Table 4 for other experimental
values.83 dCited from ref 6.eCited from ref 82.f Cited from ref 12.
gCited from ref 3. Solid matrices: Na2HPO3‚5H2O for PO32-,
K2CH2(SO3)2 for SO3-, KClO4 for ClO3. h The following isotropic
experimentalg-shifts were found at 4.2 K:6 -290 ppm (Ar matrix),
-300 ppm (Xe matrix), 340 ppm (H2 matrix),-290 ppm (N2 matrix),
100 ppm (CH4 matrix). The anisotropy of theg-shift is too small to
be measured.i Derived values for static radicals, the radicals are thought
to undergo restricted rotationseven at 4.2 K.6 kCalculated with a scalar
relativistic wave function.

TABLE 4: Experimental g-Shifts of the NO3
2- Radical in

Different Host Crystals

principal components of∆g(ppm)a

host matrix isotropic ∆gxx ∆gyy ∆gzz b

KNO3 2000 3400 -800
Sr(NO3)2 2300 3700 -400
Ba(NO3)2 1400 3400 -2600
NaNO3 1500 2900 -1200
KCl 2900 4500 -300
KBr 2900 4500 -300
KI 2700
KN3 100 1600 -2900
Pb(NO3)2 -12 900 -11 100 -16 600
AgNO3 700 -300 4700 -2300
calcdc 3208 5094 -563
aCited from ref 83.b Thezaxis is orthogonal to the O3 plane.c This

work.

Figure 1. Experimentalg-shifts of the NO32- radical in different host
crystals.

Figure 2. Principal tensor components of theg-shift in symmetric AB2
radicals of first-row compounds.
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well. Thus, CH4+, together with NH3+, Table 3, and H2O+,
Table 1, comprise three hydride cations of first-row compounds,
Figure 3. The experimental isotropicg-shifts are 600, 1200/
900, and 8000 ppm for CH4+, NH3

+, and H2O+, respectively.
The calculated numbers are-48, 1319, and 6035 ppm. The
periodic trend within this group is therefore well reproduced
by the calculations, Figure 3. We have also included the
benzene cation into Table 5. This is an example for an aromatic
radical; again, the isotropicg-shift is well reproduced.
To conclude this section, we collected in Table 6 calculated

and experimentalg-shifts for the anionic radicals CF3X-, X )
Cl, Br, or I. This turns out to be a case where the current
theoretical method is apparently unable to reproduce the
experimentally observed trend. We will discuss this point in
the conclusions.
4.5. Contributions to theg-shifts. The relative importance

of the various contributions in the theoretical description of the
g-shifts might be of interest. For this purpose, we have split
the calculatedg-shifts of CO+ and H2O+ into their contributions.
The results are summarized in Tables 7 (CO+) and 8 (H2O+).
The totalg-shift is initially split into contributions due to the
dia- and paramagnetic operators, eqs 7-9 and 4-6, respectively,
as well as the isotropic contribution from the kinetic energy
correction, eqs 3 and 37. The kinetic energy correction is always
negative. It yields a small but significant contribution to the
g-shift, Tables 7 and 8. The paramagnetic contributions are
dominant, both for the isotropicg-shift and for the individual
tensor components. The diamagnetic (or gauge correction4)

contribution is much smaller then its paramagnetic counterpart.
It is, however, not negligible in most cases.
In Tables 7 and 8, we have also further split up theg-shifts.

This has been done according to the different contributions to
the effective potential of eq 21. The nuclear potential,VN, eq
13, is the largest contribution in all cases. Using onlyVN would
amount to the exclusive use of the one-electron operators, eqs
4 and 7. It is clear from Tables 7 and 8 that the two-electron
operators have to be included for an accurate description of the
g-shift. The two-electron operators are represented as the
contributions from the Coulomb potentialVC of the electronic
density, eq 20, and the exchange potential,VXR. Their contribu-
tions are generally smaller then theg-shifts due to VN.
Nevertheless, these contributions are not negligible.
Finally, we note from Tables 7 and 8 that the exchange

potential gives the smallestg-shift contributions. This justifies
the use of the simple XR approximation61 for this part: even if
the relative error in this contribution was large, it would still
not really change the total calculatedg-shifts.
4.6. Basis Sets.All calculated results so far have been

obtained by using just one basis set. It remains to show that
our standard basis set is saturated to a reasonable degree: That
is the subject of this section.
The basis set dependence of calculated NMR chemical shifts

is well-known.36,37,98,99,101From the analogy of the EPRg-tensor
and the NMR shielding, we would expect a similarly strong
basis set dependence for theg-tensor. The basis set dependence

TABLE 5: Calculated and Experimental g-Shifts of Some
Other Molecules

principal components of∆g(ppm)

∆gxx ∆gyy ∆gzz

molecule calcd exptl calcd exptl calcd exptl

ClO2 -455 1300a 12 292 16 000a 10 606 6500a

SO2- -361 -400a 5588 9700a 7178 3400a

CH4
+ -48 600b -48 600b -48 600b

benzene+ c 445 445 11

aExperimental cited from ref 6; KClO4 host crystal for ClO2, K2S2O5

for SO2-. bExperimental cited from ref 82.c Isotropicg-shift: 300 ppm,
calcd; 400 ppm, exptl.82

Figure 3. Isotropicg-shifts in CH4+, NH3
+, and H2O.

TABLE 6: Calculated and Experimental g-Shifts of CF3X-,
X ) Cl, Br, or I (Values in ppm)

∆g|| ∆g⊥

calcd calcd

molecule
non-

relativistic relativistic exptla
non-

relativistic relativistic exptla

CF3Cl- -609 -610 -200 14 873 15 112 4 700
CF3Br- -635 -637 1 300 67 273 70 229 18 900
CF3I- -581 -571 -2 100 146 759 161 466 46 000

aCited from ref 6.

TABLE 7: Contributions to the Calculated g-Shift of CO+

(Values in ppm)

tensor components

contribution isotropic parallel orthogonal

total -2123 -135 -3117
total diamagnetic 53 46 57
total paramagnetic -1995 0 -2993
kinetic energy correction -181 -181 -181
nuclear potential

total contribution -2346 81 -3559
diamagnetic 106 81 119
paramagnetic -2452 0 -3678

Coulomb potential (electronic density)
total contribution 513 -43 791
diamagnetic -61 -43 -69
paramagnetic 574 0 860

Exchange potential
total contribution -109 9 -168
diamagnetic 8 9 8
paramagnetic -117 0 -176

TABLE 8: Contributions to the Calculated g-Shift of H2O+

(Values in ppm)

tensor components

contribution isotropic xx yy zz

total 6016 -209 13 457 4800
total diamagnetic 120 92 124 145
total paramagnetic 6206 9 13 644 4965
kinetic energy correction -310 -310 -310 -310
nuclear potential
total contribution 7859 147 17 024 6407
diamagnetic 206 147 216 254
paramagnetic 7653 0 16 808 6153

Coulombic potential
(electronic density)
total contribution -1931 -58 -4109 -1625
diamagnetic -99 -68 -105 -123
paramagnetic -1832 10 -4004 -1502

exchange potential
total contribution 398 13 852 328
diamagnetic 13 14 13 14
paramagnetic 284 -1 839 314
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of calculatedg-shifts has been addressed in Table 9. This table
contains calculated isotropicg-shifts for several molecules
containing hydrogen, carbon, nitrogen, oxygen, or fluorine
atoms. We employed double-ú (basis III), triple-ú (IV, V, td,
tf)69,75,76and quadruple-ú (qd)102 valence basis sets. All basis
functions are Slater type orbitals (STO). Details of the different
basis sets have been summarized in Table 10.
Several conclusions can be drawn from Table 9. First, it

should be noted that we cite all numbers in ppm. In general,
less signifcant digits are available from experiment, cf. Tables
1 to 6. This has been pointed out above already. Thus, a change
of (100 ppm or less in calculated numbers between two basis
sets can be considered as essentially converged. With this in
mind, we note that the double-ú basis is not sufficient; the
various triple-ú sets give much more consistent results. The
largest deviations between the previously employed td set and
the more accurate qd basis amount to 262 ppm for NO2,
followed by 183, 159, and 148, and 128 ppm for H2O+, NF3+,
CO3

-, and NF2, respectively (Table 9). Consequently, the td
basis is not yet completely saturated for these molecules and
the more accurate qd basis would be preferable in these cases.
However, the remaining basis set error is small as compared to
the deviation between theory and experiment, Tables 1 and 3,
or as compared to matrix effects, Table 4. We can infer that
the td basis was indeed sufficient to test the present method
and to draw meaningful conclusions from the calculatedg-shifts.
Additionally, it follows from Table 9 that the 1s (core type)

basis functions are of only minor importance for the calculation
of g-shifts. In the case of the “tight” NMR shielding, more
care had to be taken in defining the core region of the basis
sets. This was necessary to describe the core tail of valence
orbitals correctly.29,30,100 Theg-shift, on the other hand, is less
“tight”, and the difference between the basis sets with single-

and double-ú cores is only marginal, Table 9. More important
than the core region is a sufficient number of polarization
functions in the basis sets. Basis sets IV, V, td, and tf are all
triple-ú valence basis sets with various combinations of d- and
f-type polarization functions. The d and f sets seem to be of
different importance in different classes molecules. The addition
of a second set of d functions has almost no influence in some
cases like CH3 or CN (as evident by comparing the results of
IV and td, or V and tf), but is important in other cases like
CO3

-, NO3, or NO32-. Similarly, the additional f set in basis
sets V and tf changes the results for some molecules like HCO
or CO3-, but is unimportant for others like CH4+ or NO3. The
differences between the various triple-ú are in almost all cases
smaller than 100 ppm.
Further studies of basis set requirements, also including

heavier elements are desirable.

5. Summary and Conclusions

We presented in this paper a formulation of the EPRg-tensor
and the EPRg-shift based on density functional theory. We
have also implemented our formulation into the existing DFT-
GIAO program system for NMR chemical shifts that has been
described elswhere.28-32 Our implementation is the only first-
principle DFT method for the calculation of theg-tensor, even
though the interest in this property seems to be growing
recently.102,103 Our method is also the first GIAO implementa-
tion of theg-tensor. Lushington discussed the gauge depen-
dence of his results;12 the gauge dependence is minimized by
choosing the centroid of charge as the common gauge origin
for the given molecule. In this way, the gauge dependence of
the calculated results is found to be only moderate. Neverthe-
less, fairly big basis sets are still necessary, and the GIAO
scheme is expected to converge much faster with the basis set
size than Lushington’s method.104

We have compared our calculated results with experiment
and with the HF and MRCI calculations of Lushingtonet
al.12,19-22 Comparison with experimental results is preferably
done based on the (rare) gas phase data. We find that our
method yields results of higher quality then the Hartree-Fock-
based schemes. The highly expensive MRCI method gives the
best results for the few molecules where a comparison is
possible. This is in line with the situation for the NMR chemical
shift,100stressing the close connection between the two magnetic
properties.
The comparison to experimental data is more complex if that

data has been obtained with the radical situated in a host crystal,
due to the sometimes strong interactions of the radical with its
matrix. Nevertheless, experimental trends for various small
first- and second-row radicals have been reproduced with
satisfying accuracy. Our calculated results are generally less
accurate for compounds of heavier elementssup to what must
be called complete failure. Examples included AlO and XeF,
Table 2, AsO32-, Table 3, and the molecules in Table 6.
It is now the point to discuss possible reasons for these

limitations of the method. To find and judge possible reasons,
we have to recall the derivation of our DFT-GIAO formulation.
In doing this, we note that we had neglected the spin-other-
orbit operators of eqs 6 and 9. This could of course be a
possible reason for the observed deviations. However, contribu-
tions of these operators are expected to be small for systems
with just one unpaired electron, cf. the discussion above. Only
systems with one unpaired electron have been considered, and
we don't expect the spin-other-orbit operators to be of
importance. This is also confirmed by the success of the model
for lighter element compounds.

TABLE 9: Calculated g-Shifts for Various Basis Sets
(Values in ppm)

basis

molecule IIIa IV a Va tda tdb tfa qdc

CH3 460 472 476 469 470 475 502
CH4

+ -36 -51 -51 -50 -50 -52 -56
NH3

+ 1239 1295 1314 1320 1323 1330 1390
H2O+ 5506 5998 6000 6031 6035 6006 6214
HCO -2080 -2372 -2349 -2329 -2329 -2312 -2320
H2CO+ 1569 1702 1696 1693 1696 1697 1751
CO+ -1953 -2133 -2128 -2128 -2132 -2129 -2182
CN -1540 -1720 -1707 -1720 -1721 -1711 -1752
CO3

- 7840 9058 9016 8990 8994 8942 9138
NO3 7103 8046 8039 8004 8009 8020 8266
NO3

2- 3044 3265 3256 3211 3208 3199 3197
NF2 3527 3843 3825 3822 3853 3836 3950
NF3+ 4577 5194 5161 5161 5193 5163 5320

a Single-ú core.bDouble-ú core.c All-electron basis.

TABLE 10: Basis Sets

basis explanation

III standard basis set of ADF:a double-ú valence region; one set
of d polarization functions (p on hydrogen)

IV standard basis set of ADF:a triple-ú valence region; one set of
d polarization functions (p on hydrogen)

V standard basis set of ADF:a same as IV but additionally one
set of f polarization functions (d on hydrogen)

td same as IV but two sets of d (p) polarization functions; single-
or double-ú core region of the basis

tf same as td but additionally one set of f polarization functions
(d on hydrogen)

qdb all-electron basis, triple-ú in the core, quadruple-ú in the
valence region, two sets each of d and f polarization functions
(p and d on hydrogen)

a ref 69,75,76.b ref 102.
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Another approximation is the use of the simple XR scheme
as the exchange contribution to the effective potential, eq 21.
We expect the contribution of this term to be very small in
general, as has been the case for selected molecules, Tables 7
and 8. The approximation is therefore not significant, and it is
an unlikely candidate for the explanation of the problems. This
is again confirmed by the success of the model for lighter
elements.
It is, however, well possible that the exchange-correlation

(XC) functional78-80 that is used in the self-consistent solution
of the Kohn-Sham equations is still insufficient. It is well-
known that the currently used gradient-corrected XC functionals
exhibit the wrong asymptotic behavior both in the region close
to the nucleus and in the limit of the coordinate going to
infinity.105,106 The latter range is expected to influence the
values of the Kohn-Sham orbital energies (eigenvalues). The
first-order magnetic density matrix, eq 27, is, in turn, extremely
sensitive to small changes in these eigenvalues.28,31

Theg-tensor has been treated as a second-order property in
our model, cf. eqs 1 and 27. However, the experimental
g-tensors are in general obtained by fitting the observed
resonance energies∆E to the Zeeman energy expression with
expressions like the following one.3,9 We have, for instance,
for systems with one unpaired electron:

To simulate the experimental procedure of eq 38 requires the
inclusion of the spin-orbit operators (i.e., the perturbation due
to the electronic spin) to all orders in the spin magnetic moment
SB. Our formulation is, however, based on perturbation theory,
and the spin-orbit operators are included only up to first order.
This could be a reason for the mentioned failure of the method.
Spin-orbit splitting is a relativistic effect. Effects of relativity
are known to increase with increasing atomic numbersZ; they
are roughly proportional toZ2.42 Thus, it is conceivable that
perturbation theory becomes less and less accurate with growing
atomic numbers. One would have to calculate the electronic
density up to all orders in the spin-orbit splitting instead of up
to first order in the magnetic field. We plan to address this
point in the future in more detail.
There are also other interesting extensions possible or

necessary to the work that was presented in this chapter. One
of them concerns the range of compounds that were included.
In this paper, we have mainly concentrated on first- and second-
row main group radicals. Transition metal chemistry is another
major field for EPR measurements, and we plan to extend our
investigations to this area.
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