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We present a new method, the least-error matrix analysis (LEMA), to quantify the dynamic matrix from a
series of 2D NMR exchange spectra. The method is based on a weighted averaging of individual dynamic
matrices. The matrices are obtained by full-matrix analysis (FMA) from a series of 2D exchange spectra
recorded at different mixing times. The weights, calculated by error propagation analysis, are explicit functions
of the mixing time. The principal advantage of LEMA in comparison to FMA is that it uses all the known
relationships between the spectral peaks: the peak correlations within 2D spectra, and the mixing time evolution
among the spectra. We tested LEMA by analyzing a series of 10 cross-relaxation spectra (NQESSQ
us—1.28 s) in a rigid 10-spin system (cyclo(L-Pro-Gly) in 3:1 v/y®IDMSO). At 233 K the dipeptide has

a mobility like a small protein with a correlation time of 3.8 ns. While FMAzat= 30 ms could extract

only 14 distances in a range 1:78 A, LEMA provided 22 distances, of which the longest was 4 A. The
extension of the available interproton distances frono 3 tA afforded by LEMA is caused by a 10-fold
decrease of the lower limit of measurable cross-relaxation rates,fi@s0 to—0.06 s. The most important
property of LEMA, provision of accurate average values of magnetization exchange rates from a given set of
peak volumes, is verified experimentally on a model system.

Introduction a

The most notable forms of two-dimensional (2D) NMR
exchange spectroscopyhat contributed immensely to the
popularity of 2D NMR method in chemisthare the chemical
exchange spectroscopy (EXS¥)and nuclear Overhauser
enhancement spectroscopy (NOESY)A particularly impres-
sive application of NOESY is the determination of the solution
structure of protein$. Although a semiquantitative analysis was
typically used for it, it is well recognized that the quantitative BU
analysis of cross-relaxation spectra might be more usefél.
Similarly, the quantification of EXSY spectra improves their
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Figure 1. Schematic representation of the connectivities used in
different methods for quantification of a series of 2D exchange

utility to study chemically exchanging systeﬁi’s?'l However, spectra: (a) Buildup analysis (BU) uses the time evolution of individual
only a few attempts have been made to estimate the corre-cross peaks ignoring their connectivities within the spectra. (b) Full-
sponding error limitd?22-27 matrix analysis (FMA) takes into account the connectivities among the

The determination of the magnetization exchange rate con- P€aks within a 2D spectrum but ignores the time evolution of peaks.
(c) Least-errors matrix analysis (LEMA) uses all available correlations.

stants L]pqis mdependent from the tyPe of exchange_ observed It exploits the connectivities within a spectrum as FMA and the
(cross-relaxation in NOESY, or chemical exchange in EXSY), connectivities over mixing time as BU.

since both transfer types are directed by the same master
equation. The methods to quantify exchange spectra can be
roughly divided into two categories: buildup rate analysis Volume normalization, FMA requires an exchange spectrum at
(BU)8:28and full-matrix analysis (FMA§:11.13 The BU analysis zero mixing time as well. The principal weakness of BU
provides thel[]pq's from the time evolution of individual cross- analysis is that it ignores the correlations among the cross-peaks
peaks (Figure 1a), whereas FMA utilizes all peaks at a single within individual 2D spectra (Figure 1a). The calculation of
mixing time (Figure 1b). Theoretically, FMA needs only one one buildup curve ignores the properties of all other buildup
spectrum at an arbitrary mixing time. However, in the presence curves. Similarly, the FMA ignores the known dependence of
of noise the errors are close to minimum only in a limited mixing cross peaks on time evolution; the FMA at one mixing time is
time intervall®252¢ Since the width and position of the interval  independent from the FMA at any other mixing time (Figure
is not known in advance, several experiments in a broad range1p). A superior method shall use all available correlations
of mixing times are needed. Thus, both BU and FMA require \yithin and among the spectra (Figure 1c) and shall minimize
a set of exchange spectra at different mixing times. For peak ihe random errors in a least-squares manner. Here we present
a method that satisfies these requirements: a least error matrix

T On leave from Mathematical Institute, Knez Mihailova 35, Beograd, analysis (LEMA). It provides the best estimates of magnetiza-
Yugoslavia. . . L

tion exchange rate constants and their errors, using in a least-
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recorded at different mixing times. We demonstrate its use and SCHEME 1
properties on a model dipeptide system, omitting the derivation
of formulas.

Least Error Matrix Analysis (LEMA)

The spectral matrix of peak volumégzy) at mixing time
Tm is related to the dynamic matrix by®

A(ty) = exp(-Lz,)A(0) 1)
from where
= —In(A(z,)) AQQ) Y/, (2)

From a set of dynamic matricds, obtained using eq 2, the
best values of magnetization exchange rate consthigsdre
found by iterative least-squares method:

The least-squares minimization of random errors is accomplished
by eq 3 that represents the standard expression for weighted
[L(|+1)]pq Z JZ (3) averaging of a set of independent measurent@ntus, LEMA
(0T 0]

provides statistically the best estimate for the dynamic matrix
(eqg 3) and its error limits (eq 6) from a set of independently
where Li]pq is the magnetization exchange rate constant for determined matrixes at different mixing times.
the (p,q)th spin pair obtained by FMA from thkth spectrum _
and, ol is the propagated error calculated®as Materials and Methods
. To demonstrate the usefulness of LEMA, we have chosen a
M _ (T LwAPnorm)s =0 ten spin system, cycla-{Pro-Gly) () (Scheme 1) in 3:1 viv
Ok = ot LOAA 9y, i>0 (4) mixture HO/DMSO. At 233 K the dipeptide’s cross-relaxation
i ner rates are between 0.001 and 10,sas for small proteins. At
where AAnorm is the matrix of peak volume errors, ahé) is low temperatures the molecule is apparently rigid and most

likely tumbles isotropically. A series of 2D exchange spectra
the ith approximation of the dynamic matrix. The subscnpt
norm indicates that the volume errors are normalized, i.e., (NOESY) has been recorded at 233 K on a Bruker AMX 500

trometer, with mixing times 0.000 06, 0.01, 0.02, 0.03, 0.04,
expressed as a fraction of the volume of a diagonal peak (from SPEC
the spin site with unit population) at zero mixing time. Asa 0:08: 0.16, 0.32, 0.64, and 1.28 s. The spectral data were

generalization of the case of equal random errors and equal Spinorocessed using the Felix 95 (MSI Inc., San_ Diego, C.A) sqftware
populations® the propagation of errors in a system with package. The peak volumes were determined by direct integra-

arbitrary spin populations and arbitrary uncorrelated volume tion. Becguse .Of the severe spectral overlap between Fro H
errors is described by and Pro H3 their peak volumes were measured together, and

the respective component volumes were separated by the hybrid
matrix approach using the known crystal strucifrélhe proton

[o(z,. L, AAnorm)]pq z (np o rk"h%s"lo)z 1- 6Ms) positions were optimized upon their_ attachment to heavy atoms
in the crystal structure, by combined steepest descent and
Ay — A 2 T\ 2 12 adopted basis NewterRaphson method using the Charmm/
—| +9;; [AAnorm]kIZ (5) Quanta (MSI Inc., San Diego, CA) software package. Also,
g Him _ g Asm i we carried out a molecular dynamics (MD) simulation in vacuo

and minimized the structure obtained afel nsrun. Compar-
The indexes in quadruple summation traverse the elements ofing the two models (X-ray and molecular dynamics), we have

volume error matrixAAnom, and the eigenvalues and left estimated an average uncertainty in the geminal interproton
eigenvectors of L; np denotes the number of spinsgih spin distances at@= 0.025 A, that translated into 8% relative error
site. The uncertainties in the magnetization exchange rates arén the model cross-relaxation rates. Similarly, the errors for
given by® other proton pairs are estimated as 2 0.1 A for distances

belov 3 A and 2 = 0.2 A for others. As a model geometry
we have used the average distances from the X-ray and MD
(6) structure. The best agreement between the experimental and
the model values for cross-relaxation rates of geminal proton
pairs were found for. = 3.8 + 0.2 ns. For symmetric cross
Since the error limits depend on the calculated dynamic matrix peaks, the volume errordV were determined from the
L, and in return, the average value lofdepends on the error  difference of volume integrals and were estimated\¥v =
limits, eqs 3-6 must be used in an iterative manner. For the 25, = 4.8% of the current peak volume. Also, an additive error
first iteration, a subset ofx that corresponds to nonextreme (due to random noise) is estimated asqon = 0.1% of the
mixing times is used. In absence of crude errbfconverges  diagonal line atm = 0. For the diagonal lines the errors were
toward the final valud. usually after two iterations. The final  estimated as the deviation of the sum (diagohalescendant
L is the bgst ensemble average for a given set of 2D experimentscross-peaks) from a monoexponential decay. We express the
The particular FMA calculations (performed once for each error limits by 2 standard deviations, sin¢€o represents the
spectral matrix) provide information about relations at a given error interval with 95% probability. Then, in a set of 22
mixing time, while the we|ghtsa[f<]p enforce the relationship  measured distances, only one distance is expected to deviate
among the cross peaks at different mixing times (Figure 1c). more thant20 from the model value. The calculations were
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TABLE 1: Comparison of LEMA and FMA ( 7, = 0.03 s) Cross-Relaxation Rates and Interproton Distances in
cyclo-(L-Pro-Gly) (Errors Are 2 Standard Deviations, A = 20)

—Lmp?! +ALm& —ALmS —Liema% ALiema® —Leva® ALema¥ ropl Armd riemal +Ar emal —Ariemal teyal +Aremal —Argma/
index¢  spin pair st s s st st s 1 KA KI ,k ,k K A A
1 ProH3—ProH? 7.32 0.60 0.66 6.13 0.61 6.69 1.58 1.76 0i02581 0.03 0.03 1.78 0.08 0.06
4  GlyH®—-GlyH*? 6.93 0.56 0.62 7.57 0.63 7.83 1.64 1.77 0i02575 0.02 0.02 1.74 0.07 0.05
6 GlyHN—-GlyH*2 1.28 0.28 0.38 1.53 0.21 1.58 0.51 2.350.10 2.28 0.06 0.05 2.27 0.15 0.10
9 ProH—ProH3 1.14 0.25 0.33 1.19 0.16 1.19 0.45 2.400.10 2.38 0.06 0.05 2.38 0.20 0.12

13 ProH?-ProH3 0.45 0.08 0.11 0.46 0.34 0.34 0.34 2800.10 279 0.70 025 283 0.51
14 ProH—ProH® 0.41 0.08 0.10 0.57 0.14 0.59 0.23 2.840.10 2.69 0.13 0.10 267 0.23 0.14
15 ProH—GlyH*® 0.32 0.06 0.07 0.21 0.11 0.14 0.14 2950.10 3.9 0.43 0.22 340 0.82

20 ProH—ProH® 0.14 0.04 0.06 0.14 0.10 0.055 0.054 3.390.20 3.40 0.85 0.30 3®7 1.02
21 ProH—GIlyHN 0.069 0.018 0.026 0.11 0.08 0.15 0.15 3.820.20 3.52 0.82 0.30 3¢5 0.49
22 ProH—ProH? 0.064 0.017 0.024 0.054 0.053 0.13 0.12 3.870.20 4.06 0.63 346 o 0.59
27 ProH—GlyH*? 0.042 0.010 0.015 0.11 0.10 0.064 0.062 4.140.20 3.56 2.79 0.38 387 1.05

a Ordinal number in Figure 2 Cross-relaxation rates from hybrid model (X-ray and molecular dynanfits)’s are calculated from the model
Vmx'S Which have symmetric error limits. Due to finiter's, the cross-relaxation error limits are asymmetti€ross-relaxation rates calculated
from a series of NOESY spectra,{= 0.000 06, 0.01, 0.02, 0.03, 0.04, 0.08, 0.16, 0.32, 0.64, and 1.28 s) by LEMA (8E&r3)r limits from eq
6. f Cross-relaxation rates calculated by FMA (eq 2) from NOESY,,at 0.03 s.9 Error limits from eq 5." Interproton distances from a “hybrid”
model: the average of the respective distances from the X-ray structure and from minimized MD strEauigeminal pairs, the error limits
were estimated by comparing the interproton distances in X-ray and MD models; a similar estionat® (225) is obtained from uncertainty in
C*—H distance in high-resolution neutron diffraction structures of amino &&idgere, it was found that the®€&H distance varies-0.008 A due
Eac\)the weak hydrogen bonding. Assuming that the HCH angle is constant, the uncertaigtyofr0.008 A propagates inty as Dyy = 0.025

performed in Matlab 4.2c (Mathworks Inc.) software package the limits of integration errors. Then, FMA fai#§3! being
on a Silicon Graphics Indigo2 computer (SGI Inc.). The Matlab unable to produce any restilbr yielding a completely different
implementation of LEMA is available from authors by email cross-relaxation matri¥ Thus, the lower limits for the

request (zsolt@mayo.edu). accessible cross-relaxation rates (and the upper limit of the

accessible distances) are determined by the longest mixing time
Experimental Example: Cross-Relaxation in cyclo- and by the smallest peak volume that can be integrated. The
(L-Pro-Gly) at 233 K longest mixing time is determined by the fastest exchange

The cumulative experimental results are presented in Figureprocess. The sm_allest VO“.Jme that can be mte_grated W'th a
2, and for a set of representative spin pairs more details arerea_lsonable error 1S d(_atermlned mostly_by the S|gnal-to-no_|se
shown in Table 1. Figure 2a shows the experimental magne- ratio. In present experiments, the range in which the magnetiza-
tization exchange rates calculated by LEMA (filled squares and tion Qxchqnge ratesilcan be_ measured spans 2 orders of
thick error bars) and by FMA (thin error bars), in comparison magnitude: from—7 s~ for a dl_stance of 1'?5 At00.07%
with the model values (open rectangles). For clarity, the average?cor 4 A, For measurements of interproton dlstances.up to5A,
values from FMA calculations are not shown. To emphasize it would be n?cess.ary to measure the (':ross-rellaxatlon. rates as
the importance of their dynamic range, the cross-relaxation ratesk?W as 0.01 S Th]s can be a(':hlleve.d either by increasing the
are plotted on a logarithmic scale. Figure 2b shows the signal-to-noise ratio or b)_/ eliminating th? faste_st e>_(change
respective interproton distances. In both figures, the values arePTC€sS: the cross-relaxation among geminal spin pairs.
sorted according to the model distances. The longest 15 Another important property of magnetization exchange
interproton distances (> 5.2 A) are not shown because their Measurement that can be noticed from Figure 2 is a complete
cross-relaxation rates are too low to be deduced from the presentack of correlation between the cross-relaxation rates (interproton
experiments. distances) and their errors. This is a consequence of the fact

As is evident from Figure 2, the two sets of experimental thatthe spin diffusion is equally efficient in propagating errors
Va|ues Obta"']ed us|ng LEMA and FMA agree Wlth the mode| as in transferl’lng magnet|zat|0n fl’0m one Spln to the O%Pler
within two standard deviations. However, the LEMA error Thus, for a given spin pair, the error is much larger in the
limits are always narrower than the corresponding FMA limits. Presence of other spins. For example, the distances in spin pairs
This is an obvious consequence of the ensemble-averagingl3 (Pro H?—Pro H?) and 14 (Pro M—Pro H?) are ap-
property of LEMA in Comparison to FMA. An important pI’OXimately the same 2.80 vs 2.84 A, but due to the relative
implication of such error reduction is that many cross-relaxation isolation of Pro H proton, the distance error for the second
rates that cannot be determined from single FMA can be Pair is over 5 times smaller, 0.13 vs 0.7 A (Table 1).
accurately determined by LEMA. That is the case with cross-  Also worth noticing is that all pairs which are well connected
relaxation rates 13, 1518, 20, 21, and 27 in Figure 2 and Table through the network have commensurate absolute errors irre-
1. In FMA, the lower bond of estimated cross-relaxation rate spectively of the values ot],,. Animportant consequence is
errors becomes zero, which in return yields no upper limit for that in the presence of fast processes (laigg,] the slow
the corresponding interproton distance. processes (smallL]pg) cannot be satisfactorily quantified. This

For interproton distances ab®v A both methods fail to  is even more obvious when the]fq values are converted into
provide the cross-relaxation rates with a reasonable lower bond,interproton distances. Thus, even a modest improvement of the
with one exception in LEMA. In both cases, the upper error error limits for small [],q's may have an immense effect on
limits and the average cross-relaxation rates level off at the upper error limits of the derived distances. In the structure
approximately-0.1 s'1. This is due to the fact that their cross determination, the reduction of error limits of the cross-
peaks do not show up above the noise level even at the longestelaxation rate constants facilitated by LEMA significantly
mixing time for which FMA does not fail. At the longer mixing  improves the quality of geometrical input. Similarly, in a study
times, when such peaks may have intensity above the noiseof systems with chemical exchange, LEMA provides the best
level, the intensity of cross-peaks for the fastest process become®stimate of the chemical exchange rate constants from a given
equal to the intensities of the respective diagonal peaks within set of experimental data.
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Figure 2. Cross-relaxation rates (a) and interproton distances (b) in
cyclo-(L-Pro-Gly) obtained by LEMA from a series of 2D exchange
spectra (filled squares). The thick error limits are from LEMA and
the thin ones from FMA at 0.03 s. Due to averaging, the LEMA error
limits are always narrower.
converted into distances (isotropic motiag,= 3.8 ns,w¢/2r = 500
MHz) the improvement by LEMA is even more pronounced since the
upper limits of the distances are determined by the lower limits of the

cross-relaxation rates. The longest 15 interproton distances (not shown)
cannot be determined because their upper limits tend to infinity (the
lower bound of their respective cross-relaxation rates is zero). The

open rectangles represents theranges of the cross-relaxation rates

and interproton distances derived from a hybrid model (the average of

X-ray and MD distances). The upper and lower limits of the

experimental interproton distances are not symmetric regarding the

Zolnai et al.

determined at different mixing times. We have shown that the
high precision analysis of dynamic systems (chemical exchange
and cross-relaxation) studied by 2D exchange spectroscopy is
possible only from a series of 2D experiments recorded at
different mixing times. The accuracy of the deduced dynamic
matrices (chemical exchange or cross-relaxation) is determined
by the range of the measured magnetization exchange rate
constants and by the accuracy of peak volume integrals.
Ultimately, both are governed by the signal-to-noise ratio of
the volume integrals. An unavoidable practical limitation is
that, in principle, the slow processes (in both EXSY and
NOESY) cannot be well quantified in the presence of fast ones.
However, as we have experimentally demonstrated, LEMA can
extend the lower limit of magnetization exchange rate constants
for an order of magnitude in comparison to the individual FMA
of the same data set.
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