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“Mining Minima”: Direct Computation of Conformational Free Energy
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We describe a novel, two-step method for directly computing the conformational free energy of a molecule.
In the first step, a finite set of low-energy conformations is identified, and its contribution to the configuration
integral is evaluated by a straightforward Monte Carlo technique. The method of finding energy minima
incorporates certain features of the global-underestimator method and of a genetic algorithm. In the second
step, the contribution to the configuration integral due to conformations not included in the initial integration
is determined by Metropolis Monte Carlo sampling. Applications to alanine oligopeptides and to three cyclic
urea inhibitors of HIV protease are presented.

Introduction more information about the shape of the energy surface, using
a systematic search of conformation space to assign an ap-
proximate width to each energy well. However, the method
approximates all energy minima as harmonic wells separated
by large energy barriers. We are not aware of any efforts to
examine the validity of the approximations in existing methods
based on sums over minima.

We find these methods promising and present a novel
mining-minima” algorithm for directly computing the config-
. . ) - uration integral of a molecule as the sum of the contributions
For computer models in which the solvent is treated explicitly, of low-energy states. No assumptions are made concerning the

the most commonly u_sed methods for computing relative free size and shape of potential energy wells. The method of locating
energies are perturbative methods, such as free energy perturbae

: . . . o . Energy minima is novel and incorporates key features of the
?I\c/)lr(]:'(l"T)Elli)G Olrnr?r?étlsceorr:nggfnsls?;grnnoiiygg:?l:(r:blgfjeigr:i[:ggl| global-underestimator method of Phillipsal 1° and of genetic

i f tate 1 i d th K of . talgorithms. We also introduce a free energy correction for
Steps irom one state to another and the work of carrying out ¢, nformational states not sampled by the integration over energy
each step is summed to yield the wettr the change in free

for th i This i I A h minima. This correction is in the spirit of the predominant-
energy-for the entiré process. IS IS an elegant approach, giaieq method developed in a different corffeamd of a recently
but it is often prohibitively slow, for at least two reasons. First,

- S > described approximation to configuration integrals of small
Fhe explicit treatment of S°'Ve_“t molecules is time-consuming 00 je1.22 The accuracy of the new method is assessed
in general. Second, perturbative methods require equilibration by test calculations on a series of molecules of various sizes.
of the system at each step of the transformation from one state
to another.

The recent successes of implicit solvent motiékmotivate ) ] ]
the development of methods for computing free energy differ- ~ Conformational Free Energy. We are interested in com-
ences that exploit the computational speed of these approacheg?uting the chemical potential of a molecule in solution. It can
Perturbative methods such as FEP and MCTI could be usedP€ shown that, in the classical approximation to statistical
with implicit solvent models. However, it seems reasonable to thermodynamics, the standard chemical potential at constant
expect greater speed from methods that do not require the systenYolume equaf24
to be equilibrated for a number of perturbative steps. Several
groups have presented nonperturbative methods and have °— _RTIn 87° _RTINZ 1)
obtained promising resultg 18 # Oy C°

In the studies of Junet al13 and Maginnet al,'* the value

of Henry’s constant is calculated for alkanes in zeolite pores. Here Oext IS the symmetry number for external symmetry
The requisite configuration integrals are computed by Monte gperations which leave internal coordinates of the molecule
Carlo integration, with structures generated by a configuration unchanged,C’ is the standard concentration, addis the

bias technique to improve convergence. Two other methdlds  configuration integral over the internal coordinates of the
calculate free energies by summing over local energy minima. molecule. A term that depends upon atomic masses is omitted
The method of Lipkowitzet al>!® involves summing the  here, because it will cancel as soon as the difference is taken

Boltzmann factor of a single conformation at each energy petween two chemical potentials for the same molecule. For a
minimum. This method implicitly assumes that the different molecule withn atoms,Z is given by

energy minima have exactly the same shape and are separated
by high-energy barriers. The method of Watgl17-18includes 1
Z R

2 n—3 n—2 n—1
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Many applications in computational chemistry involve com-
puting the relative stability of two different conformational states
of a molecular system. For example, one may wish to determine
the relative stability of two different conformations of a single
molecule, or the standard free energy of binding for a host
guest system or a proteiigand complex. Methods for
computing the free energy of binding are particularly important
because of their applicability to computer-aided drug design.

Theory

int
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Here the internal coordinates of the molecule are given in terms conformations of the molecule:
of n — 3 torsion angle§¢i}, n — 2 bond angle¢6;}, andn —

1 bond lengthg pi}.2> The integration over bond lengths is v N e

restricted to values oy consistent with molecular bonds Aor ~ Ayc = —RTIn —Ze ' (6)
remaining intact® The Jacobian determinant for the transfor- NI

mation from Cartesian to internal coordinatéf,f,p}), does . .

not depend upofig}.14 The configuration integral defined here  WNeré Auc is the conformational free energy computed by
includes the symmetry numbery to account for internal Monte Carlo (MC) integration ané; is the potential energy

symmetries due to rotations about classical bonds. For examplegvalu?ted efo_r conformathnt_ ha;/mg[hto(rjs_lont angles{t¢it}_. ¢
in addition to an external symmetry numhgg; of 2, an ethane C(?:fzrlr?lr;tiogg/le;eae persesf”p Ianoro; iser:r(::olggmguoigr;a%-
molecule has an internal symmetry numlag; of 9 due to 9y- 9 ’

rotations of methyl groups. The overall symmetry of ethane domly generates a large number of conformations spread
) y'g E : 1Sy y ' uniformly throughout the integration volume, calculates the
= OexOint, IS therefore 187 The energy in the Boltzmann factor

. ) . average Boltzmann factor, and multiplies by the volume of the
is written as the sum of a vacuum potential eneldggnd of a

. space. Note that this Monte Carlo integration approach differs
solvent termW that equals the work of transferring the molecule ¢, commonly used Monte Carlo algorithms, such as that of
from vapor phase to solvent in a fixed conformation. Curly i

a. : oL Metropolis et al.?® which yield a Boltzmann distribution of
brackets{ }, indicate a full set of coordinates of the specified conformations, but do not yield an actual configuration integral.

types. The challenge in this method is achieving adequate sampling
In what follows, it will be assumed that an adequate over what may be a very large volume of conformational space.
approximation to changes in free energy can be obtained by As demonstrated below, eq 6 can be used to compute converged
integrating over only the “soft” internal degrees of freedom, numerical values of\yc for small molecules with few degrees
i.e, the m torsion angles lacking significant double-bond of torsional freedom. For larger molecules, the convergence
character. This will be a good approximation so long as the and accuracy of the calculation can be improved by spending
conformational transformations considered do not significantly more computational effort in areas of the integration volume
alter the probability distribution of the neglected “hard” degrees Where the value of the Boltzmann factor is large. A method
of freedom?* Furthermore, the “hard” degrees of freedom are for doing this is now described. _
expected to require a quantum, rather than a classical, treatment, Predominant States. The predominant-states approxima-
Also, in the present paper, solvent effects are treated only bytlon2° uses the fact that the largest contributions to the

simple dielectric screening models. In effadt+ Wis replaced  configuration integral are found in and near energy minima,
by an energy functiofE consisting of the vacuum force field because the Boltzmann factors are largest at these minima. The

evaluated with a dielectric constant greater than or equal to 1. complete configuration integral is therefore approximated from

With these simplifications, the configuration integral may be the free energy contributior§ of a finite numbeM of potential
rewritten as energy wells. Thus,

M

2~ CZo 3) Aor = Ay = —anzeWRT (7)
1 m g
2T _—E({¢})/RT
Ztor =)o e teh d¢i 4) where
int 1=
. . . v, N
where C is a constant that results from integration over the A~ —RTIn o g ERT 8)
“hard” degrees of freedom. In what follows, we will speak of N-;
the “conformational free energyfor = —RT In Zy.. Note, J

however, that the “mining-minima” method can readily be 5nq Ay is the conformational free energy computed by the
generalized to include the neglected degrees of freedom a”dmining-minima algorithm described in detail below. Herg,

more sophisticated solvent models. is the volume of configuration space sampled for energy well
Monte Carlo Integration. The conformational free energy, j, and Nj is the number of random conformations generated
Awr, can be rewritten &8 during MC integration of welj.
Caorrection for Other Conformations. For potential energy
— _RTIn l@—E(w})/RT 5 landscapes in which the free energy is dominated by a small
Ator = Oy ®) number of very low-energy states, the predominant-states

calculation outlined above will provide well-converged free
energy values. However, for systems with many degrees of

whereV = (27)™ is the volume of conformation space and the .
. freedom, and for those with smooth energy landscapes, the
angle brackets represent an unweighted mean of the Boltzmann

factor over conformation space. In what follows, the internal configuration integral is generally not dominated by a small
N space. Y number of low-energy states. Instead, an extremely large
symmetry numberoir; is not included explicitly. Instead,

: . . volume of configuration space makes a non-negligible contribu-
internal symmetries are accounted for by computing the mean

| ¢ b fth ¢ . ftion to the overall free energy. As a consequence, the
Boltzmann factor over a subset of the conformation space of o qominant-states calculation is slow to converge and may
relevant dihedral angles. For example, for rotations about

) ' ¢ ignore important contributions from relatively high-energy states.
methyl dihedrals, the mean is computed for the dihedral range ™ |, such cases. the results can be corrected by using a
[0, 27/3], and the requisite change is made to the volume term. petropolis Monte Carlo method in the entire conformational
The unweighted average in eq 5 may be evaluated numericallyspace to compute the fractional occuparfgy,of the M states
as an average over a large numb&of randomly generated  that have been sampled. Then, as previously sh8wf# the
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corrected free energfm,corr is given by 1. T i —
180 (—Hyrre—i
Aviacor = A + RTIn(fy) ©) i | :
R TELER 1
It is thus possible to correct for conformations not included in 90 JL . j
the M energy minima iffy can be computed with sufficient T T 1
accuracy. - .
Y o0
Methodology - 8
The mining-minima methodology involves locating minimum —90
energy structures and computifgam. Then a Metropolis
Monte Carlo simulation is carried out in order to calculate the i |
fractional occupancyfy, of the portion of phase space occupied i )
by theM energy minima. The method is illustrated here for —180
alanine dipeptide. The example calculations were carried out —180I ! 00 — o — 90 — 180
using a locally modified version of UHBE, the CHARMM ¢

22 parameter sét,and a constant dielectrie,= 25.0. This £ L First PE well of alanine dioentide. The | filed circl
particular calculation is used merely for illustrative purposes, —'9ure 1. First PE well of alanine dipeptide. The large, filled circle
indicates the location of the global minimum of alanine dipeptide for

so no attempt has been made to optimize the computationscaycjations carried out at= 25. The other marked points indicate

inV0|Ved- The reSU|tS_ of more chall_enging cases are presentedow-energy structures located as subsequent hypershells are sampled.
in the Results and Discussion section. An energy cutoff of 42 kJ/mol above the minimum PE was used in

Integrating over Energy Minima. Calculation ofAyy is this calculation. The dashed line represents the extent of the PE well.
an iterated, three-step process. First, a new local energy
minimum is identified. Second, the extent of the associated
potential energy (PE) well is determined. Third, the free energy

of the PE vyell IS calculate_d by Mante Carlo Integration. '_I'h_|s conformations a finite probability of using some torsion angles
procedure is repeated until a convergence criterion is SatISerd.from the structures of stored energy minif}. The idea is
i}

Finding a Local Minimum StructureThe conformation of 4t gifferent local energy minima may be similar to each other.
the molecule being analyzed is specified by a sendlihedral It therefore makes sense to use previously located minimum
angles. Minimum energy conformations are identified by & giryctures as partial solutions when proposing new conforma-
novel algorithm, termed “anamnestic” because it uses the tions This feature of the present method is similar in spirit to
memory of previously found minima to speed convergence. The e possibility of a crossover mutation in a genetic algoritaT?

the search simply focuses on the lowest energy conformation
found so far.
The present method is enhanced by allowing newly generated

procedure is as follows. _ _ _ and was found to markedly improve the ability of the present
In the early stages of "anamnestllc".sampllng, random dihedral method to find deep minima quickly. Repeated cycles of
angle valueq ¢} are generated within the range, n] for anamnestic sampling will rapidly locate a deep local minimum

dihedrals with no internal symmetry, and the potential energy with energyEnminj. For alanine dipeptide, the first minimum
of each conformation is computed. Dihedral angle values are found—shown as a large filled circle in Figure-lvas the global
generated in a restricted range for internally symmetric dihedrals; minimum at¢ = —160 andy = 132. The performance of this
for example, methyl dihedral angles are generated in the rangeminimizer on more complex systems is discussed below.
[0, 27/3]. As sampling proceeds, conformations are generated  Determining the Extent of the PE WelGiven a minimum
with torsion angles that lie in a gradually decreasing range aboutpE structure, successimedimensional rectangular hypershells
the current minimum PE structure, thereby narrowing in on a about the minimum are sampled in order to locate low-energy
local energy minimum. Any time a new conformation is more  structures that are nearby in dihedral space. Low-energy
stable than the existing energy minimum, the center of the structures within a hypershell are located by anamnestic
sampling range is moved to the new energy minimum. This sampling, with the following constraints. First, only structures
procedure is motivated by the idea that it makes sense to seekyelow a given potential energy cutdf .. relative to the energy
low-energy structures in regions where relatively low energy E;,; at the base of the well are retained. Second, low-energy
structures have already been found. Once the sampling rangestructures within a hypershell are not allowed to be closer to
narrows to zero, a local energy minimym;} has been located.  each other than a specified excluded dihedral range. In practice,
This local minimum is stored for use in later cycles of this criterion means that two low-energy structures must differ
anamnestic sampling. by more than the excluded range in at least one dihedral angle.
This procedure is related to the global-underestimator method This excluded-range criterion prevents the bottom of the energy
of Phillipset al1® The global-underestimator method constructs well from being rediscovered repeatedly and allows “mining”
a quadratic function that approximates and underlies a set ofof the PE well fordifferent low-energy structures, thereby
previously located local minima. The method assumes that theidentifying the extent of the well.
global energy minimum lies near the minimum of this quadratic = Sampling in the hypershells around a given energy minimum
function. Therefore, a new set of local energy minima is isterminated under two conditions. First, sampling ceases when
generated in the vicinity of the minimum of the quadratic no new structures are found with potential energy below a fixed
function. A new global estimator is generated from these Eminj + Ecuorr The example calculation presented here uses
minima, and the process iterates to convergence. However, itan energy cutoff of 42 kJ/mol. Alternatively, sampling ceases
is likely that the minimum of the global underestimator will, in  when structures in a hypershell descend into a different PE well.
fact, be near the lowest energy structure in the set of local This is implemented as follows. As each hypershell is sampled,
minima used to define the underestimator. Therefore, in the the minimum PE found within the hypershell is retained. As
present study, the global underestimator is not used. InsteadJong as the minimum PE increases with subsequent hypershells,
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— ' _ Figure 3. All PE wells found during mining minima calculations of
180 90 (% 90 180 alanine dipeptide. Dashed lines represent the extent of the 11 PE wells

found for alanine dipeptide. The conformation of lowest energy within

Figure 2. Monte Carlo integration of the first PE well. Dots mark the  each well is identified by a filled circle. Strips between wells guard

location of random conformations generated during MC integration of against double-counting any regions of phase space. Minimum energy

the PE well. For clarity, only 10% of the generated conformations are structures that lie on the edge of dashed boxes represent “wells” which

included in this figure. should more properly be considered “patches” on the sides of
neighboring PE wells (see text).

the hypershells are considered to be contained within the current
energy well. However, when the minimum PE of a hypershell
is less than that of the previously sampled hypershell, that
hypershell is considered to be associated with a different energy’
well and sampling within the current well therefore ceases.
The low-energy structures in the outermost hypershell define

PE wells are separated by narrow gaps, as seen in Figure 3.
The free energy contribution of these portions of phase space
are accounted for by thHeT In(fy) correction described below.
Computing the Fractional Occupancy. A Metropolis
Monte Carlo simulation is performed, generating a Markov chain
the extent of the PE well. The low-energy structures in of accepted conformations. Thg step size is adjusted to yield
an acceptance rate of approximately 50%. Each accepted

successive hypershells around the global minimum of alanine o . .
- . - conformation is checked to determine whether the conformation
dipeptide are shown in Figure 1. The rectangular extent of the .

associated PE well for this global minimum is represented by IS I a region of ConformaF|qnaI space correspond!ng o a
a dashed line. minimum located by the mining-minima procedure just de-

scribed. The fractional occupancy of these minima is computed

Calculating the Free Energy of the PE Wellhe free energy and used to correct the predominant-states result according to
A of an individual PE well is computed by Monte Carlo eq 9u P ! . g

integration, using eq 8. Random conformations are generated
uniformly within the dir_ledr_al range specified by _the extent of Rasults and Discussion

the PE well, as shown in Figure 2, and the unweighted average o ] .

of the Boltzmann factor is computed for this region of phase  Convergence and Timings for Oligopeptides and XK263.
space. The number of random Conformatibh?s proportional Computationa| Details The methods detailed above have been
to the volume of the well, with a minimum and maximum applied to a series of alanine oligopeptidesn(= 15, 7, 9),
number of conformations specified by the user. The quality of and to XK263 (1), an inhibitor of HIV-1 proteasé3 Free
convergence of the Monte Carlo integration within individual €nergies were computed both by MC integration over the full
energy wells is examined in the Results and Discussion section.conformational phase space (eq 6) and by the mining-minima

Finding More Local Energy Minima.The entire procedure ~ Procedure.
is iterated, with the restriction that trial conformations that fall

within minima that have already been sampled are rejected. This O ‘
prevents double-counting of energy minima and forces the
algorithm to continue mining new energy wells. This method O O
of excluding previously discovered minima can be viewed as a 0 ol v o
form of poling3’ N N NJ\N /@

o)

n
I

The free energy is accumulated according to eq 7 as more

minima are sampled. The process halts when the change of v oM
the cumulative free energy meets a user-specified convergence
criterion. For the present illustration, 11 PE regions were
sampled in order to converge the cumulative free energy of
alanine dipeptide to within 1 ppm. The rectangular extents of Initial coordinates for the alanine oligopeptides were gener-
these minima are shown as dashed lines in Figure 3. Becauseated by the program Quanfan the alltransconformation. For

no attempts have been made to optimize this example calcula-XK263, the coordinates of the protein-bound inhibitor were used
tion, not all of the PE regions represent unique minimum energy directly3® All calculations used a locally modified version of
structures; some are “patches” on the side of a minimum PE UHBD?3° and the CHARMM 22 parameter sét.Oligopeptide
well. This does not diminish the accuracy of the calculation, structures were energy minimized briefly with nonbonded
however, because the MC integration to compAteneither interactions turned off in order to establish a uniform set of
requires nor assumes harmonic energy wells. For ease of codindhonds and angles. However, following this protocol for XK263
and to prevent double-counting of any regions of phase space led to extreme steric overlap of ring substituents. Therefore,
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TABLE 1: Calculated Free Energies for Alanine
Oligopeptides and XK263

AIVIC AIVIM RTIn(fM) ANIM,corr
[kd/mol] [kJ/mol] M [kd/mol] [kJ/mol]
Ala, e=1 —188.51 -—188.28 7 —020 —188.48
e=25 -10.85 —10.79 7 —0.28 —11.07
AA —177.66 —177.49 —177.41
Alaz e=1 -—-31052 -31045 16 —0.24 —310.69
e=25 —2201 -—-2181 26 —0.46 —22.27
AA —288.51 —288.64 —288.42
Alay e=1 —433.85 —433.81 14 —-0.22 —434.03
€e=25 —3406 —3245 36 —1.79 —34.24
AA —399.79 —401.36 —399.79
Alas e=1 —555.07 -556.77 15 —-0.90 —557.67
€e=25 —46.73 —4216 70 -511 —47.27
AA —508.34 —514.61 —510.40
Alag e=1 -669.73 —677.91 59 -—-256 —680.47
e=25 —5883 —4843 11 -12.72 —61.15
AA —610.90 —629.48 —619.32
Alag e=1 —-91264 -940.35 29 —159 —941.94
€e=25 —83.01 —75.13 242 -13.56 —88.69
AA —829.63 —865.22 —853.25
Ala;, e=1 —1209.5 22 —-98 —1219.3
e=25 -94.1 100 —-22.7 —116.8
AA —1115.4 —1102.5
XK263 €=1 85.07 72.88 61 -—0.37 72.51
€e=25 209.52 201.83 35 —146 200.37
AA 124.45 128.95 127.86

aAyvc, free energy computed by MC integration over complete
conformational spacefwm, free energy computed by the mining-
minima procedureM, number of minima sample®TIn(fw), fractional
occupancy correction toAwm; Awmcor, Auv + RT In(fy). P The
calculation of RT In(fu) for alanine decapeptide has not converged;
this value should therefore be regarded as unreliable.

the XK263 structure was minimized with electrostatic interac-
tions turned off and van der Waals interactions turned on. MC

integration and the mining-minima procedure were carried out

for rotations of thep andy backbone dihedral angles of the

oligopeptides and for the 10 substituent dihedral angles of

XK263. Oligopeptide methyl dihedrals and XK263 ring
dihedrals were not sampled. A minimum of 28.0° and a

maximum of 5.0x 10* random conformations were generated
during MC integration of individual minima located by the

J. Phys. Chem. A, Vol. 101, No. 8, 1997613

mining-minima procedure. Free energies for each molecule
were computed with dielectric constants of 1 and 25.

MC Integration of Full Conformational VolumeFree ener-
gies computed by MC integratioAyc are listed in the first
data column of Table 1. A number of general conclusions may
be drawn from analysis of these calculations.

First, the calculations with a dielectric constant of 25 converge
more quickly than the vacuum calculations. The left side of
Figure 4 plots the computed free energy as a function of the
number of MC samples for alanine dipeptidecat 25 ande
= 1. Note the difference in energy scales of the graphs. For
alanine dipeptide, the = 25 calculation yields good conver-
gence with about half the number of MC samples required for
the e = 1 calculation.

The chief reason the = 25 calculations converge more
quickly is illustrated in Figure 5. This figure presents two-
dimensional projections of the potential energy landscape of
alanine dipeptide, for = 25 in the upper panels and fer= 1
in the lower panels. The points mark conformations located
during the mining-minima calculations described below. The
energy landscape shown fer= 25 varies relatively smoothly,
and many conformations have similar energies. Thus, the MC
calculation converges relatively easily. In fact, in the case of
a perfectly flat landscape in which all conformations have the
same energy, a single MC sample would suffice to compute
the exact free energy.

In contrast, thee = 1 energy landscape is dominated by a
single deep energy well, labeled A in Figure 5. Random
conformations generated during MC integration must repeatedly
sample this deep minimum in order for the computed free energy
to converge. This difficulty is exacerbated as the system gets
larger; thee = 1 energy landscape for larger oligopeptides is
always dominated by a few deep minima that account for a
very small portion of an ever-larger conformational phase space.

In addition, as might be expected, the free energy of small
systems converges more rapidly than that of large systems. As
shown in Figure 4, the free energy of alanine dipeptide appears
well-converged after fewer than 2:01(P steps of Monte Carlo
integration. In contrast, even for the relatively smoethk 25
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Figure 4. Convergence plots for Monte Carlo integration of alanine dipeptide and alanine pentapeptidelabnde = 25. Every¢ andy

dihedral angle was sampled in the range [8].2
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Figure 5. Potential energy surfaces of alanine dipeptide. Points mark structures located during mining-minima calculatiorisaatde = 25.
The graphs on the left project all points onto thexis, and the graphs on the right project all points ontoittexis. See text for descriptions of
labeled minima.

sampled,M, for the oligopeptides and XK263. In all cases,
minima were accumulated until the energies were converged
to 1 ppm. An energy cutofEqyr Of 167 kd/mol above the
energy minimumEmin; was used for sampling hypershells in

280.0 |

|
' r=25 -
L- ¥

240.0

T 20
E I —_ each PE well. Four conclusions may be drawn from analysis
s — ] of these calculations.
o 2100 | T First, in contrast to MC integration, the mining-minima
pree | ELELERSREL B method converges more quickly for the sharply peakeel 1
f i potential energy surface than for the smoeth 25 surface. In
o Y _ 1 Figure 7, the cumulative free energy is plotted against the
E 000 ey - number of minima sampled. The free energy of alanine
S ] | dipeptide is again shown on the left, with that of alanine
i | o pentapeptide on the right. The deep minimum labeled A in
B & 1] Figure 5 makes a dominant contribution to the free energy of
{400 w0 la+ 7 alanine dipeptide. This energy minimum is located very early

Number of Conformations
Figure 6. Convergence plots for Monte Carlo integration of XK263.

Integrals range over [0z] for phenyl dihedrals and [0,/g for all other
substituent dihedral angles.

in the mining-minima process, and once it is sampled, additional
minima make only small additional contributionsAgu. On
the other hand, foe = 25, the various minima are similar in
energy, so a larger number must be sampled in order for
) ] ) convergence to be achieved. It is worth pointing out that the
energy landscape, Monte Carlo |;1tegrat|on of alanine pentapep-ree energy yielded by the mining-minima method is an upper
tide has not converged in 2.010" steps. As the size of the 1,04 15 the true result, barring numerical problems. As the
system increases, this problem naturally becomes more severey,~ integration within a single well progresses, the computed
We therefore re_gard as unreliable the Yall_]em shown in value of A can fluctuate. Convergence of the MC integration
Table 1 for peptides longer than AlaAs indicated by the gap T . . . .
. . . within individual wells is examined in more detail below.
in Table 1, we did not even attempt to compAig: for alanine : -

However, as the free energies of more minima are accumulated

decapeptide, with 18 dihedrals. . .
. . . . . according to eq 7, the computed conformational free energy
Finally, the MC integration method is very poorly suited for '
Auw falls monotonically.

treating systems like XK263, in which large portions of ) o
conformational phase space have high energies due to van der For small systems, free energies computed by the mining-
Waals overlap between the large side chains. For this molecule,minima method agree extremely well with free energies
only a small portion of phase space makes a substantialcomputed by MC integration, particularly for the sharply peaked
contribution to the free energy, even when a high dielectric € = 1 potential energy surface. For systems as large as alanine
constant is used. This results in slow convergence of the MC tetrapeptide-with six dihedral degrees of freederthe value

integration, as illustrated in Figure 6.

“Mining-Minima” Results. The second and third columns
of Table 1 list, respectively, the free energies computed by the ancies found for larger molecules probably result from the poor
mining-minima procedureAyw, and the number of minima

of AA = A—; — Ay is essentially identical for both MC
integration and the mining-minima calculation. The discrep-

convergence of the brute force MC calculations that yigld.
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Figure 9. Sequence of energy wells of alanine pentapeptide found by
the mining-minima method at = 25. Crosses marknin; and filled
squares marky of each energy well.

Second, as was the case for MC integration_, c_:onvergence iSTABLE 2. Comparison of Second and Third Minima Found
slower for larger systems. For example, obtaining converged for Alanine Pentapeptide ate = 25

results ak = 25 for alanine pentapeptide requires sampling 10

Figure 8. Number of minima required to converggm of alanine
oligopeptides to 1 ppm, wite = 1.

. - - - : - minimum 2 minimum 3
times as many minima as for alanine dipeptide (see Figure 7). Enn; [k3/Mol] 5371 —53.72
In general, as the system size increases, more minima mustbe 5 ka/moI] —32.49 —36.46
sampled in order to reach the same level of convergence. s 7 e
However, an interesting exception to this general trend is 1//11 4 33
illustrated in Figure 8. This figure plots the number of minima b2 —76° —74
required to converge the= 1 free energies to less than 1 ppm, W2 —21° —34
as a function of the number of peptide units. Alanine hexapep- ¢3 -7z -0
tide requires roughly twice as many minima for convergence LE —34 -3
as predicted by interpolation between alanine pentapeptide and f}‘: —_12; :ifg:

alanine octapeptide. The explanation is as follows. For these

molecules at = 1, the CHARMM potential energy surfaces ~ *Eminj, minimum potential energy within well, free energy of

of oligopeptides up to 5 units long are dominated by structures &'

with repeating, ringlike Cg units. For longer oligopeptides,  that each minimum can be sampled only once. This result is

o -helical structures predominate. The hexapeptide and, to aillustrated for alanine pentapeptidecat 25 in the lower portion

lesser extent, the octapeptide fall in the transition between theseof Figure 9.

two regimes. As a consequence, many largely-helical However, increasing potential energy does not necessarily

conformations are similar in energy to conformations with imply increasingreeenergy, as illustrated by comparison with

repeating C4y units. Therefore, all these minima must be the upper portion of Figure 9. For example, the second and

sampled to achieve convergence. Remarkably, this change inthird minima found for alanine pentapeptide have virtually

preferred conformation is consistent with results of more identical potential energidsninj, but their free energied; differ

elaborate FEP calculations using explicit solvent molectiles. by about 4 kJ/mol, as shown in Table 2. In addition, the
Third, the mining-minima procedure tends to sample minima conformations at the two energy minima are quite similar. The

in order of increasing potential energy. This reflects the successchief conformational difference is thgt, changes from-60°

of the technique used for finding energy minima and the fact to 11¢°. The difference in free energies can be rationalized by
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the data, with a correlation coefficient of 0.70. 00100 1e10%  Doi0d  Detol deror Eatos
Number of Conformations (N.)
go LTy IR LR ]
F 3 Figure 12. Convergence plots for Monte Carlo integration within
8 e . individual PE wells of alanine pentapeptidecat 25.
5 7° 3 €=25 E TABLE 3: Approximate CPU Times for Free Energy
E v [ 3 Calculations of Alanine Oligopeptides and XK263
E o E_ _; Awmc Amm RTIn(f)
> SR N T I T N CPU [min] M CPU [min] CPU [min]
[=11] 210 :L‘ N T T et I_':
o : 1 Ala, e=1 20x10 55 7 2.0 15
;5 208 = €e=25 1.0x 10° 27 7 2.6 1.5
o F 3 Alag e=1 10x10 480 16 110 5.6
o 206 W e=25 1.0x 107 540 26 190 11
= b < 3 Ala, e=1 35x100 2700 14 150 27
F 3 e=25 2.0x 10 1700 36 470 35
202 4 Alas e=1 20x10 2200 15 370 170
T e=25 2.0x 10 2300 70 1100 100
0 10 20 30 40 50 80 Alas e=1 10x10 2400 59 1200 270
Number of Minima e=25 1.0x 10 1700 11 240 190
Fi 11. C | f - . lculati f XK263 e=1 1.0x 107 3000 61 1300 240
igure 11. Convergence plots for mining-minima calculations o e=25 10x 100 3000 35 1700 700

XK263 ate = 1 ande = 25.
aN, number of randomly sampled conformations; CPU times
measured on an SGI R4400 Indfgeorkstation. See Table 1 for other

reference to the potential energy surfaces of alanine d'pept'desymbols.

(Figure 5). Energy minimum 3 of the pentapeptide fas=

110, corresponding to the broad minimum labeled C, and
therefore has a relatively low free energy. In contrast, energy
minimum 2 corresponds to the narrower well with~ —60,
labeled B.

It is of interest to examine the correlation between potential
energy and free energy. As shown in Figure 10, there is a
significant correlation betwedsn; andA, for the energy wells
at ¢ = 25 for alanine pentapeptide. The slope of the least
squares fit is 0.47, implying that &sinj rises, the width of the

On the other hand, not all of the free energies are perfectly
converged; see especially the top plot of Figure 12. In the
present case, this lack of convergence has little effect upon the
final results, because it occurs in a high-energy well that
contributes little to the configuration integral. It should be
possible to minimize such convergence problems by applying
an appropriate convergence criterion. Although this would
require additional computer time for some energy wells, it

energy well increases. However, the correlation betviggs) ;T}?;l]dt;g?r?ti T:I ggrl]f/lg?tg): ?afoi;lth(es ;olr:eiz E?én inzc))n casein
andA is far from perfect. Similar correlations are seen for all Integ g pIay g .
of the systems studied here (data not shown). This result Correction for Other Conformations by Fractional Oc-

highlights the importance of examining not only the depth of cupancy. A weakness of the mining-minima procedure is that,
each PE well but also its shape and breadth. by itself, it neglects free energy contributions from conforma-

Fourth, the mining-minima procedure is ideally suited to tiqns that do not lie in the deepest energy minima. Ina_system
systems like XK263. Precisely the same features that make With many degrees of freedom, these other conformations can
this system a challenge for the simple MC integration method contribute significantly. Their contribution |s.asse.ssed here
make it appropriate for the mining-minima procedure. The through the use of eq 9, and the results are listed in Table 1.
procedure quickly locates and samples the narrow energy wells, As shown, even systems as small as alanine dipeptide have
yielding excellent convergence, as seen in Figure 11. a noticeable contribution froRTIn(fy). As one would expect,

MC Integration of Indiidual Minima. Convergence plots  in general the correction is larger fer= 25, resulting from
are shown in Figure 12 for MC integrals within the 15 energy Smoother pseudosolvent landscapes with many roughly equiva-
wells located for alanine pentapeptidecat 1 (see previous lent minima. As system size becomes large, it again becomes
subsection). Within each well, §10* random conformations  difficult to converge the Metropolis Monte Carlo calculations
were generated. The convergence is excellent for most of the©f fu (results not shown). Itis likely that a more efficient MC
wells. Itis clear that restricting the limits of integration to areas algorithm, such as a configuration-biased mettfotf, will yield
of low energy drastically improves convergence of the calcula- improved convergence.
tion, compared with the MC integrals in the entire conforma-  CPU Timings. Approximate CPU timings, in minutes, are
tional space (see Figure 4). listed in Table 3. The CPU times for the MC integration method
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are significantly longer than those for the mining-minima for the dihydroxy and dibenzyl, dihydroxy substituted ureas and

procedure, even though the results of the MC integration methodless than 2.4 kJ/mol for the dibenzyl, diethyl, dihydroxy

are not reliably converged. Moreover, the mining-minima substituted urea.

method has not yet been optimized for speed. 5,6-Dihydroxy Cyclic Urea.The most stable conformation
Conformational Preferences of Substituted Cyclic Ureas. of the cyclic urea core is predicted to be the pseudoboat ring

The cyclic urea inhibitors of HIV-1 protease possess four conformation in which the dihydroxy substituents are in an axial

different stable ring conformations. The mining-minima method orientation. Ten energy wells sufficed to converge the free

is used here to assess the relative stability of these conformationgnergy to within 0.1 ppm.

for three cyclic ureas with different substituents. 4,7-Dibenzyl-5,6-dihydroxy Cyclic UreaDibenzyl substitu-

tion at the 4,7 positions favors the chair-axial conformation of

)O,\ the ring. This conformation positions the dibenzyl substituents

N away from the cyclic urea core. Part of the reason this
conformation is stable is that its minimum PE is lower than

those of the other three ring conformations. In addition, the

HO chair-axial conformation has a large number of PE wells of
111 similar free energy: 65 minima were required to converge the

free energy of this conformation, while fewer than 30 minima
were required to converge the free energies of the less stable
ring conformations.
4,7-Dibenzyl-1,3-diethyl-5,6-dihydroxy Cyclic UreAddition
of diethyl substituents on the cyclic urea nitrogens favors the
chair-equatorial conformation. Sixty-five minima were required
to converge the cumulative free energy to 0.1 ppm. In contrast
to 4,7-dibenzyl substitution, the most stable ring conformation
Computational Details.Four stable ring structures of 5,6- in this case has fewer PE wells of similar free energy than do
dihydroxy cyclic urea were identified by high-temperature the less stable ring conformations. Favorable van der Waals
molecular dynamics followed by energy minimization. The ring interactions between benzyl and ethyl substituents may help to
may adopt either pseudoboat or pseudochair conformations. Instabilize the chair-equatorial ring conformation.
either case, the two hydroxy substituents on the ring may be Implications. The conformational preferences presented here
either axial or equatorial to the ring. There are thus four distinct are consistent with experimental analyses of these and related
ring conformations. These will be referred to according to ring molecules by X-ray crystallography and NMR spectrosctis.
conformation and hydroxyl orientatiorg.g, the boat-axial  This could be coincidental, given that the present calculations

structure. treat environmental effects crudely. Nonetheless, the results
Benzyl and ethyl substituents were built onto each of the four are encouraging.
stable cyclic urea structures using Quafitarhe 12 resulting This problem would be challenging for perturbative methods

and to optimize bonds and angles. The mining-minima force the ring in steps from one stable conformation to another,
procedure was used to sample over the dihedral angles of theaqyjilibrating the system at each step. This could be difficult,
substituents of the ring and thus to compute the conformational que to the high-energy barriers between stable conformations
free energy of each stable ring structure. Methyl dihedrals were of the ring. With the present method, it is necessary only to

sampled over the range [072]; phenyl dihedrals were sampled  compute the free energies of the four stable conformations.
over the range [Ox], and all other substituent dihedrals were

sampled over the range-fr, 7]. Cumulative free energies for
each molecule were converged to 0.1 ppm. All calculations
used the CHARMM 22 parameter etind a distance-dependent The mining-minima procedure described here allows direct

Conclusions

dielectric,e = 4r. computation of conformational free energy for systems with
The results of these calculations are listed in Table 4. The modest numbers of torsional degrees of freedom. No assump-
reported free energy values includ®T In(fy) corrections. tions are made concerning the number or nature of low-energy

However, these corrections were small: less than 0.4 kd/mol states. In particular, it is not necessary to assume that the energy

TABLE 4: Calculated Free Energies for Substituted Cyclic Uread

o o °
el eSguel sy 'se
k o oM o' oM

HO OH
AMM,corr M AMM,oorr M AMM,corr M
[kJ /mol] [kJ [mol] [kJ/mol]
boat-axial 54.49 10 88.64 22 123.7 87
boat-equitorial 60.78 9 98.23 29 123.3 74
chair-axial 60.92 10 76.06 65 121.3 96
chair-equitorial 74.02 10 102.54 26 105.2 65

aSee Table 1 for symbols.
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wells are harmonic or that they all have the same shape. The (1}) Stouten, P. F. W.; Fromel, C.; Nakamura, H.; Sander, ®lol.
; ; (. Simul. 1993 10, 97-120.

new m_ethod is partlcula_rly useful for systems whose configu (12) Cramer, C. J.. Truhlar, D. G. IiReviews in Computational
ration integrals are dominated by a few low-energy conforma- cpemistry Lipkowitz, K. B., Boyd, D. B., Eds.; VCH: New York, 1995;
tions. However, the method may still be used for systems that vol. 6, pp 1-72.
do not meet this criterion because an additional Monte Carlo 94(%)0;1111&5- L.; Bell, A. T.; Theodorou, D. N. Phys. Chem199Q
_calculatlon can be used to correct for conformations not included ’(14) Magmn" E.J.: Bell, A. T.. Theodorou, D. N. Phys. Chermi995
in the sum over energy minima. 99, 2057-2079.

The method yields excellent convergence and good agreement  (15) LipkﬁwitZ. K. B.; Demeter, D. A.; Zegarra, R; Larter, R.; Darden,

i ; ; i i i~ T.J. Am. Chem. S0d.988 110, 3446-3452.
with experiment when applied to a series of druglike, synthetic ™% T % o S P o n 2 0 e ot Chem989 10, 595-
ligands of HIV-1 protease. It is anticipated that this procedure gq5
will also be useful in computing the free energy of binding of (17) Wang, J.; Szewczuk, Z.; Yue, S.-Y,; Tsuda, Y.; Konishi, Y.;
small molecules with synthetic hosts and perhaps with protein PU”Séma’ E. OJ. Mol. Biol. 199%253 4735‘;92- <0499 %
receptors. This application will require sampling over the (11 ) Wang, J.; Purisima, E. Q. Amer. Chem. S0d996 118 995-
external position and orientation of a molecule in addition to  (19) Phillips, A. T.; Rosen, J. B.; Walke, V. i®imacs Series in Discrete

its internal degrees of freedom. The procedure is currently being Mathematics and Theoretical Computer Scigmmerican Mathematical
adapted for this purpose. Society: Providence, RI, 1995, Vol. 23, pp 18198.

. . 20) Gilson, M. K.Proteins: Struct., Funct., Genet993 15, 266-
The free energy calculations presented here utilize the 285 ) Gils ns: St ! 3

CHARMM parameter set and a simple treatment of solvent  (21) Vieth, M.; Kolinski, A.; Skolnick, J.J. Chem. Phys1995 102,
effects. However, the method can be used with any fast energy6189-6193.

: - (22) Vieth, M.; Kolinski, A.; Brooks, C. L., lll; Skolnick, JJ. Mol.
and solvation model. Moreover, the basic steps of the g - 1995 251 448-467.

algorithm—finding and integrating over new minima and (23) Hill, T. L. Cooperatbity Theory in Biochemistrylst ed.; Springer
computing the fractional occupancy of the minima that have Series in Molecular Biology; Springer-Verlag: New York, 1985.
been sampledcould be implemented with a variety of other (iﬁ4|c)>rglsson' M. K.; Given, J. A Bush, B. L.; McCammon, J.Biophys.
algorithms. For example, distance-geometry methods could be™" 55y pitzer, k. S.J. Chem. Phys1946 14, 239-243.

used to rapidly locate conformations that might be in or near  (26) Chandler, D.; Pratt, L. Rl. Chem. Phys1976 65, 2925-2940.
important energy minima. Also, as noted above, the Metropolis __(27) Mayer, J. E.; Brunauer, S.; Mayer, M. &.Am. Chem. S0d.933

: ; 55, 37—53.
Monte Carlo method probably is not optimal for computfpg (28) Press, W. H.; Flannery, B. P.; Teukolsky, S. A; Vetterling, W. T.

Finally, an alternative formwaﬁon_Of the mi_ning'mini”_]a ap-  Numerical Recipes: The Art of Scientific Computi@gmbridge University
proach, not presented here, is readily parallelizable. This shouldPress: London, 1986.

rmit even f r fr ner Iculation n rallel r- (29) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.
permit even faster free energy calculations on parallel supe H.; Teller, E.J. Chem. Phys1953 21, 1087-1091.
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